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Study Objectives: Craniofacial anatomy is recognized as an important predisposing factor in the pathogenesis of obstructive sleep apnea (OSA). This study
used three-dimensional (3D) facial surface analysis of linear and geodesic (shortest line between points over a curved surface) distances to determine the
combination of measurements that best predicts presence and severity of OSA.
Methods: 3D face photographs were obtained in 100 adults without OSA (apnea-hypopnea index [AHI] < 5 events/h), 100 withmild OSA (AHI 5 to < 15 events/h),
100 with moderate OSA (AHI 15 to < 30 events/h), and 100 with severe OSA (AHI ≥ 30 events/h). Measurements of linear distances and angles, and geodesic
distances were obtained between 24 anatomical landmarks from the 3D photographs. The accuracy with which different combinations of measurements could
classify an individual as havingOSA or not was assessed using linear discriminant analyses and receiver operating characteristic analyses. These analyseswere
repeated using different AHI thresholds to define presence of OSA.
Results: Relative to linear measurements, geodesic measurements of craniofacial anatomy improved the ability to identify individuals with and without OSA
(classification accuracy 86% and 89% respectively, P < .01). A maximum classification accuracy of 91% was achieved when linear and geodesic measurements
were combined into a single predictive algorithm. Accuracy decreased when using AHI thresholds≥ 10 events/h and≥ 15 events/h to defineOSAalthough greatest
accuracy was always achieved using a combination of linear and geodesic distances.
Conclusions: This study suggests that 3D photographs of the face have predictive value for OSA and that geodesic measurements enhance this capacity.
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BRIEF SUMMARY
Current Knowledge/Study Rationale: Obstructive sleep apnea (OSA) is currently undiagnosed in many individuals and simple, accurate screening tools
are needed to predict those who haveOSA. 3D facial photography is a quickmethod of capturing linear and nonlinear (geodesic) distances between different
facial features in order to determine the combination of measurements that best correlates with the presence and severity of OSA.
Study Impact: The study found that OSA was able to be predicted with 91% accuracy when linear and geodesic craniofacial measurements from 3D
photography were combined into a single predictive algorithm. The conclusions have not been validated in other populations with different age, race, and
body mass index distributions.

INTRODUCTION

Obstructive sleep apnea (OSA) is a common disorder estimated
to affect 15% of middle-aged males and 5% of middle-aged
females.1 It is characterized by repetitive episodes of partial or
complete upper airway obstruction that are associated with
hypoxemia, sympathetic activation, and sleep disruption. It is
associated with burdensome symptoms and substantial med-
ical comorbidities, including sleepiness-related accidents,2

diabetes, cardiovascular diseases,3 and depression.4

Studies demonstrate familial aggregations of OSA, sug-
gesting powerful genetic predispositions, although these re-
main to be precisely characterized. Despite OSA being readily
treatable, most cases (75%) remain unidentified,5,6 because
symptoms and signs are unrecognized, ignored, ormisattributed

to other causes. Current screening tools involve questionnaires,
which while reasonably sensitive for OSA are (relatively)
nonspecific, resulting in a high rate of false-positive results.7

Other low-cost screening tools are needed.8–11

Craniofacial anatomy is recognized as an important pre-
disposing factor inOSApathogenesis.12 Studies usingmagnetic
resonance imaging (MRI) have shown that midface and lower-
face width are correlated with OSA severity, supporting the
notion that facial structure is important in the development of
OSA.13 Lateral cephalometry (x-ray) studies have demon-
strated the importance of facial measures such as maxillary and
mandibular length and intermaxillary space14 in determining
risk of OSA. Cephalometry and MRI allow accurate mea-
surement of specific dimensions of the facial skeleton and upper
airway. However, these techniques are not available for routine
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clinical assessment and their use is limited by cost in the case of
MRI and the risks associatedwith exposure to ionizing radiation
in the case of cephalometry.

