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ABSTRACT

In the screening of cervical cancer cells, accurate identification and segmentation of nucleus in
cell images is a key part in the early diagnosis of cervical cancer. Overlapping, uneven staining,
poor contrast, and other reasons present challenges to cervical nucleus segmentation. We
propose a segmentation method for cervical nuclei based on a multi-scale fuzzy clustering
algorithm, which segments cervical cell clump images at different scales. We adopt a novel
interesting degree based on area prior to measure the interesting degree of the node. The
application of these two methods not only solves the problem of selecting the categories number
of the clustering algorithm but also greatly improves the nucleus recognition performance. The
method is evaluated by the IBSI2014 and IBSI2015 public datasets. Experiments show that the
proposed algorithm has greater advantages than the state-of-the-art cervical nucleus segmenta-
tion algorithms and accomplishes high accuracy nucleus segmentation results.
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Introduction depends on the stage of the lesion at the time of

diagnosis. If not treated in time, it is likely to cause
death.

A pathologist observes a Papanicolaou smear of
HPV-positive patient through a microscope, and
determines whether there are diseased cells in the
image according to the morphology of cervical cells

Cervical cancer is the second common type of
cancer in women, with more than 250,000
women dying from it every year [1]. Fortunately,
if early cancerous lesions caused by human papil-
lomavirus HPV are detected in time, cervical can-
cer can be cured. The cure rate of cervical lesions
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and nuclei. This process is called Papanicolaou
(PAP) test. Pap test is one of the most effective
detecting methods for cervical cancer through man-
ual screening. However, Pap screening is a time-
consuming and repetitive task and requires a high
degree of concentration. After a long period of work,
the pathologists, who have significant experience in
the screening area, may make mistakes due to fatigue
and decreased attention. Therefore, a computer-
aided diagnosis system (CAD) is needed to assist
pathologists in segmenting and identifying cervical
cancer cells.

The application of the CAD system reduces the
workload of the pathologists and allows them to
focus more on the diagnosis and identification of
abnormal cervical cells. This improves the accu-
racy of cervical cancer detection, and further
reduces the mortality and incidence of cervical
cancer. In response to developing countries with
a lack of pathologists, CAD improves the diagnos-
tic efficiency of pathologist; therefore, CAD is also
beneficial for the early detection of cervical cancer
for developing countries.

When cervical cells are infected, the shape,
color, texture, and other characteristics of their
nuclei are abnormal. The CAD system must accu-
rately segment the nucleus and determine whether
the cells have lesions through feature extraction
and classification. The accuracy of nucleus seg-
mentation, as the first step in cancer cell screening,
has an effect on the accuracy of the CAD system.
A nucleus usually corresponds to a cervical cell;
thus, the accuracy of nucleus detection directly
affects the subsequent cytoplasm segmentation
and recognition. The overlapping, uneven staining,
poor contrast, and the presence of neutrophils are
also major challenges in cervical nucleus segmen-
tation. Some scholars have studied the nucleus
segmentation in single-cell regions and overlap-
ping cervical cell images, respectively.
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In the cervical cell images observed under
a microscope, the cells are in a state of isolate,
adhering or overlapping. Cervical cell samples
containing only one isolate cell are shown in
Figure 1. Only one boundary (nucleus) or up to
two boundaries (nucleus and cytoplasm) need to
be detected in these sample images.

Bamford et al. [2] segmented cervical nucleus
using active contour method (ACM) based on
Viterbi search which could solve the initialization
and minimization of the ACM algorithm. Wu et al.
[3] utilized a cost function with a hypothetical para-
meter elliptical shape to detect the nucleus boundary
of isolate cells in cervical cytology images. Plissiti
et al. [4] applied the local minimum value of the
gradient image to identify the position of the nucleus
candidate centroids in the Pap smear image, and
screened centroids using the color feature of the
centroid square neighborhood and the support vec-
tor machine classifier. Then, the centroids were
regarded as the marker of the watershed algorithm
and the false-positive regions were restricted by the
binary support vector machine and the shape, tex-
ture, and intensity features.

However, the common cervical cells are in
adhesion or overlapping cell clumps as shown in
Figure 2. We cannot make any assumptions about
the number of cells, or expect the cells in the
image to be isolated from each other.

In 2014 and 2015, ‘Extended Depth of Field (EDF)-
based Overlapping Cervical Cell Segmentation
Challenge’ organized by the IEEE International
Biomedical Imaging Symposium which published
the ISBI2014 and ISBI2015 datasets of overlapping
cervical cells, respectively. Many scholars have pro-
posed different methods for nucleus segmentation
based on the ISBI2014 and ISBI2015 public datasets.
The algorithms for nucleus segmentation are mainly
divided into simple linear iterative clustering (SLIC)
method [5-8], region-based segmentation method

‘ e

Figure 1. Cervical cell samples containing only one isolate cell.
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Figure 2. Overlapping or adhering cervical cell Images. Image
(@) is an adhering cell clump and image (b), image (c) are
overlapping cell clumps.

