Skip to main content
. 2020 Apr 15;19:22. doi: 10.1186/s12938-020-00764-5

Table 2.

Evaluation of the classifiers for each group and comparison among KNN, Random Forest, Naïve Bayes and Support Vector Machine

Groups Sensitivity (± STD) Specificity (± STD) Precision (± STD) Accuracy (± STD)
KNN
 AG 0.9737 (0.0582) 0.9756 (0.0221) 0.9320 (0.0566) 0.9701 (0.0219)
 MG 0.8703 (0.0793) 0.9897 (0.0142) 0.9676 (0.0425) 0.9599 (0.0221)
 CG 0.9769 (0.0265) 0.9411 (0.0398) 0.9445 (0.0353) 0.9590 (0.0234)
Random forest
 AG 0.6852 (0.0030) 0.8839 (0.0011) 0.6642 (0.0021) 0.8342 (0.0009)
 MG 0.6650 (0.0030) 0.8961 (0.0009) 0.6817 (0.0021) 0.8383 (0.0009)
 CG 0.7900 (0.0018) 0.7951 (0.0018) 0.7947 (0.0014) 0.7926 (0.0011)
Naïve Bayes
 AG 0.7132 (0.0052) 0.8634 (0.0022) 0.6391 (0.0040) 0.8258 (0.0020)
 MG 0.5601 (0.0056) 0.9424 (0.0018) 0.7716 (0.0055) 0.8468 (0.0018)
 CG 0.8411 (0.0029) 0.7691 (0.0033) 0.7864 (0.0024) 0.8051 (0.0020)
Support vector machine
 AG 0.7942 (0.0049) 0.7894 (0.0045) 0.7925 (0.0040) 0.7918 (0.0037)
 MG 0.7894 (0.0045) 0.7942 (0.0049) 0.7963 (0.0042) 0.7918 (0.0037)
 CG 0.8846 (0.0030) 0.7718 (0.0050) 0.7989 (0.0037) 0.8282 (0.0029)

STD standard deviation