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Summary
Ectopeptidases are transmembrane proteins present in a
wide variety of tissues and cell types. Dysregulated
expression of certain ectopeptidases in human malig-
nancies suggests their value as clinical markers. Ecto-
peptidase interaction with agonistic antibodies or their
inhibitors has revealed that these ectoenzymes are able
to modulate bioactive peptide responses and to influence
growth, apoptosis and differentiation, as well as adhe-
sion and motility, all functions involved in normal and
tumoral processes. There is evidence that ectopeptidase-
mediated signal transduction frequently involves
tyrosine phosphorylation. Combined analyses of gene
organization and regulation of ectopeptidases by various
physiological factors have provided insights into their
structure±function relationships. Understanding the
roles of ectopeptidases in pathophysiology may have
implications in considering them as therapeutic tar-
gets. BioEssays 23:251±260, 2001.
ß 2001 John Wiley & Sons, Inc.

Introduction

Cells communicate with their environment through several

kindsofcell surface receptors includingcytokine receptors, cell

adhesion molecules and ectoenzymes. A distinctive feature of

ectoenzymes, representedby nucleotidases, glycohydrolases,

phosphorylases, ADAMs (a disintegrin and metalloprotease

family), secretases and peptidases, is that they are integral

membrane proteins with an active catalytic site exposed to the

external surface of the membrane.(1±3) This article focuses on

ectopeptidases. Today, around twenty ectopeptidases have

been identified in human cell types and tissues (Fig. 1). They

are anchored in the plasma membrane either with the N

terminus or the C terminus facing extracellularly or through the

glycosyl-phosphatidylinositol moiety (Fig. 1). Ectopeptidases

lead a dual existence as membrane-bound and soluble

isoforms found in body fluids (Fig. 1). Enzyme release is

sometimes associated with pathology as seen in granuloma-

tous inflammation with overproduction of serum angiotensin-

converting enzyme (ACE), or during the course of hepatitis C

characterized by enhanced levels of serum g-glutamyl

transpeptidase (g-GT). The mechanisms for regulating the

shedding of membrane ectopeptidases are unknown except

for ACE which is released by a member of the secretase

family.(2) Interestingly, certain surface molecules initially

identified by immunologists and hematologists as cluster of

differentiation (CD) antigens are identical to well-studied

ectopeptidases i.e. aminopeptidase N (APN), dipeptidyl

peptidase IV (DPPIV), neutral endopeptidase (NEP) and

ACE (Fig. 1). Based on their aminoacid sequences, ectopep-

tidases belong to different families and clans of proteases

indicating their different origin. At present, there is no evidence

for extended sequence homology between all members of

ectopeptidases that could explain their developmental regula-

tion and their functional similarity. The structure and enzymatic

action of most ectopeptidases have been the subject of recent

reviews(4±12) and will not be detailed here. Although almost all

ectopeptidases are widely distributed, their levels of expres-

sion vary considerably during the fetal/postnatal development

stages(4±13) and in inflammatory reactions.(13) Several inves-

tigations have reported that physiological stimuli regulate

ectopeptidase expression and will be summarized here. An

essential question for clinicians and scientists is whether

ectopeptidases critically contribute to the disease process. We

will describe here salient advances in the molecular genetics of

ectopeptidases, and what is currently known of their biological

activities.

Expression of ectopeptidases in disease

There are many reports of the dysregulated expression of

ectopeptidases in human leukocyte malignancies and they

have been frequently used as diagnostic markers (Table 1;

Fig. 2). NEP, DPPIV and g-GT are overexpressed in several

forms of B leukemias and T/B lymphomas.(4,6,14,15) APN and g-

GT are overexpressed in acute and chronic myeloid leuke-

mias.(16±18) In contrast, the loss of DPPIV and g-GT from the

surface of lymphocytes is associated with acute and chronic T

lymphocytic leukemic diseases.(19,20) Ectopeptidases also

appear to be dysregulated in putative autoimmune diseases

such as multiple sclerosis (21, 22) and rheumatoid arthri-

tis(23,24) as well as sarcoidosis(7) and HIV infection(6,25)

(Table 1).

