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Abstract

The aim of this study was to evaluate the effects of medicinal herbal mixtures rich in pheno-

lic, flavonoid and alkaloid compounds on ruminal fermentation and microbial populations,

and fatty acid (FA) concentrations and lipid oxidation in tissues of lambs infected with the

gastrointestinal nematode (GIN) parasite (Haemonchus contortus). Parallel in vitro and in

vivo studies were performed using two different herbal mixtures (Mix1 and Mix2). The in

vitro study was conducted in a 2 (infection status; non-infected versus infected) × 3 (diets;

control, Mix1 and Mix2) factorial design. In the in vivo study, 24 lambs were equally divided

into four treatments: non-infected lambs fed a control diet, infected lambs fed the control

diet, infected lambs fed a diet with Mix1 and infected lambs fed a diet with Mix2. Herbal mix-

tures (100 g dry matter (DM)/d) were added to the basal diets of meadow hay (ad libitum)

and a commercial concentrate (500 g DM/d). The experimental period lasted for 70 days.

Ruminal fermentation characteristics and methane production were not affected by infection

in vivo or in vitro. Both herbal mixture supplementation increased total volatile fatty acid

(VFA) concentrations (P < 0.01) and DM digestibility (P < 0.01) in vitro. Archaea population

was slightly diminished by both herbal mixtures (P < 0.05), but they did not lower methane

production in vitro or in vivo (P > 0.05). Infection of H. contortus or herbal mixtures modu-

lated FA proportion mainly in the liver, especially the long chain FA proportion. Concentra-

tions of thiobarbituric acid reactive substances (TBARS) in serum were significantly higher

after 70 days post-infection in the infected lambs. Herbal Mix1 supplementation reduced

TBARS concentrations in meat after seven days of storage. In conclusion, supplementing of

herbal mixtures to the diets of GIN parasite infected lambs did not affect the basic ruminal

fermentation parameters. Herbal mixtures may improve few FA proportions mainly in liver

as well as decrease lipid oxidation in meat.
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Introduction

Gastrointestinal parasitic infections is one of the major issues impacting the health of livestock

animals, especially by the most pathogenic gastrointestinal nematode (GIN) parasite Hae-
monchus contortus. This GIN sucks abomasum blood and causes anemia, reduces reproductive

capacity and animal production, resulting in considerable economic losses [1,2]. Since GIN

reduces productivity, infected animals require more resource input to achieve the same level of

productive output compared to the non-infected animals. Ovine periparturient parasitism

increases greenhouse gas intensity; and therefore gastrointestinal parasite control could

improve production efficiency and decrease environmental footprints in sheep production

systems [3]. Chemoprophylaxis against H. contortus by application of anthelmintics repeatedly

poses the risk of development of anthelmintic resistance and residues in food products [4].

Therefore, there is a growing interest in feeding of diets supplemented with plant secondary

metabolites (PSM) to GIN infected animals for reducing the transmission of the parasites and

the diseases associated with parasites [5,6]. The use of PSM has been beneficial to treat various

digestive or parasitic disorders due to their nutraceutical and anthelmintic activities. Many

studies favored natural sources of PSM such as Hypericum perforatum, Malva parviflora, Pru-
nella vulgaris, Juniperus communis, Pinus ponderosa, Melissa officinalis and Nepeta caesarea as

well as mixed medicinal herbs to reduce the burdens of GIN [7,8]. In the earlier studies, PSM

that contains phytochemical substances such as flavonoids considers as important bioactive

compound as antioxidant and antimicrobial properties in the rumen [9,10]. Another bioactive

compound is polyphenol known as highly abundant groups of substances found in plants that

can be classified based on a simple structure, for instance, phenolic acids and more complex

such as tannins [11]. Polyphenols inhibit the populations and/or activity of microbes responsi-

ble for methanogenesis and biohydrogenation by among others changing the rumen environ-

ment (pH value) and through the toxic effect on methanogens, consequently lowering

methane emission and biohydrogenation rate of UFA in the rumen [12,13,14]. The degree of

ruminal fatty acid (FA) saturation affects FA composition in ruminant products such as meat

and milk [15,16].

The lambs used in the present study were a part of a comprehensive experiment that inves-

tigated the effects of two dry mixtures of medicinal herbs on parasitological, inflammatory,

antioxidant, and fecal microbiota composition in lambs experimentally infected with H. con-
tortus [17]. In the present study, we hypothesized that the dietary dry medicinal herb mixtures

may affect the ruminal methane production, FA concentrations in the liver, blood, subcutane-

ous fat and musculus longissimus dorsi muscle, lipid peroxidation and oxidative stability in

meat due to their inhibitory effects on the ruminal methanogens and biohydrogenating micro-

bial population and antioxidant properties. Infections with GIN in animals causes extra endog-

enous protein loss and increased energy metabolism, which subsequently may alter lipid

metabolism and antioxidant status [18]. The influences of GIN on FA profile have not yet been

studied in GIN-infected lambs. Therefore, our objective was to assess the supplementation of

two medicinal herbal mixtures on ruminal fermentation characteristics, microbial population,

methane production and lipid metabolism in GIN-infected lambs.

