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Abstract

Background: Response evaluation of neoadjuvant chemotherapy (NACT) in patients with osteosarcoma is significant
for the termination of ineffective treatment, the development of postoperative chemotherapy regimens, and the
prediction of prognosis. However, histological response and tumour necrosis rate can currently be evaluated only in
resected specimens after NACT. A preoperatively accurate, noninvasive, and reproducible method of response
assessment to NACT is required. In this study, the value of multi-parametric magnetic resonance imaging (MRI)
combined with machine learning for assessment of tumour necrosis after NACT for osteosarcoma was investigated.

Methods: Twelve patients with primary osteosarcoma of limbs underwent NACT and received MRI examination before
surgery. Postoperative tumour specimens were made corresponding to the transverse image of MRI. One hundred and
two tissue samples were obtained and pathologically divided into tumour survival areas (non-cartilaginous and
cartilaginous tumour viable areas) and tumour-nonviable areas (non-cartilaginous tumour necrosis areas, post-necrotic
tumour collagen areas, and tumour necrotic cystic/haemorrhagic and secondary aneurismal bone cyst areas). The MRI
parameters, including standardised apparent diffusion coefficient (ADC) values, signal intensity values of T2-weighted
imaging (T2WI) and subtract-enhanced T1-weighted imaging (ST1WI) were used to train machine learning models
based on the random forest algorithm. Three classification tasks of distinguishing tumour survival, non-cartilaginous
tumour survival, and cartilaginous tumour survival from tumour nonviable were evaluated by five-fold cross-validation.

(Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if
changes were made. The images or other third party material in this article are included in the article's Creative Commons
licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons
licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain
permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the
data made available in this article, unless otherwise stated in a credit line to the data.

* Correspondence: jintingma@qq.com; fengsht@mail.sysu.edu.cn;
zhenhua_gao@163.com
†Bingsheng Huang and Jifei Wang contributed equally to this work.
1Medical AI Lab, School of Biomedical Engineering, Health Science Centre,
Shenzhen University, Shenzhen, China
3Department of Radiology, the First Affiliated Hospital, Sun Yat-Sen
University, Guangzhou, People’s Republic of China
Full list of author information is available at the end of the article

Huang et al. BMC Cancer          (2020) 20:322 
https://doi.org/10.1186/s12885-020-06825-1

http://crossmark.crossref.org/dialog/?doi=10.1186/s12885-020-06825-1&domain=pdf
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
mailto:jintingma@qq.com
mailto:fengsht@mail.sysu.edu.cn
mailto:zhenhua_gao@163.com


(Continued from previous page)

Results: For distinguishing non-cartilaginous tumour survival from tumour nonviable, the classifier constructed with
ADC achieved an AUC of 0.93, while the classifier with multi-parametric MRI improved to 0.97 (P = 0.0933). For
distinguishing tumour survival from tumour nonviable, the classifier with ADC achieved an AUC of 0.83, while the
classifier with multi-parametric MRI improved to 0.90 (P < 0.05). For distinguishing cartilaginous tumour survival from
tumour nonviable, the classifier with ADC achieved an AUC of 0.61, while the classifier with multi-parametric MRI
parameters improved to 0.81(P < 0.05).

Conclusions: The combination of multi-parametric MRI and machine learning significantly improved the discriminating
ability of viable cartilaginous tumour components. Our study suggests that this method may provide an objective and
accurate basis for NACT response evaluation in osteosarcoma.
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Background
Osteosarcoma is the most common primary malignant bone
tumour, which tends to occur in children and adolescents,
and is one of the main causes of cancer death and disability
in these age groups worldwide [1]. Neoadjuvant chemother-
apy (NACT) has significantly improved the therapeutic ef-
fectiveness in osteosarcoma, and increased the 5-year
survival rate, becoming the most critical treatment outside
surgery [2]. However, the significant heterogeneity of osteo-
sarcoma may lead to inconsistencies in treatment outcomes
among patients. Thus, it is necessary to objectively evaluate
the efficacy of NACT in these patients. NACT response
evaluation allows terminating ineffective treatments, develop-
ing surgical regimens, and adjusting postoperative chemo-
therapy regimens to achieve personalised treatment, thereby
improving the overall treatment outcomes [3]. Up to now,
postoperative pathological tumour necrosis rate is the main
criterion to evaluate the efficacy of NACT [4], but is invasive
and cannot be used for real-time monitoring during NACT,
or for guiding the choice of surgical timing and surgical plan,
as it can be performed only postoperatively [5, 6]. Moreover,
the method requires pathologists to conduct extensive infor-
mation processing to interpret highly complex pathological
images, making it cumbersome, costly, time-consuming, and
subjective [7].
Magnetic resonance imaging (MRI) has become the