[7,9-13], convolutional neural network (CNN)
[14-17], and clustering method [18-28]. SLIC super-
pixel algorithm is one of the most popular nucleus
segmentation methods currently. It identifies nuclei
by generating regular compact superpixels. For the
ISBI2014 dataset, Lee et al. applied a triangular thresh-
old method to extract cell clumps and candidate nuclei
from superpixels obtained by SLIC method [5]. Afaf
et al. [6] constructed the boundary feature vector to
classify superpixels. It can solve the problem of over-
segmentation of superpixel methods, but the problem
of under-segmentation was not solved. For the
ISBI2015 dataset, Lu et al. [7] obtained a superpixel
boundary map of cervical cytology images by the SLIC
method and edge detection algorithm. Afterward, the
boundary map was utilized to extract cell clumps and
candidate nuclei by the Gaussian mixture model and
maximally stable extremal region (MSER) algorithm.
Tareef et al. [8] applied a triangular transformation
algorithm to identify cell clumps, and combined the
SLIC algorithm with a marker-based watershed algo-
rithm to extract candidate nuclei. The SLIC algorithm
can accurately segment consistent size targets. The
nucleus area at different growth stages has obvious
differences. The area of the diseased nucleus is larger
than that of the normal nucleus, and can even be six
times the size of the normal nucleus. Therefore, it is
difficult to accurately extract the nucleus in the cervi-
cal cytology image using the SLIC algorithm.

In recent years, region-based segmentation
method and CNN have been applied in the field
of nucleus segmentation. Jung et al. [9] utilized the
MSER algorithm to identify nuclei regions of cer-
vical cytology image. Lu et al. [7] used the MSER
algorithm to identify cell clumps and candidate
nuclei and applied the nucleus ellipticity feature
to screen candidate nuclei. However, in the cervi-
cal cytology images with overlapping cells, the

region-based method always presents the false
positive and false negative nucleus detection.
Song et al. [14] used the CNN algorithm to classify
each pixel in a cervical cytology sample into three
categories: background, cell clump, and nucleus.
This method has greatly improved the accuracy of
nucleus extraction. However, the number of para-
meters that need to be adjusted by the algorithm,
the amount of data of the training samples, and
a large number of calculations are all problems
that cannot be ignored.

Fuzzy C-means clustering (FCM) method [18]
was widely used in medical image segmentation,
where the FCM algorithm and its improved algo-
rithms were mainly utilized for the segmenting brain
MR images [19,20]. Saha et al. [22] adopted first the
FCM algorithm for overlapping cervical cytology
image segmentation, which added a circular function
(CSF) to the FCM algorithm to increase the robust-
ness of the FCM algorithm and improved the bound-
ary segmentation performance. They did further
work [21] by adding the MSER algorithm to adap-
tively calculate the spatial shape force threshold.
Compared to the [22], it can get better results
based on the recall and precision metrics. However,
the segmentation results of the method [21] are
dependent on the categories number of clustering.
Saha et al. [21] obtained the appropriate categories
number of clustering through training set statistics.
The selection of the categories number of clustering
is a key issue in the performance of FCM and its
improved algorithms.

In our paper, we propose a nucleus segmentation
algorithm based on multi-scale FCM to address the
selection of the categories number of clustering algo-
rithms. Then, we adopt a novel interesting degree
based on area prior to measure the interesting degree
of the segment. The nodes with appropriate size,
uniform intensity distribution, and large solidity
can be obtained by the interesting degree based on
area prior. Experiments show that the proposed
algorithm has greater advantages than the state-of-
the-art cervical nuclei segmentation algorithms.

Method

The nucleus segmentation method is mainly divided
into three steps in this paper. The first step is to
identify the cell clumps, which is to separate the



foreground and background region from the cervical
cytology image. In the second step, the multi-scale
segments are acquired by the multi-scale FCM algo-
rithm, and then a hierarchical tree is constructed.
Afterward, the interesting node in the hierarchical
tree is identified in terms of the proposed interesting
degree based on area prior. The third step is to
achieve nuclei. The DRLSE [29] method is used to
finely segment the nucleus boundary and then con-
cave point detection is applied to separate adherent
nuclei to get candidate nuclei. Some non-nucleus
regions with different shapes and intensity in the
candidate nuclei after fine segmentation and adhe-
sion separation are removed by utilizing the feature
threshold method to acquire the nucleus region. The
process of nucleus segmentation algorithm is shown
in Figure 3.

Cell clump extraction

We utilize the cell clump mask to limits the search
range for reducing the computational complexity
of nucleus segmentation, and separate the cell
clump and background regions by the gray value.
The FCM algorithm was proposed by Dunn et al.
[30] and improved by Bezdk et al. [18]. Bezdk’s
FCM method has the advantage of a small amount
of calculations, so we use the Bezdk’s FCM
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algorithm [18] to extract the cell clump region in
the cervical cytology image.

We define I as the cervical cytology sample.
Denote the gray value of the pixel p; at position i
of the sample I as gray;,i € {1,2,..., P}, where P
represents the number of pixels in the sample I.
We utilize the Bezdk’s FCM algorithm to cluster
the P gray values into three categories, corre-
sponding to the nucleus, cytoplasm, and back-
ground, respectively. Denote v, as the cluster
centers, k € {1,2,3}. The fuzzy partition matrix
is defined as U = [uj]x,p» Where wuy(l <i<
P,1 <k <K,K =3) represents the membership
degree between gray value of pixels i and the
category k, and the membership degree should

satisfy (1) and (2).

ur €10,1],1<i<P,1<k<K (1)
K
» ug=1,1<i<P (2)
k=1

The objective function of the FCM algorithm is
defined as (3), where d is the Euclidean distance of
the gray value gray; and the cluster center vy.

1

K P
JU, V)= (us)’d(gray, i) ()
k=1 i=
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Figure 3. Nucleus segmentation algorithm.
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FCM is based on the minimization of the objective
function. The cluster centers are updated by (4)
iteratively.
P
2 (grayiu)
— (4)

P2
Zl Ui
i=

Afterward, the membership degree matrix U is
updated by (5).