Material and methods

Animals used and experimental design were approved by the Ethics Committee of the Institute

of Parasitology of the Slovak Academy of Sciences, in accordance with European Community

guidelines (EU Directive 2010/63/EU for animal experiments). Permission to collect samples

and carry out the experiment was granted by the participating sheep farmers. Twenty-four

Valachian female lambs with an initial mean body weight of 11.7 ± 1.23 kg and 3–4 months of
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age lambs were obtained from the same farm. All animals were humanely killed at the end of

the experiment (abattoir of the Centre of Biosciences of SAS, Institute of Animal Physiology,

Košice, Slovakia, No. SK U 06018). The carcasses of animals were sent to the Department of

Pathological Anatomy and Pathological Physiology, University of Veterinary Medicine and

Pharmacy in Košice in Slovak Republic.

Diet and supplements

This study was a part of a larger study that investigated natural chemotherapeutic alternatives

for controlling of haemonchosis in lambs and had been described in more detail previously

[17]. Animals were fed a concentrate mixture (500 g dry matter (DM)/d), herbal mixtures

(non-commercial mixtures—Mix1 and Mix2; 100 g DM/d) and meadow hay (ad libitum). The

concentrate mixture was composed of 700 g/kg of barley, 220 g/kg of soybean meal, 48 g/kg of

wheat bran, 5 g/kg of bicarbonate and 27 g/kg of mineral-vitamin premix.

Experimental design

In vitro experiment. The in vitro study was carried out using a batch culture system

according to the modified protocol described previously [19]. Two herbal mixtures (Mix1 and

Mix2) were used with 9 different herbs in each mixture. Dry herbs were obtained from com-

mercial sources (AGROKARPATY, Plavnica, Slovak Republic and BYLINY Mikeš s.r.o.,

Čı́čenice, Czech Republic). Herbal composition of Mix1: stems of Artemisia absinthium L.

(1%), Fumaria officinalis L. (13.4%), Hyssopus officinalis L. (13.4%), Melissa officinalis L.

(13.4%) and Solidago virgaurea L. (13.4%); flowers of Matricaria chamomilla L. (13.4%) and

Malva sylvestris L. (13.4%); leaves of Plantago lanceolata L. (13.4%) and seeds of Foeniculum
vulgare Mill. (5%). The phytochemical substances of Mix1 contained 57.3 g/kg DM of phenolic

acids and 41.5 g/kg DM of flavonoids with greater concentrations of myricetin 3-O-galactoside

(20.2 g/kg DM), 1,5-dicaffeoylquinic acid (15.4 g/kg DM),3-O-caffeoylquinic acid (11.3 g/kg

DM), and dihydrocaffeoyl-4-caffeoyl quinic acid (9.72 g/kg DM) [17]. Herbal composition of

Mix2: stems of Artemisia absinthium L. (1%), Malva sylvestris L. (12.4%), Achillea milefolium
L. (12.4%), Cichorium intybus L. (12.4%), Hypericum perforatum L. (12.4%) and Urtica dioica
L. (12.4%); flowers of Matricaria chamomilla L. (12.4%), Fumaria officinalis L. (12.4%) and

Calendula officinalis L. (12.4%). The phytochemical substances of Mix2 contained 22.2 g/kg

DM of phenolic acids and 29.5 g/kg DM of flavonoids with high concentrations of 3-O-caf-

feoylquinic acid (6.91 g/kg DM), 1,5-Dicaffeoylquinic acid (6.18 g/kg DM), rutin (5.73 g/kg

DM) and 2-O-feruloylhydroxycitric acid (3.64 g/kg DM).Protoberberine-type alkaloids were

also present in Mix1 (1.4 g/kg DM) and Mix2 (1.33 g/kg DM) [17].

For the in vitro study, the ruminal content was collected from the top, bottom and middle

of the rumen of each lamb separately. The fresh ruminal content was collected at a slaughter

house from six control non-infected (CN) and six control infected (CI) lambs with two CN

and two CI at each run. Infection status was identified at autopsy by observing the H. contortus
worms after the opening of the abomasum. The in vitro study was completed in three runs and

total 12 lambs were used. The same diet was used as a control in the in vivo trial. After slaugh-

tering of lambs, rumen digesta was taken from different parts (top, bottom and middle) of the

rumen. The experiment was conducted in a 2 infection status (non-infection and infection) ×
3 diets (control, Mix1 and Mix2) factorial arrangement with following 6 treatments: Control

diet with non-infection (CN), Mix1 diet with non-infection (Mix1N), and Mix2 diet with non-

infection (Mix2N), Control diet with infection (CI), Mix1 diet with infection (Mix1I), and

Mix2 diet with infection (Mix2I). Ruminal content was squeezed through a four-layer cheese-

cloth into two separate Schott Duran1 bottles (SCHOTT North America, Inc. Corporate
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Office, Elmsford, NY 10523, USA) and immediately transported to the laboratory in a 39 ˚C

preheated water bath. Two bottles were used for collecting rumen fluid separately for CN and

CI. Five replicate bottles in each treatment (6 treatments × 5 bottles) were used in three conse-

cutive runs. The ruminal fluid was diluted with buffer solution at a ratio of 1:4, and buffered

fluid was transferred to the bottles with prepared substrates anaerobically. The control groups

(CN and CI) contained 400 mg of substrate (252 mg DM of hay and 148 mg DM of the com-

mercial concentrate). For the herbal mixture, 36 mg DM (9% of 400 mg substrate) of Mix1 or

Mix2 was further added to the 400 mg substrate. The bottles with buffered ruminal fluid and

substrate were filled with CO2, closed with rubber stoppers and sealed with aluminum cups.