most important diagnostic method for the local staging
of primary bone tumours and the detection of postoper-
ative tumour recurrence [8]. Diffusion weighted imaging
(DWI) is a functional MRI method capable of reflecting
the movement of water molecules in living tissues and
has been used for initial assessment of osteosarcoma [9]
and monitoring of chemotherapy efficacy [10]. The ap-
parent diffusion coefficient (ADC) is the diffusion coeffi-
cient value of the biological tissue measured by DWI,
and reflects the process of tumour cell growth and de-
cline in vivo. ADC can be used to judge the degree of
diffusion of water molecules and predict the curative ef-
fect before the tumour morphological changes [11, 12].
Studies have shown that an increase in ADC after

NACT is associated with a favourable histological re-
sponse and indicated that ADC can be used as an im-
portant parameter to detect the efficacy of NACT [13,
14]. However, some other studies have not found a sig-
nificant association between ADC and tumour necrosis
[15, 16]. We have previously demonstrated by statistical
methods that there are no significant differences in ADC
values among the cartilaginous tumour survival areas,
the post-necrotic collagenised areas, and the tumour ne-
crosis cystic/haemorrhagic areas [17], suggesting that
ADC could not be used to assess the necrosis of chon-
droblastic osteosarcoma. Therefore, the reliability of the
ADC value from DWI for NACT response assessment is
still uncertain.
Machine learning has been used in the study of cancer,

including breast, lung, and colon cancer, showing great
diagnostic and prognostic potential [18]. However, there is
still a lack of studies on NACT response assessment in
osteosarcoma using machine learning applied to MRI
data. In this study, we applied a machine learning method
to investigate the role of multi-parametric MRI (mpMRI)
in the assessment of post-NACT necrosis in osteosar-
coma. We hypothesised that mpMRI combined with ma-
chine learning could improve the ability to discriminate
tumour necrosis from tumour survival after NACT, and,
in addition, that the combination of mpMRI and machine
learning would allow noninvasive, real-time response
evaluation of chemotherapy before surgery.

Methods
This study was conducted with the approval of the Eth-
ics Committee of the First Affiliated Hospital of Sun
Yat-Sen University. Written informed consent was ob-
tained from the patients or their parents before MRI.

Patients and treatments
We prospectively recruited 12 patients (7 males and 5
females, mean age 14.6 ± 4.8 years) with primary osteo-
sarcoma who were admitted to the First Affiliated Hos-
pital of Sun Yat-Sen University from August 2011 to
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March 2012. Eight patients had primary osteosarcoma of
the distal femur and 4 had primary osteosarcoma of the
proximal tibia. The histological types included osteo-
blastic (n = 7), chondroblastic (n = 4), and fibroblastic
(n = 1) osteosarcoma.
All patients received four cycles of NACT including

high-dose methotrexate, pirarubicin, and ifosfamide with
or without cisplatinum. Limb-salvage surgery was per-
formed 3 weeks after chemotherapy. Routine MRI exam-
ination was performed within 3 days before surgery.

MRI protocols
The MRI data of all patients were acquired using an ex-
tremity coil on a Siemens Magnetom Trio 3.0 T whole-
body magnetic resonance scanner (Magnetom Trio, Syngo
MR 2006 T, Siemens Medical Solution, Forchheim,
Germany) at Department of Radiology of the First Affili-
ated Hospital of Sun Yat-Sen University.
T1-weighted imaging (T1WI) scanning adopted the

axial spin-echo sequence with repeat time (TR) = 659 ms
and echo time (TE) = 11ms. T2-weighted imaging
(T2WI) scanning adopted coronal, sagittal, and axial fast
spin-echo sequences with or without fat suppression
(TR = 4660 ms, TE = 96 ms). Axial DWI was performed
using the single-shot spin-echo echo-planar imaging se-
quence with the following scan parameters: TR = 3200
ms, TE = 82ms, echo-planar imaging (EPI) factor = 3, b-
values = 0, 800 s/mm2. Finally, we performed a delayed
enhanced scan with the same parameters as the axial
non-enhanced T1WI sequence, and the subtracted im-
ages were automatically generated.
All the axial plane scans were perpendicular to the

longitudinal axis of the body and parallel to the tibial
plateau. The field of view and the centre of the layer
were consistent (with the largest cross-section of the
tumour as the centre of the layer), with slice thickness =
5 mm and interslice gap = 1mm.