Outside of the hematopoietic system, the expression

pattern of ectopeptidases in solid tumor malignancies has

been extensively reviewed by Nanus and collaborators(26) and
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others(11,12,27±29) (Table 1). Often, loss of expression or

conversely overexpression of ectopeptidases in tumors has

been linked to tumor initiation, invasion and metastasis. The

only example of a causal relationship between ectopeptidase

expression and pathology, however, is seen in human

melanocytes where the loss of DPPIV is invariably associated

with malignant transformation.(29)

Regulation of ectopeptidases by

physiological stimuli

Ectopeptidases can be induced or enhanced by treatment

with physiological agents and such regulation may be

transcriptional, translational or relate to translocation at the

cell surface (Table 2). Granulocyte-macrophage colony

stimulating factor (GM-CSF), tumor necrosis factor-a (TNF-

a), substance P and formyl-methionyl-leucyl-phenylalanine (f-

MLP) increase the expression of NEP at the cell surface of

neutrophils.(13) While interferon-g (IFN-g) induces APN and

DPPIV in epithelial cells,(5,30) all three classes of IFNs are

capable of upregulating DPPIV in B-CLL.(31) Some interleu-

kins enhance APN, DPPIV and g-GT in various cell types

including epithelial cells and leukocytes.(5,32±34) Glucocorti-

coids stimulate NEP and ACE levels in epithelial and myeloid

cell types.(7,13)

Molecular genetics of ectopeptidases

Gene loci and gene organizations
Several ectopeptidases have been cloned, and the identifica-

tion of cis response elements within their genes may help in the

elucidation of ectopeptidase regulation. Studies on the

transcription factors regulating ectopeptidase expression

and their eventual modifications in malignant cells may provide

information essential to understanding their roles.

Ectopeptidases listed in Table 3 are localized at distinct

chromosomal loci and their promoters share no close

Figure 1. Membrane topologies of ectopeptidases. ACE, angiotensin-converting enzyme (EC 3.4.15.1, CD143, kininase II, dipeptidyl

carboxypeptidase I, peptidyl-dipeptidase A); APA, aminopeptidase A (EC 3.4.11.7, glutamyl aminopeptidase, membrane aminopepti-
dase II); APB, aminopeptidase B (EC 3.4.11.6, arylamidase II, chloride-activated arginine aminopeptidase, cytosol aminopeptidase IV);

APN, aminopeptidase N (EC 3.4.11.2, CD13, membrane alanyl aminopeptidase, alanine aminopeptidase, aminopeptidase M,

membrane aminopeptidase I); APW, aminopeptidase W (EC 3.4.11.16, X-Trp aminopeptidase); CPM, carboxypeptidase M (EC
3.4.17.12); DPPIV, dipeptidyl-peptidase IV (EC 3.4.14.5, CD26, postproline dipeptidyl aminopeptidase IV); ECE-1, endothelin-

converting enzyme I (EC 3.4.24.71); FAP a, fibroblast activation protein a (no IUBMB classification, seprase); g-GT, gamma glutamyl

transpeptidase (EC 2.3.2.2, gamma glutamyl transferase); MDP, membrane dipeptidase (EC 3.4.13.19, dehydropeptidase 1, leukotriene

D4 hydrolase, renal dipeptidase); meprin A (EC 3.4.24.18, endopeptidase 2); Hepsin (EC 3.4.21.-); NEP, neutral endopeptidase (EC
3.4.24.11, CD10, CALLA, endopeptidase 24.11, enkephalinase, neprilysin, membrane metallopeptidase A). Peptidases in green belong

to the serine protease family characterized by the catalytic amino acid triad His, Asp and Ser, and peptidases in red are metallo-

dependent. The catalytic residue(s) of g-GT (in blue) has(have) not yet been definitely identified.
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homology. For NEP, APN and ACE, two distinct promoters

have been characterized for each gene.(4,7,16) These promo-

ters drive different expression patterns in different cell types.(7)