Two-dimensional (2D) photography has been used as an
alternative to these more complex techniques and has several
advantages. In particular, it is safe, inexpensive, portable, and
easily accessible. Facial phenotypes assessed with 2D pho-
tography are closely correlated with upper airway anatomy as
determined using MRI. Hence, 2D photography represents a
reliable method for assessing both internal and external facial
structures.13 2D photography captures several anatomic risk
factors for OSA related to skeletal restriction, regional adi-
posity, and obesity. Such craniofacial risk factors include a
wider and flatter mid and lower face, a shorter and retruded
mandible, a smaller enclosed area within the mandible, and
more soft tissues or fat deposition on the anterior neck.12,15

Measurements such as these have been used to predict OSA
severity with reasonable accuracy.15,16 However, 2D pho-
tography cannot capture the nonlinear nature of craniofacial
anatomy, such as shape and contour.

Three-dimensional (3D) photography overcomes this limi-
tation of representing the 3D structure of the face with 2D
imaging. Although similar to 2D photography it can provide
information regarding linear distances and angles, unlike 2D
photography it can additionally provide information on facial
contours (ie, geodesic distances) making it an ideal tool for
assessing the role of craniofacial structure in the pathogenesis
of OSA. 3D photography allows assessment of the skeletal
and soft tissues of the face and neck in a faster, cheaper, more
readily available, and less invasive manner than MRI17 and is
already used in applications that range frommeasuring aesthetic
facial parameters18 to orthodontic diagnosis and evaluation
of the craniofacial growth and development.19 To date there
has been only one study examining the potential role of
3D facial analysis to predict OSA in adults. In this study,
Lin et al20 showed in 36 male Asian patients with OSA that
linear measurements of craniofacial distances, areas, angles,
and volumes captured by 3D photography showed strong
agreement with the same measurements obtained with 3D
computed tomography (CT).

The current study aimed to use 3D facial surface analysis of
linear andgeodesicmeasurements to determine the combination
of measurements that best correlates with the presence and
severity of OSA. In particular, we sought to determine whether
geodesic measurements increased the accuracy with which
individuals with OSA could be identified from 3D photographs
of the face.

METHODS

Participants
A sample of 50 middle-aged adults without OSA was recruited
from participants in an ongoing community-based study of the
prevalence of OSA between September and December 2015.21

Sleep studies from sequential participants were analyzed, pres-
ence and severity of OSA were determined, and 50 participants
without OSA (apnea-hypopnea index [AHI] < 5 events/h) with

good-quality 3D face images (eg, without beards and missing
data points) were identified.

In addition, a clinical sample of 350 middle-aged adults was
recruited from the Sleep Clinic at the Western Australian Sleep
Disorders Research Institute, Department of Pulmonary
Physiology and Sleep Medicine at Sir Charles Gairdner Hos-
pital between April 2015 and September 2016. Sleep studies
from sequential participants were analyzed, severity of OSA
determined, those with poor-quality 3D face images excluded,
and participants allocated into one of 4 groups until the fol-
lowing sample sizes were reached: 50 without OSA, 100 with
mild OSA, 100 with moderate OSA, and 100 with severe OSA.

Informedwritten consent was obtained from each participant
and ethical approval for the studywas obtained from theHuman
Research Ethics Committees at The University of Western
Australia Human Research Ethics Committee (RA/4/1/7236)
and Sir Charles Gairdner Hospital (No. 2014-059).

Sleep study
Standard overnight polysomnography was performed at one of
two sites (Centre for Sleep Science, University of Western
Australia or the Western Australian Sleep Disorders Research
Institute, Sir Charles Gairdner Hospital).

Sleepstudiesatbothsiteswereperformedaccording toAmerican
Academy of Sleep Medicine (AASM) recommendations.22

Briefly, electroencephalogram, electrooculogram, and chin
electromyogram were measured using surface electrodes.
Respiration was monitored with nasal prongs, an oronasal
thermistor and thoracic and abdominal respiratory bands. Blood
oxygen saturation (SaO2) and heart rate were monitored con-
tinuously from a pulse oximeter on the index finger and elec-
trocardiography, respectively. Leg movements were monitored
by electromyography electrodes placed over the tibialis anterior
muscle.A position sensor,microphone, and a live video feed via
an infrared camera were used to monitor body position and
snoring. A sleep technician monitored the recordings and video
in each room for the duration of the study.