Vi =

TP — (5)

K 2
S (Ile—VkH>
[1Xi—vjl|

j=1

Remarks: In actual cervical cell images, the
nucleus, cytoplasm, and background areas gener-
ally exhibit three typical levels in grayscale. We
take the value of category K = 3 in FCM clustering
so that the nucleus, cytoplasmic and background
regions can be recognized accordingly; On the
basis of this, the nucleus region and the cytoplas-
mic region are combined into a cell clump region;
thus, the cell clumps and the background regions
can be separated.

Interesting node extraction

Uneven staining, insufficient light, and cell overlap
have brought great challenges to the nucleus seg-
mentation of cervical cell clump. Our method uti-
lized three steps to extract the interesting node in
the cell clump image. Firstly, the multi-scale FCM
algorithm is used to divide the cell clusters at dif-
ferent scales. Afterward, we construct a hierarchical
tree based on the inclusion relationship between the
segments in the result of the multi-scale division.

Finally, interesting nodes in the hierarchical tree are
identified according to the proposed interesting
degree based on area prior.

Cell clump segmentation based on multi-scale FCM
algorithm

The multi-scale segmentation of the cell clump is
to acquire cell clump divisions at different seg-
mentation scales. Different scales can be regarded
as segmentation granularity, that is, the smaller the
scale, the finer the division of cell clusters. The
gray value of the nucleus is generally lower than
that of the surrounding cytoplasm, and its inten-
sity of the area is consistent. However, the gray
values of cervical cells and nuclei in different loca-
tions and growth periods are varied. For example,
the surface layer of cervical squamous epithelial
cells has a concentrated chromatin in the nucleus
region, and its gray value is low, as shown in
Figure 4(a); the squamous epithelial cells in the
middle layer, by comparison, have loose chromatin
and the nucleus gray value is higher than that of
the surface nucleus as shown in Figure 4(b); in
terms of the overlapping of cells in the cytoplasm
area, the cytoplasm may have a lower gray value as
shown in Figure 4(c).

The cell clump generally contains multiple cer-
vical cells with different growth periods. In this
case, its intensity range is large, and the nucleus
region with high intensity may be similar to that of
the cytoplasmic region with low intensity caused
by overlapping cells. A standard FCM algorithm
with clustering category K = 2 is used to cluster all
the pixels in the cell clump based on the intensity
feature, which can only divide the clump into two
parts: high-intensity region (cytoplasmic region
and lighter nucleus region) and low-intensity

2 >
@ 5
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Figure 4. Cervical cells in different locations and growth period. (a) The surface layer of cervical squamous epithelial cells. (b) The
squamous epithelial cells in the middle layer. (c) The overlapping of cells in the cytoplasm area.



region (nucleus region and darker cytoplasmic
region) as shown in Figure 5. The images in
Figure 5(c) are cytoplasm with the low gray value
and nucleus with the high gray value, respectively.
The FCM algorithm with clustering category K = 2
cannot correctly divide the cell clump into nucleus
and cytoplasm. By setting the appropriate cate-
gories number, the FCM algorithm can better
extract the nucleus and cytoplasmic regions. As
shown in Figure 6(b), the FCM algorithm with
k = 10 can segment the nuclei in the cell clump
well. The FCM algorithm with clustering category
K = 20 can also accurately identify the nuclei in
the cell clump, but it can be seen from Figure 6(c)
that some nuclei are over-segmented.

The selection of categories number is a challenge
for FCM algorithm in the nucleus segmentation of
cervical cytology images. An appointed categories
number applying to the different cells in the cervical
cytology image may result in the simultaneous exis-
tence of over-segmentation and under-segmentation.
We utilize the multi-scale FCM method to avoid the
problem of the categories number selection.

If the region R’; that is i-th region under the 1/2°
scale can be performed s + 1 consecutive binary
classification from the clump according to divisible
principle, it is called divisible region under the 1/2°*
scale. Under the 1/2°"" scale, the divisible regions are
divided by FCM with clustering category K = 2 and
the segmented result is represented as R’,,, and other
region is expressed as R*',. We define the union
set RS U RS™! as the division of cell clump at the scale
1/2°, expressed as R'.
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Figure 6. FCM segmentation of the cell clump with clustering
category K = 10 and K = 20. (a) The original image. (b) The
segmented result with clustering category K = 10. (c) The result
with K = 20.

The original cell clump can be expressed as R’.
The divisible principle of this paper is that when
the region R°; does not meet the area and inten-
sity thresholds, it can only perform s-1 consecutive
binary classification. As the scale decreases, the cell
clump is divided into smaller segment. When the
cell clump division satisfies

R = {R,-| iRi =R, Area(R) < Saeamin and  Gray(R) < 6ray_min }

(6)
under scale 1/2°, R® is the smallest scale division of
the cell clump, where N is the number of segments
in the cell clump; R is the cell clump area; Area(R;)
and Gray(R;) are the area and average values of
intensity of the segment R;, respectively.

Hierarchical tree construction

To easy analysis attributes of the segments, we
construct a hierarchical tree for the segments
under different scales. The hierarchical tree can
make full use of the inclusion relationship between

(a)

(b) (c)

Figure 5. FCM segmentation of the cell clump with clustering category K = 2. a) The original image. b) The segmented result with

clustering category K = 2. ¢) Incorrect segmentation.
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the segments of adjacent scales. The prerequisite
for constructing the hierarchical tree is that seg-
ments satisfy the nesting structure, which requires
that the segment is consistent with or included in
another segment in the larger scale. The proposed
multi-scale clustering algorithm clusters the seg-
ments that meet the divisible principle in the lar-
ger scale, though it satisfies the requirements of
the nesting structure between adjacent scales.