Then the bottles were incubated in an incubator (Galaxy 170R, Eppendorf North America

Inc., Hauppauge, NY) for 24 h at a temperature of 39 ˚C in an anaerobic condition with peri-

odical mixing of the contents.

In vivo experiment. Based on the in vitro results, the in vivo experiment was designed.

Twenty-four Improved Valachian female lambs with an initial mean body weight of

11.7 ± 1.23 kg and 3–4 months of age were kept in stalls for 15 d for adaptation to the diet.

During the whole experiment, lambs had free access to drinking tap water. After the adaptive

period, the lambs were divided into four treatment groups (n = 6): non-infected control group

(CN), GIN-infected group fed with the control diet (CI), infected group fed the control diet

supplemented with Mix1 (M1I) or Mix2 (M2I). Lambs were infected orally with 5000 third-

stage larvae of the MHco1 (strain of H. contortus), which is susceptible to all main classes of

anthelmintics. Infection increased egg counts in the infected animals as shown previously [17].

Lambs were fed with a basal diet of meadow hay ad libitum and a commercial concentrate at

500 g DM/day in the control groups for the growth rate of 150 g/d (Table 1). Commercial con-

centrate was composed of 700 g/kg of barley, 220 g/kg of soybean meal, 48 g/kg of wheat bran,

5 g/kg of bicarbonate and 27 g/kg of mineral-vitamin premix. In the herbal mixture groups,

Mix1 and Mix2 were additionally fed at 100 g dry matter (DM)/day to the M1I and M2I

lambs, respectively. The experimental period was 70 days (during summer), and the animals

were housed on a sheep farm.

Sample analysis

Chemical composition of feed. Chemical composition of dietary ingredients was ana-

lyzed in triplicates by standard procedures [20]. The dry matter (DM) content was determined

by drying the samples at 105 ˚C for 48 h in a hot air oven. The ash content was determined by

burning the samples at 550 ˚C for 12 h (method no. 942.05) in a muffle furnace (Nabertherm,

LT 40/12, GmbH, Lilienthal, Germany. Nitrogen (N) content (method no. 968.06) was deter-

mined using a FLASH 400 Analyzer (Thermo Fisher Scientific, Cambridge, UK). Crude pro-

tein (CP) content was calculated by multiplying the N content by 6.25 (method no. 990.03).

The acid-detergent fiber (ADF) and neutral detergent fiber (NDF) contents were determined

as described previously [21] by using a FiberCap system (FiberCap ™ 2021/2023, FOSS Analyti-

cal AB, Höganäs, Sweden). In forages (i.e., meadow hay, Mix1 and Mix2), NDF was assayed

without a heat-stable amylase and expressed inclusive of residual ash. In concentrate, NDF was

assayed with a heat-stable amylase and expressed inclusive of residual ash. ADF was expressed

inclusive of residual ash.

Basic ruminal fermentation. After 24 h of in vitro incubation, the volume of accumulated

gas released from the batch culture was determined from the recorded pressure or the volume

of gas produced after 24 h of fermentation using a mechanical manometer fitted to a trans-

ducer (Premagas, Stará Turá, Slovak Republic). Analysis of gas production was carried out by

gas chromatography using a PerkinElmer Clarus 500 gas chromatograph (Perkin Elmer, Inc.,
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Shelton, CT, USA). The ruminal fluid was then collected from each bottle for analysis of pH,

volatile fatty acids (VFA) and ammonia concentrations, and ruminal microorganism popula-

tions (bacteria, protozoa, and methanogens). For the in vivo experiment, ruminal fluid samples

were collected immediately after slaughtering the animals. The pH value was measured imme-

diately after sample collection using a pH meter (CP-104; Elmetron, Zabrze, Poland). Methane

concentration from in vitro samples was determined by gas chromatography on PerkinElmer

Clarus 500 gas chromatograph (Perkin Elmer, Inc., Shelton, USA) as described previously

[22]. In the in vivo study, methane production was calculated measuring the molar proportion

of VFA in the rumen as follow: 57.5 mol glucose = 65 mol acetate + 20 mol propionate + 15

mol butyrate + 60 mol CO2 + 35 mol CH4 + 25 mol H2O. [23]. The concentration of ammo-

nia-N was determined in the inocula by the phenol-hypochlorite method [24]. The VFA sam-

ples were analyzed by gas chromatography (PerkinElmer Clarus 500 gas chromatograph,

Table 1. Chemical composition and fatty acid profile of the diets.