Data at both sites were acquired using Compumedics Grael
(Compumedics, Victoria, Australia) system and scored by an
experienced sleep technician using Profusion (PSG4) software
according to the AASM 2012 (version 2.0) rules for the scoring
of sleep and associated events.23 The AHI was calculated as the
total of all apneas and hypopneas divided by the total sleep time.
Severity of OSA was defined as mild (AHI 5 to < 15 events/h),
moderate (AHI15 to<30events/h) or severe (AHI≥30 events/h).

At the time of the sleep study, measurements were also
obtained of each participant’s height (stadiometer) and weight,
body mass index (BMI) was determined (height/weight2) and
neck circumference measured using a tape measure positioned
at the level of the cricoid.

3D photography
At both study sites, 3D photographswere taken using the 3dMD
craniofacial scanner system (LCC,Atlanta,Georgia,USA). The
scanner generates 180° (ear to ear) and neck region 3D images
using the technique of triangulation.24,25 Obtaining the image
required the patient to sit on a chair between two cameras, with
the hair pulled back from the face. High-resolution images were
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captured within 1.5 milliseconds and simultaneous acquisition
of geometry and color-texture data were achieved by the syn-
chronization of the individual digital cameras.

Landmark annotation
A total of 24 landmarks were annotated by a single scorer who
was blinded to OSA status, on the 3D image of each face
(Figure 1) using custom software developed by the authors
(AM, SG) in Matlab (R2018b) which allowed these landmarks
to be objectively positioned. Two of these landmarks (left and
right gonion) were physically marked on each individual’s face
at the time of scanning. Selection of landmarks were guided by
earlier studies of Sutherland and Lee.15,26,27 The software
allowed the face to be rotated to allow optimal visualization and
determination of each landmark. Landmark location was highly
repeatable: the average intraclass correlation coefficient for the 22
landmarks was 0.99 when calculated from 20 faces (5 from each
OSA category annotated twice each), excluding the gonions as they
were physically marked on the face. The 3D coordinates of each
landmark (in the x, y, and z axes) were stored for later analysis.

Feature extraction
The 24 landmarks allowed a total of 276 distances between two
(paired) landmarks to be defined. For parsimony and guided by

earlier studies12,26,27 25 pairs of points were selected and dis-
tances calculated for each in both the linear dimension (ie, direct
euclidian distance between the two points) and geodesic di-
mension (ie, the shortest distance between two points when
following the contour of the face/skin) (Figure 2,Table S1 and
Table S2 in the supplemental material). Using linear dimen-
sions only, angles were also determined between sets of three
points (Figure S1 and Table S3 in the supplemental material).
These linear and geodesic distances and angles were termed
“features” and used in further analysis.

Analysis
Data were divided into two classes, control and OSA, based on a
polysomnography-derived threshold value of AHI ≥ 5 events/h to
define OSA (n = 100 controls and n = 300 OSA). Based on this
threshold value, a linear discriminant analysis (LDA) algorithmwas
developed and trained using the 3D linear distances, geodesic dis-
tances, and angles of each face. The algorithm was then trained and
tested to classify new unseen cases (see next paragraphs) usingAHI
threshold values of 10, 15, 20, 25, 30, 35, 40, 45, and 50 events/h.

The LDA algorithm was used to distinguish facial fea-
tures between the two classes: control and OSA. The goal of
this machine learning algorithm was to find, using all features,
a one- dimensional space where the distance between features

Figure 1—Annotated craniofacial landmarks.