The segments of each scale are represented as
a node of the hierarchical tree. If two nodes have
nesting and continuous scale relationship, they
are connected by one edge, and the node with
large a area is expressed as a parent node.
Therefore, the root node of the hierarchical tree
is the cell clump, and the leaf nodes represent the
segments not meeting the divisible principle.
Because the cell clump mainly contains the
nucleus and cytoplasm, we adopt K = 2 as the
number of cluster categories. The cell clump is
the highest layer of the hierarchical tree, and the
leaf nodes are the lowest layer of the tree, as
shown in Figure 7.

Recognition of interesting node and selection of
candidate nuclei

We identify the interesting nodes from nodes in
the hierarchical tree, and then classify them into
candidate nucleus and cytoplasmic nodes.

Akgay et al. [31,32] utilized the standard devia-
tion difference and the number of pixels of the
nodes to evaluate the interesting degree of nodes,
as shown in (7)

M(n) = C(n) x D(n, parent(n)) (7)

where the first term is the number of pixels of the
node and the second term is the standard devia-
tion difference between the parent of node parent
and itself. The method introduced the number of
pixels as another factor to overcome the disadvan-
tages of using only the spectral homogeneity fac-
tor. However, these two methods overemphasize
the area factor, which tends to identify a node with
a large area as an interesting node. According to
the area of the nucleus, these two methods are not
suitable for measuring the degree of interesting
node of the hierarchical tree in this paper.

The nucleus has the features of uniform inten-
sity and large solidity. After the nucleus merges

Figure 7. Hierarchical tree structure of cell clusters.

with the surrounding cytoplasm, the intensity
value of the region changes drastically. However,
in extreme cases, the solidity of a single pixel is the
largest. Therefore, we look forward to obtain
nodes with appropriate size, uniform intensity dis-
tribution, and large solidity.

In this paper, the similarity between nodes is
calculated using the intensity consistency measure
based on the area prior, which is shown as (8), (9).

_ (s = 52)2

F(RlaRZ) _A(Rl) +1 (8)

A(Rl) _ 0 ny < aarea_minl(sarea_max< ny
ny 5area_min S nm S 6area_max

(9)



where n; represents the number of pixels in
R;; and s;, s, represents the variances of R;
and R,, respectively. The solidity S of the
region is defined as the ratio of the area of
the segment to the area of its convex hull,
that is, S(R) = Area(R)/ConvexArea(R). When
the shape of the segment is non-concave, its
solidity is the largest.

Finally, the interesting degree of node R is
defined as shown in (10), and then it is calculated
in the hierarchical tree.

IOR = F(n, parent(n)) x S(n) (10)

Based on interesting degree, a node is observed
when a node with moderate area and high solidity
remains the same or merges with similar regions
in the higher layer. The following steps are to
identify the interesting nodes in the hierarchical
tree.

Let N and P be the set of all nodes and their
paths in the hierarchical tree, respectively.
A subset N* of N is a set of interesting nodes.
Nodes in N* meet three conditions: 1) the inter-
esting degree of a node must be higher than that of
its descendants; 2) any two nodes are not on the
same path, that is, any interesting node do not
overlap; 3) each path of the hierarchical tree con-
tains only one node in N*, that is, these interesting
nodes constitute a complete cell cluster area.

The interesting node in the hierarchical tree
contains the nucleus region expected and cytoplas-
mic regions. We use support vector machines
(SVM) to classify candidate nucleus and cytoplasm
regions from interesting nodes. Radial basis func-
tion SVM classifier is trained using the features of
intensity, solidity, and area in 400 nucleus regions
and 2343 cytoplasmic regions from Baseline

BIOENGINEERED (&) 491

dataset [33]. Utilize trained classifier to classify
the interesting node to obtain the candidate
nucleus, as shown in Figure 8.

Nuclei extraction

The boundary of the candidate nucleus region is
around the true nucleus, which cannot accurately
describe the true boundary of the nucleus.
Therefore, the DRLSE [29] method is used to
finely segment the nucleus boundary, and then
concave point detection method is applied to sepa-
rate the adherent nucleus. There are some non-
nucleus regions with different features such as
shape and intensity in the candidate nuclei after
fine segmentation and adhesion separation. These

non-nucleus regions are removed by the feature
threshold method.

Candidate nuclei refinement

The energy function defined by the DRLSE model
is shown in (11), and the external term &, of the
energy function is defined according to different
application scenarios [29].

e(¢p) = URy(¢) + et () (11)

We utilize a boundary-based active contour model
as the external term of the level set evolution
algorithm in this paper. Therefore, the energy
functional of DRLSE is

e(¢) = uRy(¢) + ALy(§) + ahy(9)

where ¢ : Q — R is the level set function; R,(¢) is
a distance regularization term maintaining the sign

(12)

distance function property of the level set function;
A>0, a € R are the parameters; L,(¢) and Ag(¢)

(b)

Figure 8. Interesting nodes and candidate nuclei. (a) Interesting nodes. (b) Candidate nuclei.
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represent the length functional and area func-
tional, respectively.

Distance regularization term R,(¢) is shown in
(13), p:[0,00) =R is defined as

a potential function, p(s) =1 (s — 2)".

where

R(@) 2 | p(VoDs 1)

Functionals Lg(¢), Ag(¢), and Ly(¢), Ag(¢), g are
defined as follows:

L) 2 [ gogvelas a9

Ag(9) = JQgH(—rb)dx (15)
A 1

£711 VG, * I (16)

where § is the Dirac Delta function; H is Heaviside
step function. By Dirac Delta function, the energy
Ly(¢) represents the curve integral of the function
g along the zero level set contour of the level set
function ¢. In (16), I represents the image on the
domain Q and g is the boundary indicator func-
tion. [VG, * I| represents the gradient value of the
image after Gaussian denoising, where G, is the
Gaussian kernel with standard deviation ¢ and %’
is the convolution operation for the purpose of
noise reduction.