Item Meadow hay Concentrate Mix1 Mix2

Main chemical composition, g/kg DM

CP 163 309 160 180

aNDF 825 140 500 460

ADF 500 90 360 350

Ash 39 29 110 110

Fatty acid proportion, g/100 g of FA

C12:0 1.06 0.11 0.12 0.41

C14:0 0.90 0.34 0.36 1.57

C16:0 18.6 14.0 12.5 25.0

C18:0 5.09 2.26 3.22 8.84

C18:1 cis-9 14.5 19.4 22.3 8.8

C18:2 cis-9 cis-12 36.3 55.6 26.9 25.3

C18:3 cis-9 cis-12 cis-15 (ALA)a 9.50 2.46 11.9 9.28

C20:3n-6 1.95 0.23 1.04 0.78

C20:5n-3 (EPA)b 0.19 0.05 0.19 0.09

C22:5n-3 (DPA)c 0.35 0.06 0.22 0.42

C22:6n-3 (DHA)d 1.21 0.20 0.30 0.42

Other FAe 10.3 5.29 20.9 19.1

SFAf 29.4 18.0 17.9 37.8

UFAg 70.6 82.0 82.1 62.2

MUFAh 20.7 22.9 41.1 26.0

PUFAi 49.8 59.2 41.0 36.2

n-6 38.6 56.4 28.4 26.3

n-3 25.9 22.2 12.6 9.84

a ALA, [α]-Linolenic acid.
b EPA, Eicosapentaenoic acid.
c DPA, Docosapentaenoic acid.
d DHA, Docosahexaenoic acid.
e Other FA, (C10:0, C14:1, C15:1, C16:1, C18:1 c11, C20:0, C22:1 n-9, C22:0, C23:0, C24:1)
f SFA, Saturated fatty acids.
g UFA, Unsaturated fatty acids.
h MUFA, Monounsaturated fatty acids.
i PUFA, Polyunsaturated fatty acids.

https://doi.org/10.1371/journal.pone.0231516.t001
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Perkin Elmer, Inc., Shelton, USA) as described previously [22]. The in vitro DM digestibility

(IVDMD) and volume of accumulated gas were determined as described previously [22].

Rumen microbial quantification. The total protozoa count in collected ruminal fluid was

determined according to the previous method [25]. For bacterial quantification, DNA from

the ruminal samples were isolated using a Mini Bead-Beater (BioSpec, Bartlesville, OK, USA)

for cell lysis, followed by purification (QIAamp DNA Stool Mini Kit; Qiagen, Hilden, Ger-

many) [26]. DNA concentrations and quality were measured with NanoDrop 2000 spectro-

photometer (Thermo Scientific, Wilmington, DE, USA). The primers for the targeted species

were Butyrivibrio proteoclasticus (F: CCTAGTGTAGCGGTGAAATG“, R: TTAGCGACGGCA
CTGAATGCCTA) [27], Butyrivibrio fibrisolvens (F: ACACACCGCCCGTCACA, R:

TCCTTACGGTTGGGTCACAGA) [28], Ruminococucus flavefaciens (F: CGAACGGAGATAA
TTTGAGTTTACTTAGG, R: CGGTCTCTGTATGTTATGAGGTATTACC) [29], Fibrobacter
succinogenes, (F: GTTCGGAATTACTGGGCGTAAA, R: CGCCTGCCCCTGAACTATC) [29],

and Ruminococcus albus (F: CCCTAAAAGCAGTCTTAGTTCG, R: CCTCCTTGCGGTTAG
AACA) [30] for the quantitative PCR method. For the total bacteria, the following primers

were used (F: GTGATGCATGGTTGTCGTCA, R: GAGGAAGGTGKGGATGACGT) [31].

Methanogens and total bacteria were quantified by the fluorescence in situ hybridization

technique [32]. The rumen fluid (50 μl) was diluted in phosphate-buffered saline and pipetted

onto 0.22 μm polycarbonate filters (Frisentte K02BP02500) and vacuumed (Vaccum KNF

Vacuport-Neuberg). The filters were transferred onto a cellulose disk for dehydration in an

ethanol concentration at different level (500, 800, and 900 ml/L) for 3 min. Hybridization was

carried out in 50 μl of hybridization buffer (0.9 M NaCl; 20 mM Tris/HCl, pH 7.2; 0.1 g/L of

SDS) containing oligonucleotide probes (all methanogens (S-D-Arch-0915-a-A-20) and two

order-specific probes: S-O-Mmic-1200-a-A-21) (Methanomicrobiales) and S-F-Mbac-0310-a-

A-22 (Methanobacteriales) [33]. The filters were washed with washing buffer (20 mM Tris/

HCl, pH 7.2; 0.1 g/L of SDS; 5 mM EDTA) for 20 minutes at 48 ˚C. The filters were then rinsed

gently in distilled water, air-dried and mounted on object glasses with VectaShield (Vector lab-

oratories nr. H-1000) anti-fading agent containing DAPI (4’,6-diamidino-2-phenylindole). To

distinguish the total count of bacteria (DAPI) from other methanogens in the rumen fluid, fil-

ters were maintained at 4 ˚C for 1 h in the dark until visualization using an Axio Imager M2

microscope (Carl Zeiss Iberia, Madrid, Spain).