Al-L = alare left,Al-R = alare right,Ch-L = chelion left,Ch-R = chelion right,Cr = cricoid,En-L = endocanthion left,En-R = endocanthion right,Ex-L = exocanthion
left, Ex-R = exocanthion right, Ft-L = frontotemporale left, Ft-R = frontotemporale right, G = glabella, Gn = gnathion, Go-L = gonion left, Go-R = gonion right,
Me =menton,N = nasion,Nk-L = neck left,Nk-R = neck right,Prn = pronasale,Sn = subnasale,Sto = stomion,T-L = tragion left,T-R = tragion right. Permission to
use this photograph has been provided by the participant.
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within the same class is minimal and the distance between the
two classes is maximal. This is known as the LDA space. The
data were divided into 10 “bins.” In each bin, 90% of the data
(eg, features of 360 faces for a threshold of AHI = 5 events/h)
picked randomly were used to train the algorithm (ie, learning
the LDA space). During testing the features of a face were
projected in the LDA space and a class was assigned to it based
on its distance from the mean of both classes.28 During the
training phase the LDA algorithm was provided with the labels
of only the training data to “learn” the optimal space. The
remaining 10% of data (the unseen cases) were used to test the
algorithm. In this testing phase the algorithm was blinded to
the actual label of the test face as it was required to assign a label
to each face (based on the developed algorithm). The derived
classification was then compared to the actual classification.
OSA was assigned the positive class. Hence, faces correctly
classified as controls or OSA were assigned true negative
and true positive labels, respectively. Further details on this
cross-validation methodology and algorithm development can
be found in Table 1 and the supplemental text.

The accuracy with which different combinations of measure-
ments could classify an individual as having OSA or not was
assessed by calculating sensitivity, specificity and accuracy and by
performing receiver operating characteristic (ROC) analyses.
Comparison of distances and angles between those without OSA
and with OSA were assessed using t tests with Bonferroni cor-
rections formultiple comparisons. Comparison of distances and
angles between those without OSA and those with different
severities of OSAwere assessed using analysis of variance with
Tukey-Kramer corrections for multiple comparisons. All data

are expressed as mean ± standard deviation or mean ± standard
error and a value of P = .05 was considered statistically sig-
nificant. All analyses were undertaken using Matlab (R2018b).

RESULTS

Data from 400 participants (172 males), all of whom had 3D face
scans, overnight laboratory-based sleep studies, and measure-
ments of neck circumference and BMI, were used in this study to
develop, train, and validate the predictive algorithm (Table 1 and
supplemental text). Ethnicity data were available on 155 of the
participants of whom 72% were classified as Caucasian (both
parents were Caucasian). Compared to those without OSA
(AHI < 5 events/h), those with OSA (AHI ≥ 5 events/h) were
older (47.4 ± 13.8 versus 54.5 ± 15.8 years, P < .05) and had
increased AHI (2.6 ± 1.28 versus 30.7 ± 26.0 events/h, P < .05),
BMI (26.9 ± 5.2 versus 32.3 ± 7.6 kg/m2, P < .05) and neck
circumference(35.0±3.8 versus 39.7±4.8 cm,P< .05) (Table 2).

The accuracywithwhich facial measurements, BMI, and neck
circumference could classify an individual as havingOSA(AHI≥
5 events/h) or not (AHI < 5 events/h) is summarized in Table 3
and shown graphically in Figure 3 (the algorithm is reported
in the supplemental text). The predictive accuracy of geodesic
measurements alone was significantly greater than that for
linear distances alone, being 89 ± 1% and 86 ± 1%, respectively
(P< .01). In general, the accuracy to predict the presence ofOSA
was lowest for simple anthropometric measures of BMI and
neck circumference, was increased for measurements of linear
or geodesic distances, and was maximal (with an accuracy of

Figure 2—Geodesic and euclidian distances were determined between annotated landmarks.
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91 ± 2%) for measurements incorporating a combination of
linear and geodesic distances. The classification accuracy
to predict the presence of OSA was not significantly differ-
entwhether considering females alone ormales alone (Table 4).

Differences in landmark distances between those with and
without OSA (based on a cutoff of 5 events/h) are shown for
geodesic distances, linear distances and angles in Table S1,
Table S2, and Table S3. Craniofacial features that differed
between the control and OSA groups, for both geodesic and
linear distances included: upper,mid, and lower face depth; face
width; mandibular length, width and posterior height; and neck
width (P < .05 for all). The most discriminatory angular
measurements between the two groups (based on magnitude of
difference and values of P) were the mandibular width angle
(right gonion-menton-left gonion); lower facial width angle
(right tragion-menton- left tragion); and maxillary-mandibular
relationship angle (subnasion-nasion-gnathion) (P< .05 for all).