When the contour of the zero level set is at the
target boundary, the energy functional gets the
minimum value. The area functional A,(¢) calcu-
lates the weighted area of the region. In special
case g = 1, the energy function is exactly equal to
the area of the region Qj. The length functional

Ag(¢) controls the evolution speed and direction
of the zero level set contour. When the initializing
contour lies far from the target boundary, the area
functional Ag(¢) has an essential effect. The can-
didate nucleus is used as the initializing contour of
level set in our paper.

In practice, the Dirac Delta function § and
Heaviside step function H are approximated by
0. and H, in the L, and A,. The §; and H. are

defined as (17) and (18).

L1+ cos(®)] |x| <e

8y = 2 : = 17

: { : e (17)
145+ Lsin(m) | <e

H, = 1 x> (18)
0 x< —¢

Note that the derivative of H, is &, that is,

8. = H,. The parameter ¢ is generally set to 1.5.
Then, the energy functional is approximated
by (19).

(9) = u| p(Vdr+A| go(9)Veids

+alv)| gH(-g)ax

The minimum value of the energy functionanl
() is obtained by solving the following gradient
flow.

¢
ot

(19)

= udiv(dy([Ve|)Ve)

+ A0.(¢)div(g %) + a(v)gd:(¢)

The candidate nuclei processed by the DRLSE
algorithm are shown in Figure 9, where most of
them close to the nucleus boundaries and the red
boundaries are obtained by the DRLSE algorithm.

(20)

Adhesive nucleus segmentation and nucleus
screening

The adhesion nucleus segmentation is an impor-
tant part of the CAD systems. We utilize the con-
cave point detection [34,35] method to segment
the adhesive nuclei. Morphological features (geo-
metric center and arc-to-chord ratio) and gradient
features (radial symmetry center) are used to
determine whether the nuclei are adherent. If the

X

Figure 9. Nucleus boundaries obtained by the DRLSE algorithm.
The red boundaries are obtained by DRLSE.



candidate nuclei meet adhesion conditions, the
nuclei are called adhesion nuclei. The adhesion
conditions are defined as follows:

Condition 1: (F;>1.1landF,<4), Condition
2 (|1 — gil,>5)

where r; is the radial symmetry center; g; is the
geometric center; and |.|, is the Euclidean distance.
The shape parameter F, is defined as F, = L°/47nF,,
where L is the perimeter and F, is the area of the
candidate nucleus. If the adhesion nuclei satisfy
condition 1, the line connecting the two points
with the largest arc-to-chord ratio is used as the
segmentation boundary to segment the adherent
nuclei. If the adherent nuclei satisfty Condition 2,
a radial symmetry method [34] is utilized to sepa-
rate the adherent nuclei. The separation line
obtained by the above two methods generally can-
not accurately describe the occlusion boundary,
which may affect the reliability of nucleus feature
extraction. In this paper, these separated regions
are used as the initial regions of the DRLSE algo-
rithm, and then the precise nucleus regions are
obtained by the level set method post-processing.

There are some pseudo-nuclei in the candidate
nuclei, so-called outliers. In this paper, the area,
solidity, and eccentricity features are used to
screen candidate nuclei. Firstly, the nucleus
whose area is smaller than the area threshold is
filtered. Then, the candidate nuclei that do not
meet the solidity and eccentricity are removed.
Finally, the nuclei whose average value of intensity
is larger than that of the cell cluster are filtered.
The specific threshold value and its acquisition
method are given in the experimental section.

Experiment and result analysis
Experimental sample

In this paper, the datasets published by the
ISBI2014 and ISBI2015 challenges are used to
evaluate the proposed cervical nucleus segmenta-
tion method, respectively. The ISBI2014 public
dataset contains a total of 945 synthetic cervical
cytology images with different cell numbers and
overlap rates. The synthetic cell image generation
process is as follows: A 40x objective Olympus
BX40 microscope and a four-megapixel SPOT
Insight camera are used to observe four cervical
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smear samples, and 16 non-overlapping fields of
view are obtained. Each field contains about 20-60
Pap smear cervical cells. These cells are isolate
(do not overlap with other cells) or overlapping
with other cells. We can obtain at least 20 focus
plane images from each field of view, and the cells
show focus or defocus on different focus planes.
An overcomplete discrete wavelet transform algo-
rithm is used to generate an EDF (Extended Depth
of Field Image) from the multiple focus plane
images in a field of view. In the EDF image,
every cell in this field of view is in focus. The
background of the 16 EDF images and 53 isolate
cells is labeled. Utilizing the labeled background
and isolate cells, a synthetic cervical cytology
image with a resolution of 512 * 512 is synthesized.
The synthesis process is as follows:

Step 1: pixels are randomly selected from the
labeled background to constitute the background
of the synthetic image;

Step 2: a isolate cell is selected and performed
random rigid transformation (rotation, translation
scaling) and random linear brightness transforma-
tion; the cell passes through the alpha channel
(sampling range [0.88, 0.99]); it is placed on the
background obtained in step 1.

Step 3: another isolate cell is selected and trans-
formed by the operation of step 2. The added cell
need to overlap with the existing cells with one of
the following overlap rate ranges [0, 0.1], [0.1, 0.2],
(0.2, 0.3], [0.3, 0.4], [0.4, 0.5]. This process is
repeated until the number of cells in the synthetic
image meets the requirements. The formula for
calculating the overlap ratio is

IANB| |[ANB|
Al 7 [B]

overlap_radio = max( ) (21)
where A and B represent two cell regions; and |.|
represents the area of the region. In the synthetic
process, the nucleus and cytoplasm boundaries are
recorded as the artificial labeling results (gold
standard) of these 945 synthetic images.