Sampling of gross specimen sections and grouping of the
sampling areas
The resected gross specimens from limb-salvage sur-
gery were fixed in 10% buffered formaldehyde solu-
tion, and sectioned to axial slices with a thickness of
5 mm corresponding to the axial MRI layers. Section-
by-section coregistration was performed between MRI
and the specimens by a radiologist and an experi-
enced musculoskeletal pathologist to select 6–10 well-
matched specimen sections from each patient. Rect-
angular tumour tissue samples ranging from 10 × 15
mm to 15 × 20 mm were drawn on these specimen
sections corresponding to the homogeneous signal in-
tensity areas on T1WI, T2WI, and DWI. Depending
on the size of tumour, 9 to 24 sampling areas were
selected from each patient, and a total of 127 tissue

samples were obtained from the 12 resected speci-
mens. These tissue samples were fixed, decalcified,
dehydrated, embedded with paraffin, sectioned, and
stained with hematoxylin and eosin (H&E).
In this study, microscopically viable sarcomatous cells,

tumour osteoid, tumour bone, viable chondrosarcoma-
tous cells with cartilaginous matrix, sarcomatous cells
necrosis, post-necrotic collagen, liquefactive necrosis,
blood spaces, and secondary aneurismal bone cysts
(ABC) were recorded for all tissue samples by patholo-
gists blinded to the MRI findings. Areas with tumour
cell necrosis less than 10% were defined as the tumour
viable areas, while areas with tumour cell necrosis
greater than or equal to 90% were defined as the tumour
necrotic areas. Areas with tumour cartilage greater than
50% were defined as the cartilaginous tumour, while
areas with tumour cartilage less than or equal to 50%
were defined as non-cartilaginous tumour. Thus, all the
tissue samples were classified as non-cartilaginous
tumour viable areas, cartilaginous tumour viable areas,
non-cartilaginous tumour necrotic areas, tumour necro-
sis cystic/haemorrhagic and secondary ABC areas, and
tumour post-necrotic collagenised areas. Among them,
the non-cartilaginous viable tumour areas and cartilagin-
ous viable tumour areas belong to the survival areas of
tumour, while the non-cartilaginous tumour necrosis
areas, collagen areas after tumour necrosis, tumour ne-
crosis cystic/haemorrhagic and secondary ABC areas are
classified as the nonviable areas of tumour [17] (Fig. 1).

Classification with machine learning
Taking axial T1WI and T2WI as reference, circular
or oval regions of interest (ROIs) were placed on
T2WI, subtract-enhanced T1WI (ST1WI), and the
ADC maps which were coregistered to the histological
sampling areas; this was performed jointly by two ex-
perienced radiologists (MLS and ZHG). The size of
ROIs was in the range of 50–250 mm2 (Fig. 2). The
average MRI parameters on the ROIs, namely ADC
and the signal intensity of T2WI and ST1WI, were
measured. We divided the above MRI parameters by
the respective signal intensity of normal muscle to
obtain the corresponding standardised values, namely
rADC, rT2WI, and rST1WI.
Our previous studies have demonstrated by statistical

methods that the differences in ADC values among the
cartilaginous tumour survival areas, the post-necrotic
collagenised areas, and the tumour necrosis cystic/haem-
orrhagic and secondary ABC areas were in significant
[17]. Thus, in this study, we performed three classifica-
tion tasks using a supervised machine learning method
based on the random forest (RF) algorithm: distinguish-
ing tumour survival from tumour nonviable; distinguish-
ing non-cartilaginous tumour survival from tumour
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nonviable; and distinguishing cartilaginous tumour sur-
vival from tumour nonviable. We performed the training
and testing by using the Python scikit-learn learning li-
brary (https://scikit-learn.org/stable/). The models were
constructed with rADC values only, or with all the above
normalised parameters, for comparisons between differ-
ent feature inputs. Performance of the models was evalu-
ated by 5-fold cross-validation. We calculated the
receiver operating characteristic (ROC) curve and the
area under the ROC curve (AUC) to evaluate the classi-
fication performance [19]. Using the optimal threshold
determined by the ROC curve, we also calculated sensi-
tivity, specificity and accuracy as

sensitivity ¼ TP
TPþ FN

specificity ¼ TN
TN þ FP

accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

where, TP (true positive) represents the number of sam-
ples correctly predicted as positive, TN (true negative)
represents the number of samples correctly predicted to
be negative, FN (false negative) represents the number
of samples incorrectly predicted to be negative, and FP
(false positive) represents the number of samples incor-
rectly predicted to be positive.