The type I promoter of NEP contains several consensus

sequences for members of the Ets family of transcription

factors (PU.1 and PEA3 ) and the type II promoter is

characterized by the presence of putative Sp1-binding sites

and one retinoblastoma control element (RCE ) (4). Myb and

Ets-2 specifically cooperate in the transactivation of the APN

gene in myeloid and activated T cells.(16,17) A mutation in Ets-

1-binding domain of the APN gene has been reported in one

case of acute T lymphocytic leukemia(16,17) whereas muta-

Figure 2. The cell lineages of the hematopoietic system and neoplastic transformation. Mature cells from the various hematopoietic

lineages (lymphoid and myeloid) develop from a common pluripotent stem cell through lineage-committed intermediates. The numbers

and types of committed progenitor cells have been simplified. The location of hematological diseases (in circles) in this scheme is
indicative and does not reflect disease complexity. ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; CLL, chronic

lymphocytic leukemia; CML, chronic myeloid leukemia; GM-CFU, granulocyte-macrophage colony-forming unit. Ectopeptidases in

neoplastic cells are mentioned and their dysregulation is indicated in red in case of overexpression, and in blue for loss of expression.
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tions in other parts of the upstream promoter have been

detected in one case of chronic myeloid leukemia and two

cases of non-Hodgkin's lymphoma.(17) Whether these muta-

tions contribute to the malignant transformation however

remains to be established. The somatic ACE promoter, which

contains several potential Sp1-binding sites, is active in

several cell types including monocytes whereas the germinal

ACE promoter is active in male germinal cells.(7) Importantly,

an insertion±deletion polymorphism of the ACE gene is

associated with differences in the levels of ACE in plasma.(7)

Deletion induces high expression of ACE reported to represent

a risk factor of cardiovascular diseases.(7)

The human DPPIV gene contains several potential binding

sites for transcription factors (31, 35) (Table 3). Cotransfection

of the murine 3T3 fibroblast cell line with HNF-1a and DPPIV

promoter constructs results in an increase of DPPIV transcrip-

tion.(36) Interferons (IFNs) type I (a, b) and II (g) and retinoic

acid upregulate the expression of the DPPIV gene in chronic B

lymphocytic leukemia at least through activation of the GAS

(interferon-g activated sequence) motif by the transcription

factor Stat1a.(31) Similar to the gene encoding DPPIV, the

fibroblast activation protein a (FAP-a) gene locus is located on

human chromosome 2 in q23.(12,37) Human g-GT is a multi-

genic family composed of at least seven genes(38) and five of

them have been identified on the chromosome 22 proximal to

the chronic myeloid leukemia break point in bcr (break point

cluster region gene).(39) The chromosomal loci of other

ectopeptidases have been defined (Table 3).

Deletion of ectopeptidase genes in mice
Although caution should be exercised in extrapolating results

of mice models to humans, targeted mutations of the genes

encoding the few ectopeptidases studied demonstrate their

involvement in a number of biological events (Table 3).

Deletion of NEP causes a widespread basal plasma extra-

vasation in postcapillary venules related to increased avail-

abilities of substance P and bradykinin,(12) enhanced

endotoxin shock-lethality(40) and uncontrolled inflamma-

tion.(41) Mice lacking ACE have reduced blood pressure,

impaired male fertility and kidney defects characterized by

arterial thickening and infiltration of inflammatory cells.(42,43) g-

GT-deficient mice are sexually immature, develop cataracts,

express an altered glutathione metabolism(44) and exhibit

impaired T cell number and function.(45) Interestingly, humans

that have g-GT deficiency exhibit glutathionemia and glu-

tathionuria as in g-GT-deficient mice but the stigmata are less

severe since g-GT is a multicopy gene in humans compared

with the single copy in mice.(44) Among the substrates of

DPPIV, glucagon-like peptide 1 (GPL-1) is important for

glucose regulation and in its intact form enhances glucose-

stimulated insulin secretion. Targeted inactivation of the

DPPIV gene yields healthy mice that have increased levels

of GPL-1 and insulin(46) indicating that DPPIV participates in

blood glucose regulation by partially controling the activity of

GPL-1. Finally, FAP-a-deficient mice have no apparent

anatomical or developmental abnormalities(47) suggesting a

compensatory regulation by other proteases overlapping

FAP-a function.

Biological activities of ectopeptidases

Ectopeptidase functions can be divided into two types, those

that require the enzyme activity and those that do not.