Several of these geodesic and linear distances were dif-
ferent between control and mild, moderate, and severe
OSA and between each of the different severities of OSA

(Table S4 and Table S5 in the supplemental material). These
included: upper and lower face depth; total and upper face
height; lateral face height; facewidth;mandiblewidth; and neck
width (P < .05 for all). Angular measurements tended to be less
discriminatory between controls and different severities ofOSA
(Table S6 in the supplemental material).

The classification accuracy for predictingOSAwas related to
the AHI cutoff used to define the presence or absence of OSA.
This is shown inFigure 4, which demonstrates that, relative to a
cutoff of 5 events/h, accuracy decreases when using the two
other most commonly used cutoffs of 10 and 15 events/h (note
that the algorithm was retrained at each cutoff). However, re-
gardless of the cutoff used the highest accuracywas achieved by
using a combination of linear and geodesic distances.

DISCUSSION

The study was driven by the need to develop new, effective
screening methods for OSA, given the high prevalence combined

Table 2—Participant characteristics.

OSA Severity
Participants Age

(years)
BMI

(kg/m2)
NCa

(cm)
AHI

(events/h)Males Females Total

Control
(AHI < 5 events/h)

25 75 100 47.4 ± 13.8 26.9 ± 5.2 35.0 ± 3.8 2.6 ± 1.3

Mild
(AHI 5 to < 15 events/h)

39 61 100 50.2 ± 16.7 29.2 ± 6.8 37.7 ± 4.5 9.9 ± 2.9

Moderate
(AHI 15 to < 30 events/h)

50 50 100 55.2 ± 14.3 32.3 ± 7.2 40.3 ± 4.3 22.6 ± 4.6

Severe
(AHI ≥ 30 events/h)

58 42 100 57.9 ± 15.6 35.4 ± 7.5 41.6 ± 4.7 59.7 ± 25.8

Total 172 228 400 52.7 ± 15.6 30.9 ± 7.4 38.3 ± 4.9 23.7 ± 25.6

aNCwas obtained fromonly 322 participants (95 control; 84mild; 77moderate; 66 severe). Values aremean±standard deviation. AHI = apnea-hypopnea index,
BMI = body mass index, NC = neck circumference, OSA = obstructive sleep apnea.

Table 1—Algorithm.

1. Let Fj = [xi,yi,zi]T, where j = 1,2,…,N, I = 1,2,….,(points on each face Fj) and N = 400.

2. Manually annotate M = 24 landmarks on each face Fj and form the matrix landmarks, Lj = [xi,yi,zi]T, where j = 1,2,…,N, i = 1,2,….,M, N = 400 and M = 24.

3. Select P = 25 pairs of landmarks on each face (Table S1 and Table S2).

4. Extract linear distance between the P landmarks on each face such that xp =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx1 − x2Þ2 + ðy1 − y2Þ2 + ðz1 − z2Þ2

q� �
, where x1, y1, z1 are the coordinates

of the first landmark in the pair and x2, y2, z2 are the coordinates of the second landmark in the pair. P = 25.

5. Extract geodesic distance between the same P = 25 pairs of landmarks. Geodesic distance is the shortest surface distance between the coordinates of first
point in the pair and the coordinates of second point in the pair.

6. Select ten 3-tuples of landmarks for calculating angles (Table S3).

7. Using the center landmark of each 3-tuple as the center vertex find the angle between the three landmarks of the 3-tuple. (Figure S1)

8. Set threshold AHI < 5 events/h as Controls and AHI ≥ 5 events/h as OSA.

9. Create 10 random folds with each fold having 360 faces for training and 40 unique faces for testing.

10. For each fold:
a. Train linear discriminant analysis algorithm on the features of training faces and test for classification on features of test faces.
b. Take the average of the classification accuracy for all ten folds and report results (Table 2)