Fatty acids extraction and analysis. On the last day of experiment, the lambs were

slaughtered and samples from longissimus dorsi muscle, subcutaneous fat and liver were col-

lected. The muscle samples (approximately 200 g) were collected from the right side of each

carcass and drawn at the level of 13th thoracic rib. Samples of subcutaneous fat and liver were

lyophilized by freezing, vacuuming and drying the samples (Epsilon 2-10D LSCplus, CHRIST,

Germany). Samples of muscle were lyophilized after removing the epimysium. All collected

samples were stored at -80 ˚C until lipid extraction [34]. The FA concentrations in feeds, liver,

muscle, and subcutaneous fat [15], ruminal fluid [13] and blood [35] were determined using

standard protocols [15]. FA were identified and quantified based on peaks and retention times

by comparing FA sample target with appropriate fatty acids methyl ester (FAME) standards

(37 FAME Mix, Sigma-Aldrich) and the concentrations of CLAs were determined using a

CLA standard (a mixture of cis 9, trans 11 and trans 10, cis 12-octadecadienoic acid methyl

esters; Sigma-Aldrich) using a Galaxie Work Station 10.1 (Varian, CA).

Gene expression with RT-qPCR. Samples of longissimus dorsi muscle were collected

immediately after slaughter and shock frozen in liquid nitrogen. Relative transcript abun-

dances of five lipogenic genes such as lipoprotein lipase (LPL), fatty acid synthase (FASN),

stearoyl-CoA desaturase (SCD), fatty acid desaturase 1 (FADS1), fatty acid elongase 5

(ELOVL5) were measured by real-time PCR method as described previously [10]. The
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muscle samples were homogenized in 1 ml TriPure reagent (Roche Diagnostics, Mannheim,

Germany) using Tissue Lyser II (Qiagen, USA). Then the RNA isolation was performed fol-

lowing the protocol provided by the manufacturer. Briefly, 200 μl of chloroform (Sigma

Aldrich, Hamburg, Germany) was added into tubes and shaken. After 10 min, samples were

centrifuged (15 min) at 12,000 g speed. The clear phase was transferred to a new tube and

added with 0.5 ml isopropanol (Sigma Aldrich, Hamburg, Germany). Then probes were

centrifuged (15 min) at 12 000 g speed once again. RNA pellets were washed with 750 ml/L

of ethanol (POCH, Gliwice, Poland), centrifuged for the third time (10 min at 9000 g) and

dried at 40 ˚C thermoblock (Eppendorf, Hamburg, Germany). The RNA was then resus-

pended in DEPC treated water (Invitrogen, Carlsbad, USA) for spectrophotometric mea-

surement (Nanodrop c2000, Thermo Scientific, USA) of concentration and purity. A

reverse transcription reaction (RT) was performed using a Transcriptor First Strand cDNA

Synthesis Kit (Roche) according to the procedures described by the manufacturer. Each

sample was adjusted to equal concentrations of RNA. Briefly, RNA (300 ng), random hex-

ameters (60 μM), oligodT (2.5 mM) and water were mixed and denatured at 65 ˚C for 10

min. Reverse transcriptase and RNase inhibitor buffer were then added to the RNA mix to a

final volume of 20 μl. The RT conditions were as follows: 25 ˚C for 5 min, followed by 42 ˚C

for 45 min and 85 ˚C for 5 min. The gene expression of FA synthase (FASN), lipoprotein

lipase (LPL), stearoyl-CoA desaturase (SCD), FA desaturase 1 (FADS1) and FA elongase 5

(ELOVL5) were measured in muscle. Primer pairs for RT-qPCR amplification were

designed based on previously published oligonucleotides [36] and synthesized by Sigma-

Aldrich (USA). Only standard curves with an efficiency of at least 1.9 were considered opti-

mized for the reaction in particular conditions. RT-qPCR amplification was performed in

duplicate on a Light Cycler 480 instrument (Roche Diagnostics, Germany) using Light

Cycler Sybr Green 480 I Master (Bio-Rad, USA). The RT-qPCR mix (10 μl per sample) con-

tained 2 μl of nuclease-free water, 2 μl of primers mix, 5 μl Sybr Green Master mix and 1 μl

of cDNA. The RT-qPCR conditions were as follows: 95 ˚C, 5 min (pre-incubation); 40 cycles

of: 95 ˚C, 5 s (denaturation); 60 ˚C, 12 s (primer annealing and elongation); 65–97 ˚C (PCR

product melting). For each RT-qPCR run, a negative control sample (without cDNA) was

also added. After each analysis, melting curves were checked to exclude any potential sample

contamination. Relative gene expression was evaluated by delta delta CT (ΔΔCT) with

Gapdh/beta actin as a reference.

Blood analyses. Blood samples were collected from the jugular vein of each animal on day

22, 37, 51 and 70 into 10-ml serum-separator tubes (Sarstedt AG & Co, Nümbrecht, Germany)

and centrifuged at 1200 g for 10 min at room temperature. From all collected days, the serum

samples were used for lipid peroxidation. For FA analysis, sera from day 70 were used. The

sera were stored at—80 ˚C until analysis.

Lipid oxidation. The left m. longissimus dorsi muscle samples were excised within 15 min

after the slaughter and were immediately vaccum packed. Meat oxidative stability was moni-

tored in the muscle samples that were stored at 4 ˚C for 0, 1 or 7 days. The standard curve of

malondialdehyde prepared by hydrolysis of 1,1,3,3,-tetraethoxypropane (Sigma-Aldrich) was

used to assess the lipid oxidation by the thiobarbituric acid reactive substances (TBARS)

method as described previously [37].