Processing of bioactive peptides
The processing of bioactive peptides (cytokines, neuropep-

tides and hormones) is obviously dependent on the catalytic

activity of ectopeptidases. Most ectopeptidases have more

than one potential substrate and a given ectopeptidase may be

expressed by different cell types, suggesting that each of them

contributes to the post-translational modification of a variety of

peptides.(4±10)

By activating, inactivating or changing the receptor speci-

ficity of these peptides, ectopeptidases influence proliferation,

differentiation, migration and vascular permeability.(4±7) One

well-known system concerns the role of ACE in cardiovascular

homeostasis through its proteolysis of the vasoconstrictors

angiotensin I and bradykinin.(7) Some chemotactic peptides

are substrates of leukocyte ectopeptidases which therefore

Table 1. Aberrant expression of ectopeptidases in

disease

Ectopeptidase
Pathology involved Dysregulation

Leukemias, lymphomas

B-ALL NEP %
B-CLL DPPIV %
B, T lymphomas NEP, DPPIV, g-GT %
AML, CML APN, g-GT %
T-ALL, T-CLL DPPIV, g-GT &

Putative immune diseases

multiple sclerosis NEP, APN, DPPIV %
arthritis APN, DPPIV %

Sarcoidosis ACE %
HIV infection NEP %

DPPIV &
Solid tumors

gastrointestinal cancers APN &
genitourinary cancers APA, APN &

Hepsin, FAP-a %
lung cancer DPPIV %
liver cancer NEP, g-GT, Hepsin %
melanoma NEP, DPPIV, FAP-a &

Seprase %
thyroid cancer DPPIV %

All, acute lymphoid leukemia; AML, acute myeloid leukemia; CLL,

chronic lymphocytic leukemia; CML, chronic myeloid leukemia. %,

overexpression of the peptidase; &, loss of expression.
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influence cell chemotaxis. For example, inhibition of NEP and

APN enhance neutrophil chemotaxis in response to formyl

methionyl leucine phenylalanine (f-MLP) and substance P by

preserving the integrity of these inflammatory peptides.(13) In

contrast, DPPIV can alter leukocyte chemotaxis by processing

chemokines such as RANTES, SDF-1a (stromal cell derived

factor), eotaxin and MDC (monocyte derived chemokine).(6) It

seems likely that many physiologically important substrates

remain to be defined.

Cell proliferation, apoptosis, differentiation
and secretion
Ligation of ectopeptidases with agonistic antibodies (Abs) or

exogenous enzyme inhibitors (natural or synthetic) has

Table 2. Regulation of ectopeptidase expression by physiological stimuli

Regulation

Stimulus Ectopeptidase Cell type mRNA Protein

IFNs a, b, g DPPIV B-CLL � �
IFN-g APN, DPPIV epithelial �
GMF-CSF, TNF-a NEP neutrophil �
Substance P, f-MLP NEP neutrophil �
Glucocorticoids ACE myeloid �

NEP epithelial �
IL-2 APN epithelial � �
IL-4� IL-13 APN epithelial � �
IL-12 DPPIV T, activated NK �
IL-15 DPPIV activated NK �

g-GT activated T �

f-MLP, N-formyl-methionyl-L-phenylalanine; GM-CSF, growth factor colony-stimulating factor; IFN, interferon; NK, natural killer; TNF, tumor necrosis factor.

� , positive regulation demonstrated on mRNA or protein levels.

Table 3. Molecular genetics of ectopeptidases

Transcriptional Phenotype
Ectopeptidase Gene Chromosome Promoter elements of ÿ /ÿ mice

NEP 1 3q21-27 2 Ets hypersensitivity to

Sp 1 endotoxic shock

RCE increased inflammation

APN 1 15q25-26 2 Ets Ð

Myb

ACE 1 17q23 2 Sp1 reduced blood pressure

kidney dysfunction

DPPIV 1 2q24.3 1 AP1/2 enhanced insulin

ETF secretion

HNF

NFKB

Sp1

Stat1

FAP-a 1 2q23 1 Ð no apparent alterations

g-GT 7 g-GT1: 22q11.1-11.2 Ð Ð defect in GSH metabolism

g-GT2: 22q11.12 Ð Ð and immune suppression

APA 1 4q25 Ð Ð Ð

APB 1 1q32.1-32.2 Ð Ð Ð

CPM 1 12q15 Ð Ð Ð

ECE-1 1 1q36.1 Ð Ð Ð

Hepsin 1 19q11-13.2 Ð Ð Ð

MDP 1 16q24.3 Ð Ð Ð

Meprin A 1 18q12.2-12.3 Ð Ð Ð

ETF, epidermal growth factor receptor specific transcription factor; GSH, glutathione; HNF-1, hepatocyte nuclear factor-1; RCE, retinoblastoma control

element. Chromosomal location is published in MEROPS database (http//www.merops.co.uk).
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revealed additional functions. Most data derive from circulat-

ing leukocytes, epithelial cells and established cell lines.