AHI = apnea-hypopnea index, OSA = obstructive sleep apnea.
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with low identification; the disappointingly low specificity of
existing screening techniques (questionnaires) and the pros-
pect that 3D craniofacial photography could improve that; and
that 3D photography techniques are widely available with
more reliably derived, less time-consuming measures than 2D
facial photography, which requires formalized anteroposterior
and lateral photographs. The current study showed that, relative
to linear or anthropometric measurements, geodesic (nonlinear)
measurements of craniofacial anatomy improved the ability

to identify individuals with and without OSA. Maximal
classification accuracy (91%) was found when geodesic and
linear craniofacial measurements were combined into a single
predictive algorithm. Such screening could represent the first
inexpensive, widely available step along the diagnostic path-
way for OSA.

The notion that surface facial dimensions can identify in-
dividuals with OSA is supported by findings from previous
studies showing that dimensions of the facial skeleton and soft

Figure 3—Receiver operating characteristic curves showing the sensitivity and specificity for predicting OSA (AHI ≥ 5 events/h)
using different landmarks or anthropometric measurements.

AHI = apnea-hypopnea index, BMI = body mass index, NC = neck circumference, OSA = obstructive sleep apnea, true negative rate (specificity), true positive
rate (sensitivity).

Table 3—Classification accuracy of individuals without OSA (AHI < 5 events/h) and with OSA (AHI ≥ 5 events/h) using different
features or combinations of features.

Feature Sensitivity Specificity Accuracy Area Under ROC Curve Likelihood Ratio

Geodesic distances 0.96 ± 0.01 0.68 ± 0.04 0.89 ± 0.01 0.93 3.00

Linear distances 0.95 ± 0.01 0.51 ± 0.05 0.86 ± 0.01 0.88 1.94

Angles 0.95 ± 0.01 0.36 ± 0.06 0.82 ± 0.02 0.74 1.48

Combination of linear distances and
geodesic distances

0.97 ± 0.01 0.76 ± 0.03 0.91 ± 0.02 0.96 4.04

Combination of linear distances, geodesic
distances and angles

0.96 ± 0.01 0.68 ± 0.05 0.90 ± 0.01 0.93 3.00

NC 0.93 ± 0.01 0.40 ± 0.02 0.77 ± 0.01 0.78 1.55

BMI 0.97 ± 0.01 0.04 ± 0.01 0.75 ± 0.01 0.70 1.01

Combination of linear distances, geodesic
distances, angles, NC, and BMI

0.96 ± 0.01 0.71 ± 0.04 0.90 ± 0.02 0.94 3.31

Values are mean ± standard error. AHI = apnea-hypopnea index, BMI = body mass index, NC = neck circumference, ROC = receiver operating characteristic,
OSA = obstructive sleep apnea.
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tissues are related to upper airway dimensions12,13 with airway
narrowing an important predisposition to its collapse during
sleep. Furthermore, many studies across different ethnic pop-
ulations have shown that measurements of surface craniofacial
dimensions are correlated with OSA severity.12–15,26,29–31 The
techniques used in these previous studies have included
MRI, CT, lateral cephalometry, and 2D photography. Although
cephalometry and MRI allow accurate measurement of specific
dimensions of the facial skeleton and upper airway, these
techniques are not suitable for routine clinical assessment and
their use is limited by cost in the case of MRI and the risks
associated with exposure to ionizing radiation in the case of

cephalometry and CT. Craniofacial measurements from 2D
photography have been used to predict OSA severity with
reasonable accuracy15,16; however 2D photography is unable to
effectively capture the nonlinear nature of craniofacial anatomy,
such as shape and contour.

3D photography overcomes the limitation of representing
the 3D structure of the face with 2D imaging because it has
the ability to provide information regarding facial contours
as well as the linear distances and angles available from
2D images. Furthermore, compared to 2D photography, 3D
measurements of craniofacial distances and angles (obtained
using the 3dMD system) have increased agreement with

Table 4—Classification accuracy of individuals without and with OSA using three AHI cutoffs (≥ 5, 10, and 15 events/h) using
combination of linear and geodesic distances.