Fig. 1 Pathological manifestations of osteosarcoma after NACT. The tissue samples were classified as five types microscopically including (a) non-
cartilaginous tumor viable areas, (b) cartilaginous tumor viable areas, (c) non-cartilaginous tumor necrotic areas, (d) blood space areas and (e)
tumor post-necrotic collagenized areas. (original magnification of a, c, e × 200, b × 400, d × 50; H&E stain)
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Results
Clinical characteristics of patients
A total of 12 patients with osteosarcoma were enrolled
in this study, and the baseline clinical characteristics are
shown in Table 1.

Pathological manifestations of osteosarcoma after NACT
The number and proportion of samples of the aforemen-
tioned five histopathological types of osteosarcoma after
NACT are shown in Table 2.
Among the 127 tissue samples, there were 102 homo-

geneous histological areas in 12 patients, including 38 of
non-cartilaginous viable tumour, 25 of non-cartilaginous
tumour necrosis, 14 of cartilaginous viable tumour, 14 of
tumour necrotic cystic/haemorrhagic and secondary
ABC, and 11 of post-necrotic collagen. In order to avoid
inaccurate calculation of MRI parameters due to tissue
heterogeneity, the remaining 25 heterogeneous histo-
logical areas, characterised by partial necrosis (10% < ne-
crosis < 90%), were excluded from the analysis.

Fig. 2 Fibroblastic osteosarcoma of distal femur in a 15-year-old boy. Using (a) axial T2W and (b) subtractedenhancedT1W images as reference,
circular ROI was placed on the (c) ADC map inside the circular tissue sampling region of the (b) corresponding gross specimen section.
Microscopically viable non-cartilaginous tumor was seen on the photomicrograph of the histological specimen (e) (original magnification,×400;
H&E stain)

Table 1 Summary of the clinical and pathological characteristics
of the osteosarcoma patients enrolled in this study

Characteristics Summary

Age

Age Range 6–25 years

Mean Age 14.6 ± 4.8 years

Gender

Male 7 (58.3%)

Female 5 (41.7%)

Primary Tumour Site

Distal Femur 8 (66.7%)

Proximal Tibia 4 (33.3%)

Pathological Subtypes

Osteoblastic 7 (58.3%)

Chondroblastic 4 (33.3%)

Fibroblastic 1 (8.4%)

Table 2 Number and proportion of samples in the different
pathological types of osteosarcoma after NACT

Pathological types Number of
samples(%)

Non-cartilaginous tumour survival 38 (37.3%)

Cartilaginous tumour survival 14 (13.7%)

Non-cartilaginous tumour necrosis 25 (24.5%)

Tumour necrotic cystic/haemorrhagic and
secondary ABC

14 (13.7%)

Post-necrotic collagen 11 (10.8%)
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Machine learning based classification
Table 3 shows the mean and standard deviation of
the standardised average MRI parameters (rADC,
rT2WI and rST1WI) on the ROIs for the aforemen-
tioned five histopathological types. Table 4 shows the
classification results (using the models based on
rADC alone and the combination of rADC, rT2WI,
and rST1WI) in terms of accuracy, specificity, sensi-
tivity, and AUC.
The results showed that machine learning models con-

structed with rADC, rT2WI, and rST1WI signal inten-
sity achieved better performance than those using rADC
alone in all three classification tasks. For distinguishing
non-cartilaginous tumour survival from tumour nonvia-
ble, using only the rADC value, we obtained a sensitivity
of 88%, a specificity of 89%, an accuracy of 89%, and an
AUC of 0.93. Using rADC, rT2WI, and rST1WI signal
intensity values improved the sensitivity to 97%, the spe-
cificity to 92%, the accuracy to 94%, and the AUC to
0.97 (Table 3 and Fig. 3A). The combination of mpMRI
features improved the classification performance, but
not in a statistically significant way compared with the
use of rADC alone (P = 0.0933).
For distinguishing tumour survival from tumour non-

viable, using rADC, rT2WI, and rST1WI, we obtained a
sensitivity of 94%, a specificity of 78%, an accuracy of
85%, and an AUC of 0.90. However, using rADC alone,
the sensitivity was reduced to 82%, the specificity was re-
duced to 69%, the accuracy was reduced to 75%, and the
AUC was reduced to 0.83 (Table 3 and Fig. 3b). MpMRI
significantly improved the performance of the machine
learning model to distinguish between tumour survival
and tumour nonviable (P < 0.05).
For a more challenging discrimination task, namely

distinguishing cartilaginous tumour survival from
tumour nonviable, the classifier constructed with rADC,
rT2WI, and rST1WI signal intensity values provided
good classification rates (sensitivity of 66%, specificity of
92%, accuracy of 71%, and AUC of 0.81). This classifier
outperformed the classifier constructed using rADC
alone, with significant AUC difference of 0.20 (Table 3
and Fig. 3c; P < 0.05).