Calculations

The desaturase [38], atherogenic [39] and thrombogenic [21] indices were calculated from the

FA profile. Methane and hydrogen production, and hydrogen utilization were estimated based

on stoichiometry calculations [23].

PLOS ONE Rumen parameters of gastrointestinal nematode-infected lambs fed diet supplemented with herbs

PLOS ONE | https://doi.org/10.1371/journal.pone.0231516 April 16, 2020 7 / 26

https://doi.org/10.1371/journal.pone.0231516


Statistical analysis. All data were analyzed using SAS statistical software (Univ. Edition,

version 9.4) [40]. In experiment 1 (in vitro study), data were analyzed using PROC MIXED

procedure with models containing treatment group, infection, and their interaction as fixed

factors and each consecutive run was considered as a random factor. In experiment 2 (in vivo
study), data except for the lipid peroxidation were analyzed with one way ANOVA model with

PROC GLM procedure. Two-way ANOVA (GraphPad Prism, GraphPad Software, Inc., San

Diego, USA) was used for the analysis of lipid oxidation in serum and meat to test the effect of

dietary treatment and the time of sampling/storage, as well as their interaction. The significant

differences among treatment groups were tested with Tukey post-hoc test (P< 0.05). All val-

ues are shown as the means with pooled standard errors of means.

Results

In vitro experiment

The pH decreased due to infection (P< 0.01), but Mix2N group had also decreased the pH

compared to the CN (P = 0.01; Table 2). The IVDMD of Mix1N, Mix2N, Mix1I, and Mix2I was

improved compared to either the non-infected or infected control (P< 0.01). The gas produced

in CI decreased compared to CN (P = 0.03), but was similar in the infected and non-infected

groups supplemented with Mix1 and Mix2 (P = 0.02). Mix1N group produced more methane

compared to CN and Mix1I (P< 0.02). However, methane production in Mix1I was lower

than the Mix1N and Mix2I when CH4 was expressed as CH4/gas produced and CH4/IVDMD

(P = 0.03 and P = 0.05, respectively). Concentrations of total VFA were lower in CN group com-

pared with the groups supplemented with Mix1 and Mix2 (P< 0.01). The acetic acid propor-

tion decreased in all infected groups compared to the non-infected control (P< 0.01), but the

iso-valerate and valerate concentrations in all infected groups increased compared to the CN.

Regarding the ruminal microbial activity, the Archaea populations of Mix1 and Mix2 in

both non-infected and infected animals were lower compared to the CN (P< 0.01). Total bac-

terial abundance in the Mix2N group was lower compared to all groups (P< 0.05). The rela-

tive abundance of R. albus tended to increase in CI compared to the CN (P< 0.08). Also, F.

succinogenes abundance was higher in infected groups (P< 0.01) and significantly lower in

Mix1N and Mix2N. The relative abundance of B. proteoclasticus was higher in the Mix1I com-

pared to the CI or CN and also to other groups. In contrast, the B. fibrisolvens of the Mix1I was

lower than in CI and CN and also than other groups (P< 0.01).

Regarding the FA concentration in the buffered rumen fluid, major changes occurred due

to the infection for C16:0, C18:0, C18:1 trans-10, C18:1 trans-11, C18:2 cis-9 cis-12; docosapen-

taenoic acid (DPA), docosahexaenoic acid (DHA), saturated FA (SFA), UFA, PUFA, n6 FA,

n6/n3 ratio, medium chain FA (MCFA), and long chain FA (LCFA) (Table 3). The lower pro-

portions of α-linolenic acid (ALA) were found in rumen fluid treated with Mix2N, Mix1I and

Mix2I compared to the CN and the CI. Herbal mixtures changed the FA concentration in the

ruminal fluid. The C18:1 trans-11 and the SFA proportions of all herbal groups with infected

and non-infected were higher compared to CN (P< 0.01); whereas higher UFA proportions of

CN were noted compared to other groups except for the Mix2N (P = 0.02).

In vivo experiment

There were no significant differences (P> 0.05) among the groups for ruminal fermentation

characteristics in lambs (Table 4). The bacteria population (B. fibrisolvens, R. albus and F. suc-
cinogenes) of the infected lambs fed with control diet as well as infected lambs treated with

Mix1 and Mix2 diets increased (P< 0.01); however other bacterial populations did not differ

among the treatment groups except B. proteoclasticus, which had higher relative abundance in
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the infected M2I group (P< 0.01). The population of Holotricha was higher in the CI than

other groups (P< 0.01).

The FA proportions in the ruminal fluid, blood, as well as in the liver, subcutaneous fat and

m. longissimus dorsi varied. The proportions of C15:0 and C17:0 in the rumen were higher in

M2I lambs compared with the CI lambs whereas the proportions of C14:1 and C17:1 in the

rumen were higher in M2I lambs compared with the CI and CN lambs (P< 0.05; Table 5).

The ruminal MCFA proportion of CI was lower than the M2I (P = 0.03). By contrast, ruminal

LCFA proportion was higher in the CI lambs than in the M2I lambs (P = 0.03).

In the serum from lambs fed Mix2, C15:0, C16:0, C16:1, C18:1 trans-6-8, ALA, C18:2 trans-
10 cis-12, and MCFA proportions were higher compared to the CI group (Table 6). The M2I

had lower proportions of C18:1 cis-11 and C18:2 cis-9 cis-12 in serum compared to other

groups, which led to the lowered PUFA and LCFA proportions. The serum from lambs fed

Mix1 and Mix2 had the lowest n6/n3 FA ratio compared to the CI (P< 0.001).