Sensitivity Specificity Accuracy Area Under ROC Curve Likelihood Ratio

≥ 5 events/h

Males 0.99 ± 0.01 0.72 ± 0.03 0.89 ± 0.01 0.82 3.52

Females 0.95 ± 0.01 0.79 ± 0.02 0.90 ± 0.01 0.93 4.47

All 0.97 ± 0.01 0.76 ± 0.03 0.91 ± 0.02 0.96 4.04

≥ 10 events/h

Males 0.92 + 0.01 0.73 + 0.02 0.85 + 0.02 0.85 3.41

Females 0.87 + 0.02 0.79 + 0.02 0.86 + 0.02 0.89 4.19

All 0.90 + 0.02 0.77 + 0.03 0.87 + 0.02 0.92 3.91

≥ 15 events/h

Males 0.93 + 0.01 0.71 + 0.02 0.85 + 0.02 0.85 3.24

Females 0.79 + 0.01 0.89 + 0.02 0.85 + 0.02 0.91 7.19

All 0.89 + 0.02 0.82 + 0.02 0.86 + 0.02 0.92 4.97

Values are mean ± standard error. AHI = apnea-hypopnea index, OSA = obstructive sleep apnea, ROC = receiver operating characteristic.

Figure 4—Classification accuracy for predicting OSA at different AHI thresholds using linear, geodesic, and combined distances.

Error bars, ± standard error. AHI = apnea-hypopnea index, OSA = obstructive sleep apnea.
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equivalent measurements obtained from 3D CT.20 The current
study showed that the accuracy with which OSA can be pre-
dicted from craniofacial photographs is increased when in-
formation on facial contours is considered, regardless of the
AHI threshold used to define the presence of OSA. Specifically,
geodesic measurements alone were more accurate than linear
measurements alone, with maximum accuracy derived from a
combination of geodesic and linear measurements. The sen-
sitivity, specificity, accuracy, and area under the ROC curve of
the algorithm to predict OSA (AHI ≥ 5 events/h) based on this
combination was 97%, 76%, 91%, and 0.96, respectively.
Notably, these values were similar when considering the group
overall, or males and females separately.

These measures of predictive capacity tend to be higher than
previous studies using 2D facial photographic analysis, which
have shown that correct OSA risk classification can be obtained
in 76% to 79% of the cases, with sensitivities ranging from 73%
to 85%, specificities from 28% to 70%, and area under the ROC
curve from 0.73 to 0.87.15,26,32 When comparing between
studies and between techniques an important consideration is
theAHI cutoff used to define the presence or absence ofOSA. In
all of these previous studies a cutoff of 10 events/h was used,
whereas the current study used a cutoff of 5 events/h. It was
interesting to note that, in the current study, the sensitivity,
specificity, accuracy, and area under the ROC curve decreased
to 90%, 77%, 87%, and 0.92, respectively, when an AHI
threshold of 10 events/h was used, and to 89%, 82%, 86%, and
0.92, respectively, when an AHI threshold of 15 events/h was
used, despite the algorithm being trained and then tested to
classify new unseen cases at each threshold. This indicates that
anAHI threshold of 5 events/h iswhere the accompanying facial
morphology changes aremaximal. It was notable, however, that
regardless of the threshold used the maximum capacity to
identify individuals with OSAwas obtained when geodesic and
linear craniofacial measurements are combined into a single
predictive algorithm.

Craniofacial features that differed between the control and
OSA groups tended to change similarly for both geodesic and
linear distances, such that individuals with OSA were charac-
terized by a 3% to 10% increase in measures of face depth; 10%
to 13% increase in lateral face height; 5% increase in facewidth,
2% to 6% increase inmandibular length; 17% to 19% increase in
posterior mandibular height; 4% to 5% increase in mandible
width; and 10% to 13% increase in neck width. In terms of
angular measurements, individuals with OSA had an 18%
smaller maxillary-mandibular relationship angle, and a 10% to
12% decrease in angle between the menton and left/right
mandible or tragion. It is difficult to compare these differ-
ences to those reported in previous studies using 2D mea-
surements, as the distances and angles derived in the present
studywere calculated between points in 3D space (ie, each point
having an x, y, and z coordinate), and are hence a composite of a
2D frontal view and a 2D lateral view. The only study using 3D
craniofacial photography with which to compare our results
was published recently by Lin et al.20 Their analyses did not
include geodesic distances; however, the linear measurements
they found to be correlated with severity of OSA (eg, man-
dibular width, neck perimeter, mandibular length, facial width,

binocular width) were similar to those that distinguished groups
in the current study.