Several studies have indicated that interaction of ectopep-

tidases with their inhibitors can alter cell proliferation. Inhibition

of DPPIV, APN and g-GT led to the suppression of growth of

leukocyte subpopulations (T, myelomonocytic and cord blood

CD34� ).(5,48±54) Growth arrest by inhibitors of ectopeptidases

correlates with alterated production of proinflammatory

cytokines, as seen for DPPIV (release of TGF-b1 and sup-

pression of IL-2, IL-10, IL-12 and IFN-g)(6,49) and ACE (release

of TNF-a, IL-1, IL-12 and tissue factor, the initiator of blood

coagulation).(56±58)

The inhibitor-mediated cell growth arrest can be associated

with an induction of cell maturation, as seen with the inhibitors

of NEP, APN and ACE, which accelerate the maturation of

clonogenic GM-CFU (granulocyte-macrophage colony-

forming unit) cells from human immature derived-bone marrow

cells.(59±61) Similarly, treatment of human myeloid cell lines or

blood monocytes with inhibitors to APN or g-GT induces

phenotypic changes characteristic of macrophage matura-

tion.(17,52±54)

Recent observations point to the involvement of ectopepti-

dases in the process of programmed cell death. Inhibitors of

APN and g-GT induce apoptosis of T and myeloid cell

lines.(51,55,62) Unlike in HIV-infected jurkat T cells in which

transfection of DPPIV cDNA protects them from apoptosis,(6)

engagement of DPPIV in a hepatocarcinoma cell line through

DPPIV Ab, delivers a potent apoptotic signal(64) suggesting

that DPPIV exerts opposite functions in different cell

contexts.

Cell invasion
Ectopeptidases might be implicated in cell invasion by their

abilities to adhere to and degrade the extracellular matrix.

DPPIV of epithelial, fibroblast and T cells binds to the macro-

molecules fibronectin and collagen and this binding can be

blocked by antibodies to DPPIV.(6,48) Activated T cells expres-

sing high levels of DPPIV preferentially migrate through a

monolayer of endothelial cells on collagen gels(64) while APN

mediates the migration of human metastatic cell lines through

matrigel.(5) FAP-a is directly involved in the degradation of

collagen which is abundant in inflamed tissues(12) whereas

CD13 participates indirectly in this process by inducing the

secretion of type IV collagenase by epithelial cells.(5)

Ectopeptidases as receptors
APN is reported to act as a receptor for the coronavirus 229E,

which infects epithelial cells of the respiratory tract, and to

mediate human cytomegalovirus infection (responsible for

herpes) by enhancing its binding to the surface of infected

cells.(65) DPPIV has been demonstrated to bind adenosine

deaminase (ADA), lack of which causes severe impairment of

cellular and humoral immunity.(6)

Ectopeptidases and signal

transduction pathways

One feature common to ectopeptidases is that they possess a

short intracytoplasmic domain (less than 20 amino acids) with

no obvious motifs.(4±12) How then might signals be transduced

by such receptors? Their connection to functional molecules

that may channel activation signals has been investigated.

Published observations on ectopeptidase signaling are con-

fined to DPPIV and APN. Although a physical association

between DPPIV and CD45 (a protein tyrosine phosphatase

exclusively expressed in the hematopoietic system) has been

reported, the importance of this association for signaling is still

unknown.(6) A very recent study demonstrated that the

interaction between DPPIV and the mannose 6-phosphate

receptor that was previously identified as the insulin-like

growth factor II receptor, contributes to T cell activation.(66) In T

cells, triggering of DPPIV by Ab is associated with calcium

mobilization and activation of cellular proteins involved in TcR/

CD3-mediated signal transduction (CD3 zeta chain, Src

kinases, ZAP70, MAPKs and PLC).(6) DPPIV inhibitors

activate MAPK-p38 and suppress CD3 Ab-mediated activa-

tion by inhibiting MEK1 and ERK1/2.(49) Related intracellular

effectors (calcium increase, the MAP kinases ERK1/2, JNK

and p38) appear to be implicated in the activation of T cells

through APN.(5,17)

Although the basis for signal transduction via g-GT is still

unknown, molecular associations between g-GT and some

members of the tetraspan 4 family including CD53, CD81 and

CD82, are reported.(67) It remains to be seen whether g-GT-

mediated events require these molecules. Interestingly, the

biochemical pathways initiated by ectopeptidase engagement

overlap the signals triggered by integrins and cytokines. For

instance, MAP kinases regulate cell proliferation following

binding of a cytokine to its receptor or integrin-mediated

adhesion(68,69) (Fig. 3).