Discussion
In this study, we proposed a noninvasive and accurate
method that evaluates the necrosis of osteosarcoma after
NACT by combining mpMRI with machine learning.
The results showed that our method could distinguish
tumour necrosis and tumour survival more accurately,
compared with a single MRI parameter.
In distinguishing non-cartilaginous tumour survival

from tumour nonviable, the machine learning based clas-
sification with rADC alone achieved an AUC of 0.93In
our previous study, we have reported that the mean ADC
values in non-cartilaginous tumour viable areas were sig-
nificantly lower than those in non-cartilaginous tumour
necrotic areas and cystic/haemorrhagic necrotic areas
[17]. Hypercellularity, intact cellular membranes, and re-
duced extracellular volume of viable non-cartilaginous
tumour cells result in lower diffusion than in necrotic
non-cartilaginous tumour cells. In cystic areas of liquefied
necrosis, blood space, or secondary ABC, free diffusion of
water molecules leads to increased ADC. These phenom-
ena lead to a significant difference in ADC values between
non-cartilaginous tumour viable areas and tumour nonvi-
able areas, so that the ADC value can be used as an effect-
ive parameter to distinguish non-cartilaginous tumour
survival and tumour nonviable areas. Other studies have
also demonstrated a significant increase in ADC value
after NACT, and shown that the mean ADC value of the
tumour is a predictor of treatment outcomes [9]. Wang
et al. [20] found that the tumour ADC after NACT was
higher in osteosarcoma patients with good response than
in those with poor response, and furthermore, there was a
positive correlation between overall tumour ADC and
tumour necrosis rate after chemotherapy. Compared with
standard statistical models, machine learning models are
more flexible, discriminative, and able to capture higher-
order interactions between data. Therefore, machine
learning combined with different parameters can effect-
ively make use of complementary information between
mpMRI, resulting in better predictions.
The results of this study indicate that ADC has limited

ability to discriminate between cartilaginous tumour sur-
vival and tumour nonviable using machine learning

Table 3 MRI parameters in different pathological tissues

Pathological type rADC rT2WI rST1WI

Non-cartilaginous tumour survival 0.94 ± 0.16 3.81 ± 1.84 3.36 ± 1.06

Cartilaginous tumour survival 1.53 ± 0.13 5.86 ± 1.54 3.77 ± 2.58

Non-cartilaginous tumour necrosis 1.35 ± 0.12 3.65 ± 1.50 3.12 ± 1.24

Tumour necrotic cystic/haemorrhagic and secondary ABC 1.76 ± 0.21 8.45 ± 5.09 2.32 ± 1.16

Post-necrotic collagen 1.82 ± 0.13 5.72 ± 1.97 2.85 ± 1.02
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techniques, while mpMRI significantly improved the dis-
criminatory ability in this task. Our previous study dem-
onstrated that cartilaginous tumour survival areas have
high ADC values, indistinguishable from post-necrotic
collagenic tissue or cystic/haemorrhagic necrosis [17].
The high ADC values in cartilaginous tumour viable
areas may be explained by the sparse tumour cells in the
myxoid matrix of cartilaginous tumour resulting in free
water diffusion [21]. Water-rich extracellular cartilagin-
ous matrix and its high permeability may also lead to in-
creased ADC [10]. Our previous findings also suggested
that histological subtypes of osteosarcoma should be
taken into account when evaluating the response to
chemotherapy with DWI [17]. However, analysis of the
histological subtypes for NACT response assessment is
cumbersome, eveninaccurat with poor reproducibility.
Our method by analyzing mpMRI may simplify the as-
sessment and achieve timely, accurate, and reproducible
results. This may be explained by that contrast-
enhanced subtraction TIWI and T2WI provides the in-
formation on tumour enhancement and boundary, and
that machine learning can make full use of the multiple
information by optimizing their combination to con-
struct the best prediction model for the classification
tasks. Similarly, Blackledge et al. [22] showed that tissue