The data presented in this study suggest that 3D craniofacial
photography has a potential role in screening for OSA in the
general population, but not its diagnosis. Notably, even though
the accuracy and sensitivity of the algorithm based on the
combination of linear and geodesic distances were high at 91%
and 97%, respectively, the specificity was 76% and the pos-
itive likelihood ratio (= sensitivity / (1 − specificity)) was only
4.04. These findings are consistent with a good screening test,
which must have a high sensitivity (so that most cases are
identified) and at least moderate specificity to ensure against
too many false-positive results. However, they are inade-
quate for a diagnostic test that must be both highly sensitive and
highly specific. In their review of nonlaboratory based devices
to diagnose OSA, using an in-laboratory cutoff of 5 events/h,
Collop et al33 suggested that a useful diagnostic test should
have a positive likelihood ratio > 5 and sensitivity of at least
0.825. However, it remains possible that its application in a
population with increased pretest probability based on clinical
assessment34 could result in greater diagnostic accuracy, as
might further refinements to the algorithm.

A further finding in this study was that there were sys-
tematic differences in several of the geodesic and linear
distances between patients in the control, mild, moderate and
severe OSA groups, although angular measurements tended
to be less discriminatory. This finding suggests that, beyond
identification of the presence of OSA, 3Dphotographymay be
helpful in predicting OSA severity. Although the internal
validity of the data has been assessed in themethods used here,
external validation in an independent sample of participants
would be a desirable next step in evaluating this method for
clinical use.

The method described in this study demonstrates the po-
tential for 3D facial photographs to provide a rapid, simple,
objective, and accurate method to identify individuals at high
risk of OSA. Although it was developed using an expensive,
high-resolution, research quality craniofacial scanner system, it
might be possible to embed such a method into existing, cheap,
off-the-shelf 3D photography systems. This could potentially
provide a novel, accurate screening tool for widespread use in
the general population to identify individuals at high risk of
OSA. Such a screening tool is desirable given the high prev-
alence of OSA and its current low identification rates5,35 and
could represent a first, inexpensive, widely available step along
the diagnostic pathway.

This study has several limitations. First, individuals with
beards were excluded. This was necessary to obtain a full set of
anatomic landmarks on all participants. However, beards are
often present in those with maxillomandibular deficiency;
thus, exclusion may skew the population. Second, the con-
clusions are limited to amiddle-aged population.However, the
prevalence of OSA is greatest and therefore the need for such
screening tools is also greatest in this population. Third, the
conclusions are limited to Caucasians. It is highly likely that
different combinations of dimensions will be required to
predict OSA in other ethnic groups given the well-known
effect of ethnicity on craniofacial phenotype and OSA
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anatomic risk factors.36,37 Finally, the patients with OSA had a
higher BMI, were older, and had a larger neck circumference
than those without OSA. These features may affect facial pa-
rameters measured by 3D photography and could confound the
results. However, as a real-world screening test our study shows
that 3D photography was more predictive than BMI alone
(Figure 3) in distinguishing patients with OSA from those
without OSA.

In conclusion, the main findings of this study were that
geodesic measurements add value to the capacity to identify
patients with OSA from 3D photographs of the face and that
a combination of linear and geodesic measures has a strong pre-
dictive value for the presence of OSA in the studied population.

ABBREVIATIONS

2D, two-dimensional
3D, three-dimensional
AASM, American Academy of Sleep Medicine
AHI, apnea-hypopnea index
BMI, body mass index
LDA, linear discriminant analysis
MRI, magnetic resonance imaging
OSA, obstructive sleep apnea
ROC, receiver operating characteristic
SaO2, blood oxygen saturation
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