There are 17 samples in the ISBI2015 public
dataset, and each sample contains 20 different
focus plane images and an EDF image in the
same field of view. The image in the dataset is
a gray level image with a resolution of 1024 *
1024. Each sample contains about 40 cervical
cells with different overlap ratio, contrast, and
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texture. Eight samples in the dataset are defined as
the training set. The training set published the
nucleus and cytoplasm labeled images. The
remaining nine samples are used as the testing
set and only the cytoplasm labeled images are
published. The ISBI2014 dataset samples and the
eight training set samples of ISBI2015 data are
used to evaluate the performance of our nucleus
segmentation algorithm.

Evaluation method

If nucleus A segmentation results meet 4022 >0.6
and % > 0.6, it is said that the nucleus A is cor-
rectly detected, where B is the artificial labeling of
the nucleus (the gold standard) [34]. The nucleus
segmentation results are evaluated by precision
Prey,; and recall Rec,y; evaluation metrics based on
the object. Pre,,; and Rec,y; are defined as follows:

Cd

Preob]‘ = 3 (22)
Cd

Recypi = — (23)
7 Gt

where Cd indicates the number of detected nuclei
correctly; D indicates the number of detected
nuclei; Gt indicates the number of nuclei in the
labeled image.

Nucleus segmentation accuracy is evaluated
using pixel-based precision Pre,;, recall Recy,
and Dice coefficient DC, which are defined as
follows:

Cd
Preyix = D—: (24)
Cd
Recyix = G—tj (25)
2|IANB
Dczg,ogchl (26)
|A| +|B]

where Cd, indicates the number of correct detec-
tions; D, indicates the number of detections; Gt,
indicates the number of nucleus pixels in the
labeled image.

The nucleus segmentation results also can be
evaluated by the positive prediction accuracy

(PPV), negative prediction accuracy (NPV), and
the harmonic mean F of between PPV and NPV
[14], which are defined as follows [35-39]:

PPV = TP/(TP + FP) (27)
NPV = TN/(TN + FN) (28)
F = 2% (PPV * NPV)/(PPV + NPV) (29)

where TP indicates the number of pixels correctly
predicted as a positive class; FP indicates the num-
ber of pixels incorrectly predicted as a positive
class; TN indicates the number of pixels correctly
predicted as a negative class; FN indicates the
number of pixels incorrectly predicted as
a negative class; positive type indicates that the
pixel is inside the nucleus, and negative type indi-
cates that the pixel is outside the nucleus.

Results

In our nucleus segmentation algorithm, we set iter_-
inner = 10, iter_outer = 5 for the DLRSE algorithm. To
make the distance regularization term weight ¢ in (10)
satisfy the Courant-Friedrichs-Lewy condition [29],
the distance regularization term weight y is set to
0.04. We set the time step At = 5 to increase the
evolution speed. When the difference of variance
between areas within the adjacent two evolutionary
zero-level set curves is less than §,,, it is considered
that the level set function has no longer changed, and
the zero level set contour at this time is the best
approximation of the nucleus boundary. We set J,,,
= 0.001 as the stopping condition for the evolution of
the level set function.

According to the energy functional of the
DRLSE algorithm, the parameters A and « of the
length energy functional Lg(p) and area energy
functional A,(p) have a great influence on the
evolution result of the level set function ¢.
Therefore, the performance of different combina-
tions of A and a for our algorithm is evaluated in
terms of the precision, recall, and DC metric in the
ISBI2014 training set. According to the position
relation between the candidate nuclei and the true
nuclei in the training set, 94% of the candidate
nuclei are located inside the real nuclei. The area
functional Ag(¢) controls the speed and direction



Table 1. The performance of different combinations of A and a
for our algorithm.

N a  Pregy  Recyy, Prepix Recpix DC

4 -6 0993 0971 0.962(0.05) 0.904(0.08) 0.936(0.03)
4 -4 0992 0963 0.976(0.04) 0.882(0.08) 0.924(0.04)
4 -2 0962 0961 0.990(0.03) 0.837(0.08) 0.907(0.05)
6 —6 0991 0972  0.962(0.05) 0.912(0.07)  0.923(0.03)
6 -4 0991 0962 0.983(0.03) 0.885(0.07) 0.935(0.04)
6 -2 0971 0.961 0.991(0.02) 0.847(0.08) 0.912(0.04)

of the evolution of the level set function. When the
parameter a is greater than 0, it evolves into the
region and vice versa. Therefore, -2, —4, and —6
are selected as the candidate value for parameter a.
The energy functional requires the parameter A of
the length functional Lg(p) is greater than 0,
though we choose 4, 6 as the candidate value for
the parameter A. The performance of different
combinations of A and a for our algorithm is
shown in Table 1.

From Table 1, when the parameter a is fixed,
the parameter A change has little effect on the final
experimental results. For example, when the para-
meter a is fixed with —4, the experimental result of
A = 6 is 1% higher than that of A = 4 based on the
pixel-based precision and DC metrics. However,
when the value of the parameter A is fixed and the
parameter a is —2, —4, or —6, we can obtain dif-
ferent experimental results with the various para-
meter a.. The value of the a parameter is set to -2,
a high pixel-based precision of 0.99 can be
obtained, but the pixel-based recall is low.
Therefore, the value of the parameter a parameter
can’t be set to —2. The algorithm performance with
a = —4 is not obvious different from performance
with a = -6, and the DC metric of a = —4 is
slightly higher than that of a = —6. Therefore, the
best results are obtained from 45 synthetic cervical
cell images in this paper by setting « and A as —4
and 6, respectively.

