Skip to main content
. 2020 Apr 16;7:22. doi: 10.1186/s40662-020-00183-6

Table 5.

Summary of DL methods using FP and OCT to detect eye disease

Authors Year Imaging Modalities Aim Data sets DL techniques Performance
Arcadu F et al. [111] 2019 FP Diabetic macular thickening detection Local:17,997 FPs Inception-v3 AUC:0.97 (central subfield thickness ≥ 250 μm)0.91 (central foveal thickness ≥ 250 μm)0.94 (central subfield thickness ≥ 400 μm)0.96 (central foveal thickness ≥ 400 μm)
Nagasawa T et al. [112] 2019 FP Treatment-naïve proliferative diabetic retinopathy detection Local:132 FPs VGG-16 Sensitivity: 94.7%Specificity: 97.2%AUC: 0.969
Phan S et al. [113] 2019 FP Glaucoma detection Local:3312 FPs VGG-19ResNet-152DenseNet-201 AUCs of 0.9 or more (3 DCNNs)
Nagasato D et al. [114] 2019 FP Branch retinal vein occlusion detection Local:466 FPs VGG-16SVM Sensitivity: 94.0%Specificity: 97.0%positive predictive value (PPV): 96.5%negative predictive value (NPV): 93.2%AUC: 97.6%
Burlina PM et al. [115] 2019 FP To develop DL techniques for synthesizing high-resolution realistic fundus images Local:133,821 FPs GAN AUC:0.9706 (model trained on real data) 0.9235 (model trained on synthetic data)
Girard F et al. [116] 2019 FP Joint segmentation and classification of retinal arteries and veins Public:DRIVE, 40 FPsMESSIDOR, 1200 FPs CNN Accuracy: 94.8% Sensitivity: 93.7% Specificity: 92.9%
Coyner AS et al. [117] 2018 FP Image quality assessment of fundus images in ROP Local: 6043 FPs VGG-19 DCNN Accuracy: 89.1% AUC: 0.964
Keel S et al. [118] 2018 FP Detection of referable diabetic retinopathy and glaucoma Public:LabelMe, 114,906 FPs (referable DR) Sensitivity:90% (glaucomatous optic neuropathy) 96% (referable DR)
Sayres R et al. [119] 2018 FP Assist grading for DR Public: EyePACS, 1796 FPs Inception v-4 Sensitivity:79.4% (unassisted) 87.5% (grades only) 88.7% (grades plus heatmap)
Peng Y et al. [120] 2018 FP Automated classification of AMD severity Public: AREDS, 59302 FPs DeepSeeNet (Inception v-3) Accuracy: 0.671 AUC: 0.94 (large drusen) 0.93 (pigmentary abnormalities) 0.97 (late AMD)
Guo Y et al. [121] 2018 FP Retinal vessel detection Public: DRIVE, 20 FPs STARE, 20 FPs Multiple DCNNs Accuracy: 95.97% (DRIVE training dataset) 96.13% (DRIVE testing dataset) 95.39% (STARE dataset) AUC: 0,9726 (DRIVE training dataset) 0.9737 (DRIVE testing dataset) 0.9539 (STARE dataset)
Khojasteh P et al. [122] 2018 FP Detection of exudates, microaneurysms and hemorrhages Public: DIARETDB1, 75 FPs e-Ophtha, 209 FPs CNN Accuracy: 97.3% (DIARETDB1 dataset) 86.6% (e-Ophtha) Sensitivity: 0.96 (exudates) 0.84 (hemorrhages) 0.85 (microaneurysms)
Gargeya R et al. [123] 2017 FP Automated identification of DR Public: EyePACS, 75,137 FPs MESSIDOR 2, 1748 E-Ophtha, 463 FPs DCNN Sensitivity: 94% Specificity: 98% AUC: 0.97
Burlina PM et al. [63] 2017 FP Automated grading of AMD Public: AREDS, more than 130,000 FPs DCNN Accuracy: 88.4% (SD, 0.5%)-91.6% (SD, 0.1%) AUC: 0.94 (SD, 0.5%)-0.96 (SD, 0.1%)
Ordóñez PF et al. [124] 2017 FP To improve the accuracy of microaneurysms detection Public: Kaggle, 88,702 FPs Messidor, 1200 FPs DiaRerDB1, 89 FPs Standard CNNVGG CNN Sensitivity > 91% Specificity > 93% AUC > 93%
Takahashi H et al. [58] 2017 FP Improving staging of DR Local: 9939 FPs GoogleNet DCNN Prevalence and bias-adjusted Fleiss’kappa (PABAK): 0.64 (modified Davis grading) 0.37 (real prognosis grading)
Abbas Q et al. [125] 2017 FP Automatic recognition of severity level of DR Local: 750 FPs DCNN Sensitivity: 92.18% Specificity: 94.50% AUC: 0.924
Pfister M et al. [126] 2019 OCT Automated segmentation of dermal fillers in OCT images Local: 100 OCT volume data sets CNN (U-net-like architecture) Accuracy: 0.9938
Fu H et al. [127] 2019 OCT Automated angle-closure detection Local: 4135 anterior segment OCT images CNN Sensitivity: 0.79 ± 0.037 Specificity: 0.87 ± 0.009 AUC: 0.90
Masood S et al. [128] 2019 OCT Automatic choroid layer segmentation from OCT images Local: 525 OCT images CNN (Cifar-10 model) Accuracy: 97%
Dos Santos VA et al. [129] 2019 OCT Segmentation of cornea OCT scans Local: 20,160 OCT images CNN Accuracy: 99.56%
Asaoka R et al. [130] 2019 OCT Diagnosis early-onset glaucoma from OCT images Local: 4316 OCT images CNN AUC: 93.7%
Lu W et al. [131] 2018 OCT Classification of multi-categorical abnormalities from OCT images Local: 60,407 OCT images ResNet Accuracy: 0.959 AUC: 0.984
Schlegl T et al. [132] 2018 OCT Detection of macular fluid in OCT images Local: 1200 OCT scans CNN Intraretinal cystoid fluid detection: Accuracy: 0.91 AUC: 0.94 Subretinal fluid detection: Accuracy: 0.61 AUC: 0.92
Prahs P et al. [133] 2018 OCT Evaluation of treatment indication with anti-vascular endothelial growth factor medications Local: 183,402 OCT scans GoogleNet inception DCNN Accuracy: 95.5% Sensitivity: 90.1% Specificity: 96.2% AUC: 0.968
Shah A et al. [134] 2018 OCT Retinal layer segmentation in OCT images Local: 3000 OCT scans CNN Average computation time: 12.3 s
Chan GCY et al. [135] 2018 OCT Automated diabetic macular edema classification Public: Singapore Eye Research Institute, 14,720 OCT scans AlexNet, VGG, GoogleNet Accuracy: 93.75%
Muhammad H et al. [136] 2017 OCT Classification of glaucoma suspects Local:102 OCT scans CNN, Random forest Accuracy: 93.1% (retinal nerve fiber layer)
Lee CS et al. [81] 2017 OCT Segmentation of macular edema in OCT Local:1289 OCT images U-Net CNN cross-validated Dice coefficient: 0.911
Lee CS et al. [137] 2017 OCT Classification of normal and AMD OCT images Public:Electronic medical records, 101,002 OCT images VGG-16 Accuracy: 87.63% AUC: 92.78%

DL = deep learning; FP = fundus photography; OCT = optical coherence tomography; CNN = convolution neural network; DCNN = deep convolution neural network; DR = diabetic retinopathy; AMD = age-related macular degeneration; AUC = area under the curve