classification with supervised machine learning methods
in mpMRI of soft tissue sarcomas allows the quantitative
assessment of heterogeneous tissue changes after
radiotherapy.
Our results also showed that mpMRI can significantly

improve the ability of machine learning models to differ-
entiate tumour necrosis from tumour survival compared
with the use of ADC alone, even if living cartilage tumours
component was taken into account. This may be because
mpMRI provides more valuable information for the con-
struction of machine learning models. There is evidence
that multi-parametric imaging with different functional
MRI parameters provides detailed information about can-
cer hallmarks [23], including neoangiogenesis, cellularity,
tumour microenvironment, metabolite concentration, re-
ceptor status, tissue pH, and oxygenation, which cannot
be obtained from one single parameter. In this study, we
used three parameters, namely DWI, T2WI, and contrast-
enhanced subtraction T1WI. DWI can provide informa-
tion about the number of tumour cells based on quantita-
tive values (such as ADC) [14]. T2WI represents
information about water distribution and tumour extent.
Contrast-enhanced MRI (CE-MRI) reflects physiological
information such as tissue vascularisation, perfusion rate,
capillary permeability, and extravascular extracellular

Table 4 Classification results using the random forest classifier

Classification
Task

Features Sen (%) [95% CI] Spe (%) [95% CI] Acc (%) [95% CI] AUC [95% CI] p-Value

TS vs. TN rADC 82 [71 93] 69 [56 82] 75 [67 83] 0.83 [0.66 0.85] 0.0473

rADC, rT2WI, rST1WI 94 [87101] 78 [67 89] 85 [78 92] 0.90 [0.78 0.93]

CTS vs. TN rADC 68 [55 81] 57 [31 83] 66 [54 78] 0.61 [0.46 0.80] 0.0153

rADC, rT2WI, rST1WI 66 [53 79] 92 [78106] 71 [60 z 82] 0.81 [0.68 0.91]

NCTS vs. TN rADC 88 [79 97] 89 [79 99] 89 [82 96] 0.93 [0.81 0.96] 0.0933

rADC, rT2WI, rST1WI 96 [91101] 92 [83101] 94 [89 99] 0.97 [0.88 1.00]

TS tumour survival, CTS cartilaginous tumour survival, NCTS non-cartilaginous tumour survival, TN tumour nonviable, Sen sensitivity, Spe specificity, Acc accuracy;
the P value represents the significance of the statistical comparisons of the AUCs of the different RF models (constructed with rADC vs. constructed with rADC,
rT2WI, and rST1WI)

Fig. 3 ROC curves of the RF classifiers. The curves in red are the ROC curves for the classification model using rADC as their only feature, while
the green curves are those of the classification model using rADC, rT2WI, and rST1WI signal intensity values. a) ROC curves for the task of
distinguishing non-cartilaginous tumour survival from tumour nonviable. b) ROC curves for the task of distinguishing tumour survival from
tumour nonviable. c) ROC curves for the task of distinguishing cartilaginous tumour survival from tumour nonviable
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space. Subtract-enhanced MRI can remove the effects of
high-signal lesions on non-enhanced T1WI and truly re-
flects the delayed subtraction enhancement information.
Torricelli et al. [24] showed that CE-MRI subtraction may
be a useful technique for assessing osteosarcoma response
to chemotherapy and detecting residual viable tumour tis-
sue. Furthermore, machine learning is able to effectively
integrate information from mpMRI for accurate classifica-
tion of tumour survival and necrosis.
Among the limitations of this study, we should mention

that we only investigated the ability of mpMRI to classify
the necrosis and survival of pathological types after NACT
for osteosarcoma, but did not evaluate the response or ne-
crosis rate of patients. However, our encouraging results
provide evidence that can form the basis for a subsequent
assessment of response or necrosis rate. A second limita-
tion of this study is that we investigated the ability of
mpMRI parameters to discriminate between different
types of tissue based only on the local region averages.
Correlation between MRI and the pathological informa-
tion of entire specimen slices may provide more precise
information. Future studies with larger samples are
needed to investigate the relationship between MRI find-
ings and histopathological information, so as to improve
the NACT response evaluation in different subtypes of
osteosarcoma.

Conclusions
In summary, machine learning methods incorporating
the information of T2WI, enhanced T1WI, and ADC
could effectively distinguish tumour necrosis from
tumour survival, or from the necrosis of the tumour
extracellular matrix/stroma, after chemotherapy. Our
study suggests that machine learning applied to mpMRI
may provide an objective and reliable method for NACT
response evaluation in osteosarcoma.
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