We use 900 synthetic cervical cytology images from
ISBI2014 and 8 EDF images from ISBI2015 training
set as the testing set to evaluate the proposed nucleus
segmentation method. The ISBI2014 dataset is synthe-
sized by isolate nuclei in 16 EDF images from
ISBI2014 challenge, and some of the EDF images of
ISBI2014 are consistent with the EDF images pub-
lished by the ISBI2015 challenge. Therefore, non-
isolate nuclei from the test dataset of ISBI2015 are
used as training nuclei for our study. This ensures
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Table 2. Parameter settings.

Parameter Value Parameter Value
6areszin 50 itelinner 10
Sarea_max 900 Iter puter 5
Ssolidity >0.85 u 0.04
6Eccenm'ciry <0.9 At 5
6Gra1y7ml‘r) 50 évar 0001
6 a -4

that there is no intersection between the training set
and the testing set, so that the proposed nucleus seg-
mentation method can be evaluated more fairly. In
nine EDF images, a total of 400 nuclei that meet the
conditions are used as the training set in this paper.
Adjust the thresholds of the area, shape, and solidity
features based on the nucleus feature of the training
set. All parameter settings in this paper are shown in
Table 2.

Based on the 900 synthetic cervical cytology
images, the nucleus detection performance and
segmentation accuracy of the proposed method
are evaluated. We also compared the method to
the circular shape constraint FCM algorithm
(CiscFC) [21], the methods from ISBI2014 chal-
lenge [7,10,36] and nucleus segmentation method
proposed by Hady [37], as shown in Table 3. In
terms of nucleus detection performance, the
object-based precision and recall of our algorithm
are higher than that of the five other methods.
And with regard to segmentation accuracy, pixel-
based recall is 0.980 which is higher than that of
other methods, and a competitive DC value is
0.936.

In this paper, experiments are performed on
eight EDF images from the training set of the
ISBI2015 public dataset, and the experimental
results are compared quantitatively with different
nucleus segmentation methods under different
evaluation metrics, as shown in Tables 4 and 5.

On the ISBI2015 training dataset, our procedure
and Lu’s procedure code [7] are run on the same
computer and software platform. On the basis of
Pregy; Recops Preyi, Recyi, and DC metrics, the
performance of the proposed algorithm is higher
than that of Lu’s algorithm (Table 4).

Based on the EDF images from the testing dataset
of ISBI2015, the algorithm in this paper is compared
with the methods proposed by Hui [11], Zhang [32],
Yousef [12], Song [41], respectively, on the three
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Table 3. Comparison with the state-of-the-art method.

Algorithm Prey; RecCop; Prep,, Recpx DC
Ushizima et al [36,40] 0.959 0.895 0.968(0.055) 0.871(0.069) 0.914(0.039)
Nosrati et al. [10,40] 0.903 0.893 0.901(0.097) 0.916(0.093) 0.900(0.053)
Lu et al [7,40]. 0.977 0.883 0.942(0.078) 0.912(0.081) 0.921(0.049)
Ratna [21] 0.968 0.882 0.927(0.095) 0.939(0.090) 0.938(0.040)
Hady [37] 0.961 0.933 - - -
Our 0.981 0.939 0.864(0.067) 0.980(0.042) 0.936(0.041)
Table 4. Compare with Lu’s algorithm. Discussion
Algorithm  Pre,,;  Recoy; Prepy Recpix DC . . .
Lu[37]  0.806 0.781 0.951(0.061) 0.935(0.051) 0.941(0.037) The cervical nucleus segmentation algorithm
Our 0.869 0.847 0.942(0.01) 0.92(0.07)  0.927(0.04) based on multi-scale FCM can accurately iden-

Table 5. Compare with the methods proposed by other
scholars.

Algorithm PPV NPV F
Huit™ 0.64 0.81 0.715
Zhang®? 0.83 0.74 0.782
Yousef!'? 0.86 0.89 0.875
Song™" 0.95 0.93 0.94
Our 0.88 0.99 0.93

measurement methods of PPV, NPV, and F (Table 5).
From Table 5, the nucleus segmentation method
described in this paper shows excellent performance
under these three metrics, and its performance is
generally higher than the first four methods.

The algorithm runs 5 times on the training set
of ISBI2014. The purpose is to identify the impact
of random initialization of membership matrix
and clustering center in the multi-scale FCM algo-
rithm. Record the results of each algorithm run,
and calculate the mean and variance, as shown in
Table 6. From the results, the variance of the five
experimental results is small based on the preci-
sion, recall, and DC metrics. Therefore, our multi-
scale FCM nucleus segmentation algorithm is less
affected by the random initialization of the mem-
bership matrix and clustering centers of the FCM
algorithm.

Table 6. Experimental results of the algorithm run 5 times on
the same dataset.

AIgorlthm Preobj Recobj DC
Run1 0.991 0.965 0.935
Run2 0.992 0.964 0.925
Run3 0.991 0.965 0.938
Run4 0.994 0.942 0.935
Run5 0.991 0.968 0.936
Mean(standard 0.992 0.9608 0.9338
deviation) (0.0013) (0.0106) (0.0051)

tify the nuclei in the cervical cytology image.
From Table 3, on the ISBI2014 training set, the
proposed algorithm achieved the best results
compared with the five other nucleus segmen-
tation algorithms mentioned in other litera-
tures based on the object-based metric. The
precision and recall of nucleus recognition of
our algorithm reach 0.98 and 0.94, respectively.
The precision of Lu’s algorithm is 0.977, which
is the best result among the five other methods
and is lower 0.4% than that of our method. In
the metric of recall, Hady’s method of the five
other methods obtains the best performance,
and recall is 0.933, which is lower 0.63% than
that of our method. From Table 4, the algo-
rithm in this paper has achieved good results
in terms of object-based precision and recall in
the ISBI2015 training set. By comparison with
Lu’s method, the precision and recall of the
object-based algorithm in this paper are 7.2%
and 7.8% higher than those of Lu’s algorithm,
respectively.