At present, the mechanisms of action of inhibitors and Abs

is not completely clear. Indeed, with regard to APN and DPPIV,

the enzymatic activity, even if it contributes, does not appear

essential for signal transduction.(6,17) Inhibitor binding to the

ectopeptidase, as with Ab binding, might induce conforma-

tional changes of the enzyme, thus initiating lateral membrane

interactions with signaling molecules.

Conclusions

Understanding the roles of ectopeptidases has reached a

critical step. They may exert biological activities by molecular

properties dependent or independent of their enzymatic

activities (Fig. 4). Since ectopeptidases are dysregulated in

various diseases (Table 1), they represent a likely target for

intervention in pathophysiological situations. For several years

now, ACE inhibitors have proved their efficacy in the treatment

of hypertension, diabetic nephropathy(70) and post-transplan-

tation erythrocytosis.(71) As monotherapy, there is evidence
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that NEP inhibitors have beneficial hemodynamic effects in

patients with heart failure.(70) Another active area of pharma-

ceutical research concerns the use of DPPIV inhibitors in type

2 diabetes. We expect that future clinical investigations using

highly specific inhibitors may reveal the prominent functions of

the targeted ectopeptidases. Limitations to the use of inhibitors

in vivo, however, include the wide distribution of these

enzymes, the toxicity and/or the lack of specificity observed

for some of their inhibitors. Many patients taking ACE inhibitors

experience a troublesome dry cough that appears to result

from increased levels of bradykinin and/or substance P.(70)

There is thus a need to design of an inhibitor-based product

that displays no toxicity, high specificity and capability of

reaching the target enzyme where needed. One approach

could be to synthesize inhibitors linked to vehicles such as

antibodies that react with target cell surface antigens. The

principle has already been used to target toxins to solid tumors

and malignant leukocytes.(72,73)

Two other areas of future research deserve mention. One

concerns the definition of the in vivo substrate(s) of a given

ectopeptidase. Indeed, although peptidase recognition and

cleavage patterns have been characterized in vitro using

recombinant peptides, not all physiological substrates have

yet been identified. Second, the role(s) of soluble forms of

ectopeptidases in biological fluids are still poorly understood.

Although the involvement of soluble g-GT in the transport of

glutathione is obvious, the specific function(s) of other soluble

ectopeptidases is (are) still unknown. By solving these

questions, we shall enhance understanding of the assembly

of the ectopeptidase network controling communication of

cells with their environment, and may see the emergence of

new drugs with highly selective properties.

Figure 3. Activation of MAPK pathways downstream of ectopeptidases and convergence with signal transduction pathways of

integrins and cytokine receptors. Three subfamilies of MAPKs (mitogen-activated protein kinase) are ERK (extracellular signal
regulated protein kinase), JNK (c-Jun N-terminal kinase) and p38. Activated ERKs can translocate to the nucleus and phosphorylate

several transcription factors like AP-1. MEK, MAPK/ERK kinases; The Ras superfamily (including Ras and Rho groups) belong to the

larger group of GTP-binding proteins or G proteins. Rac and Cdc42 belong to the Rho subfamily. The signal Ras/Raf-MEK-MAPK

transduction pathway is activated by almost all growth factors. ECM, extracellular matrix; FAK, focal adhesion kinase; Grb2, growth
factor receptor bound SH2/SH3-containing adapter protein; SOS, product of Son of Sevenless gene; Grb2/SOS: guanine nucleotide

exhange complex for Ras; PAK, p21-activated kinases; src, sarc; X, unknown signaling-molecule. ERK, p38, JNK and Raf are serine/

threonine kinases; MEK, Src and FAK are tyrosine kinases.
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