Table 2. The effect of herbal mixtures and infection on the rumen fermentation and microbial populations in vitro.

Parametera Non-infected Infectedb SEM P
CN Mix1N Mix2N CI Mix1I Mix2I I G I×G

pH 6.24a 6.21a 6.08b 6.12b 6.04b 6.04b 0.01 <0.01 <0.01 0.01

IVDMD, % 53.9c 62.9a 62.2ab 54.1c 63.3a 60.0b 0.70 0.47 <0.01 0.29

NH3, mM 6.06b 7.32a 6.63ab 6.09ab 6.44ab 6.10ab 0.13 0.08 0.03 0.29

Gas produced, ml 66.3a 67.9a 67.2a 59.1b 66.9a 66.9a 0.94 0.03 <0.01 0.02

CH4, mM 0.57b 0.80a 0.59ab 0.61ab 0.46b 0.71ab 0.04 0.37 0.70 0.02

CH4/Gas produced, mM/ml 0.008ab 0.011a 0.009ab 0.010ab 0.007b 0.011a 0.001 0.74 0.67 0.03

CH4/IVDMD, mM/g 2.51ab 3.21a 2.74ab 2.83ab 1.92b 3.13a 0.20 0.52 0.63 0.05

Total VFA, mM 52.5c 57.1a 55.7ab 53.7bc 56.0ab 57.9a 0.42 0.23 <0.01 0.17

Acetate, mol/100 mol 63.8a 63.1ab 62.9ab 61.6b 60.8b 61.2b 0.30 <0.01 0.32 0.88

Propionate, mol/100 mol 20.4 20.4 20.4 21.3 22.0 21.5 0.29 0.06 0.87 0.88

Isobutyrate, mol/100 mol 0.28b 0.35ab 0.30ab 0.30b 0.36a 0.31ab 0.01 0.51 <0.01 1.00

Butyrate, mol/100 mol 13.1 13.6 13.9 13.2 13.0 13.3 0.11 0.09 0.24 0.36

Isovalerate, mol/100 mol 0.79b 0.86ab 0.83ab 0.88a 0.93a 0.92a 0.01 <0.01 <0.01 0.81

Valerate, mol/100 mol 1.31b 1.41b 1.40b 2.45a 2.56a 2.50a 0.1 <0.01 0.78 0.99

Caproate, mol/100 mol 0.25 0.29 0.28 0.36 0.38 0.37 0.02 <0.01 0.64 0.95

A:P 3.2 a 3.14 a 3.11 a 3.01 b 2.85 b 2.94 b 0.05 0.05 0.64 0.90

Archaea, 107/ml 1.07a 0.88b 0.56c 0.86b 0.61c 0.54c 0.05 0.05 <0.01 0.49

Total bacteria, 108/ml 4.94a 4.82a 4.06b 5.56a 5.28a 5.58a 0.15 <0.01 0.47 0.31

R. albus, AUc 1.29b 1.0b 0.25b 11.63a 0.64b bd 1.43 0.08 0.12 0.07

R. flavefaciens, AU 0.09 Bd 0.03 0.03 bd bd 0.03 0.48 0.43 ND

F. succinogenes, AU 0.58c 0.50c 0.19c 2.95a 1.7b 1.38b 0.29 <0.01 0.16 0.42

B. proteoclasticus, AU 0.79c 0.05c 0.13c 2.93b 8.87a 4.26b 0.66 <0.01 <0.01 <0.01

B. fibrisolvens, AU 2.26b 4.07ab 0.51bcd 1.19c 0.19d 4.54a 0.43 0.61 0.54 <0.01

Total protozoa, 103/ml 67.0 66.9 68.8 71.0 68.3 74.8 0.03 0.11 0.40 0.78

Holotricha,103/ml 0.71 0.55 0.59 0.51 0.45 0.61 1.15 0.10 0.24 0.23

Entodiniomorpha,103/ml 66.3 66.3 68.2 70.5 67.9 74.2 1.15 0.10 0.41 0.78

Within each row, means with lower case superscripts (a–d) indicate significant differences at P < 0.05; SEM, standard error of the mean.
aIVDMD, in vitro dry mater digestibility; VFA, volatile fatty acids; bd, below detection.
bControl non-infected (CN); Mix 1 non-infected (Mix1N); Mix2 non-infected (Mix2N); Control infected (CI); Mix1 infected (Mix1I); Mix 2 infected (Mix2I); I,

infected; G, group.
cAU, The relative 16S rRNA gene copy abundance expressed as an arbitrary unit relative the total bacterial gene copy abundance of the control.

https://doi.org/10.1371/journal.pone.0231516.t002
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Table 3. The effect of herbal mixtures and infection on ruminal fatty acid proportions (g/100 g FA) in vitro.