The statistical histograms of the experimental
results on the ISBI2014 testing dataset and
ISBI2015 training dataset under the pixel-based
metrics are shown in Figure 10. From Figure 10
(a), in the ISBI2014 testing dataset, pixel-based
precision, recall, and DC values above 0.8 account
for 0.870, 0.985, and 0.971 of all correctly identi-
fied nuclei, respectively. All correctly detected
nuclei meet DC value is greater than 0.74, and
the proportion of DC values that is higher than
0.95 reaches 34.7%.

According to the above analysis, our algorithm
can not only get a high detection rate of nucleus
compared to other algorithms but also accurately
segment the cell boundary. Figure 11 shows the
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Figure 10. Statistical histograms of pixel-based metrics.

final nucleus segmentation results of our method
for synthetic datasets and EDF images.

The detailed results of the nucleus recognition
with different numbers of cells and overlapping
rate are shown in Table 7 in the ISBI2014 testing
dataset. When the number of cells is less than 3
and the overlap rate between cells is less than 0.3,
the precision based on the object is 1, which means
that the false recognition rate is 0. When the over-
lap rate is less than 0.2, even if the number of cells
reaches 10, the proposed method can still get
a lower false recognition result. When the number
of cell nuclei is greater than 8 and the overlap rate
is greater than 0.4, the error recognition rate of the
algorithm reaches a maximum value of 0.08. If the
overlap ratio is less than 0.2 among the cells, the
recall obtained by the algorithm in this paper is
greater than 0.95. As the degree of overlap among
cells in the synthetic image increases, the recall
rate decreases. When the overlap rate is greater
than 0.4, the recall rate decreases obviously.
When the number of overlapping cells increases
to 9, the algorithm’s missed recognition rate
reaches 20%. As the number of overlapping cells
increases, the contrast decline and the nucleus
occlusion cause misidentification. The nucleus
gray value is not obvious and is occlusion, as
shown in Figure 12, where the rectangular marked
area is the case where the nucleus contrast is
reduced or occlusion.

This experiment uses the following computer
configuration: System: Windows7; Processor: Intel
(R) core i5-3470; Memory: 12 GB; Hard disk: 500 G;
experimental platform: Matlab R2018a.
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For the ISBI2014 synthetic dataset, the average
running time processing a cell is 2.5 S, and the
average running time processing an image is
15 S. For real EDF images, the running time
processing a cell and an image are 10 S and
360 S, respectively.

Conclusion

Nucleus segmentation of cervical smear images is
a prerequisite for the widespread application of
CAD systems. For the first time, the multi-scale
FCM is used to segment the cervical nuclei. It
addresses the problem of selection of the cate-
gories number of clustering algorithm and avoids
the existence of over-segmentation and under-
segmentation. Furthermore, a novel interesting
degree based on area prior is proposed to measure
the interesting degree of the node which can
make full use of area and solidity feature of
nuclei. The experimental results show that the
proposed nucleus segmentation algorithm for cer-
vical smear images has high segmentation preci-
sion and the performance of cervical nucleus
detection greater than recent state-of-the-art
methods.

Highlights

A multi-scale fuzzy clustering algorithm for
nucleus segmentation is proposed.

The algorithm avoids selecting the categories
number of the clustering algorithm.



498 (& J. HUANG ET AL.

Figure 11. Segmentation results. The left images are the synthetic image and the EDF image, the middle images are the labeled
boundary images, and the right images are the nucleus boundary image obtained by the algorithm in this paper.

A novel interesting degree based on area prior is The multi-scale FCM method can address over-
adopted to measure the interesting degree of the  segmentation and under-segmentation of FCM
segment. algorithm.
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Table 7. Experimental results of samples with different cell numbers and overlap rates (object_based precision/object_based recall).

[0,0.1) [0.1,0.2) [0.2,0.3) [0.3,0.4) [0.4,0.5)
2 cells (1)/(0.98) (m/A(1) (1)/(0.98) (0.97)/(0.9) (0.96)/(0.83)
3 cells (1)/(0.97) (1)/(0.98) (1)/(0.98) (0.98)/(0.92) (0.96)/(0.83)
4 cells (0.99)/(0.95) (1)/(0.95) (0.97)/(0.95) (0.99)/(0.94) (0.96)/(0.85)
5 cells (1)/(0.99) (1)/(0.98) (0.97)/(0.96) (0.97)/(0.9) (0.97)/(0.85)
6 cells (1)/(0.97) (0.99)/(1) (0.98)/(0.91) (0.98)/(0.91) (0.95)/(0.82)
7 cells (1)/(0.99) (0.99)/(0.99) (0.99)/(0.97) (0.98)/(0.87 (0.94)/(0.88)
8 cells (0.99)/(0.97) (0.99)/(0.98) (1)/(0.93) (0.99)/(0.91) (0.95)/(0.87)
9 cells (1)/(0.97) (0.99)/(0.98) (0.98)/(0.97) (0.96)/(0.88) (0.92)/(0.8)
10 cells (1)/(0.99) (0.99)/(0.99) (0.97)/(0.93) (0.99)/(0.90) (0.92)/(0.83)

3

Figure 12. Contrast reduction and occlusion in the area around the nucleus. The rectangular marked area is the case where the

nucleus contrast is reduced or occlusion.
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