Fatty acids, g/100 g FA Non-infected Infecteda SEM P value

CN Mix1N Mix2N CI Mix1I Mix2I I G I×G

Saturated

C8:0 0.11ab 0.14a 0.11ab 0.08b 0.12ab 0.10ab 0.01 0.14 0.04 0.83

C10:0 0.07ab 0.08a 0.06ab 0.05b 0.06ab 0.04ab 0.004 0.01 0.13 0.98

C12:0 1.03ab 1.18a 0.89b 1.05ab 1.05ab 0.84b 0.03 0.42 0.02 0.57

C13:0 8.66ab 9.72a 8.91ab 7.82b 7.89ab 7.47b 0.20 <0.01 0.37 0.50

C14:0 1.59 1.79 1.74 1.77 1.90 1.89 0.04 0.06 0.09 0.90

C15:0 1.39 1.54 1.53 1.46 1.42 1.34 0.03 0.15 0.69 0.11

C16:0 22.7a 23.5a 23.1a 21.2b 21.1b 20.8b 0.18 <0.01 0.50 0.36

C17:0 0.96ab 1.06a 1.09a 0.88b 0.89b 0.94ab 0.02 <0.01 0.02 0.35

C18:0 27.1b 27.2b 28.6b 32.5a 32.1a 33.4a 0.40 <0.01 0.05 0.75

Monounsaturated

C14:1 0.58 0.71 0.68 0.71 0.74 0.69 0.02 0.12 0.11 0.23

C15:1 1.04 1.20 1.08 1.10 1.14 1.16 0.02 0.53 0.17 0.44

C16:1 0.61a 0.42b 0.43b 0.47b 0.42b 0.38b 0.02 0.04 <0.01 0.13

C17:1 0.23 0.19 0.17 0.22 0.21 0.27 0.01 0.06 0.61 0.08

C18:1 trans-6-8 0.47 0.51 0.53 0.47 0.45 0.56 0.01 0.64 0.02 0.42

C18:1 trans-9 0.45b 0.46b 0.51ab 0.63a 0.54ab 0.67a 0.02 <0.01 0.20 0.51

C18:1 trans-10 0.76c 1.00bc 1.09bc 1.36ab 1.41ab 1.70a 0.08 <0.01 0.04 0.72

C18:1 trans-11 2.80c 4.04a 4.11a 3.20b 3.87ab 3.70ab 0.09 0.70 <0.01 0.04

C18:1 cis-9 11.2a 8.84b 8.81bc 8.52bc 8.26bc 8.08c 0.23 <0.01 <0.01 0.05

C18:1 cis-11 1.24c 1.33abc 1.41abc 1.32bc 1.55a 1.44ab 0.02 0.01 <0.01 0.17

C18:1 cis-12 0.23b 0.30ab 0.35a 0.29ab 0.37a 0.35a 0.01 0.01 <0.01 0.18

C18:1 cis-13 0.18 0.18 0.21 0.16 0.19 0.14 0.01 0.03 0.74 0.10

C18:1 cis-14 0.37b 0.39ab 0.43ab 0.45a 0.47a 0.46a 0.01 <0.01 0.19 0.52

Polyunsaturated

C18:2 cis-9 cis-12 8.21a 6.64b 7.05ab 6.84b 6.66b 6.18b 0.17 0.03 0.02 0.21

C18:3 cis-9 cis-12 cis-15 (ALA)b 0.50a 0.45a 0.15b 0.47a 0.16b 0.13b 0.04 0.04 <0.01 0.08

C18:2 cis-9 trans-11 (RA/CLA)c 0.94 0.84 1.10 0.81 1.00 0.94 0.04 0.50 0.16 0.11

C18:2 trans-10 cis-12 0.23 0.21 0.22 0.24 0.25 0.22 0.01 0.20 0.59 0.44

C18:3n6 0.17 0.17 0.16 0.14 0.13 0.16 0.01 0.02 0.76 0.43

C20:2 0.06 0.04 0.05 0.06 0.05 0.05 0.01 0.63 0.57 0.94

C20:3n6 1.24a 1.09ab 0.87b 0.88b 0.99ab 1.04ab 0.04 0.21 0.47 0.01

C20:4n6 0.06 0.05 0.07 0.06 0.04 0.05 0.003 0.13 0.15 0.23

C20:5n3 (EPA)d 0.16 0.12 0.11 0.10 0.11 0.16 0.01 0.63 0.75 0.04

C22:2 0.06 0.05 0.06 0.05 0.05 0.03 0.003 0.02 0.62 0.28

C22:5n3 (DPA)e 0.42a 0.21ab 0.23ab 0.20b 0.29ab 0.33ab 0.03 0.88 0.59 0.01

C22:6n3 (DHA)f 1.68b 1.91ab 2.00ab 2.05a 1.84ab 2.00ab 0.04 0.25 0.42 0.04

SFAg 63.9b 67.3a 67.0a 67.8a 67.4a 67.4a 0.35 0.02 0.05 0.01

UFAh 35.6a 32.4b 32.8ab 31.9b 32.2b 31.9b 0.34 0.01 0.05 0.02

MUFAi 21.4 20.6 20.8 20.0 20.7 20.6 0.22 0.26 1.00 0.28

PUFAj 13.7a 11.8b 12.0ab 11.9b 11.5b 11.3b 0.21 0.02 0.01 0.19

n6 FA 10.0a 8.3b 8.5ab 8.3b 8.2ab 7.8b 0.19 0.02 0.04 0.16

n3 FA 2.67 2.67 2.46 2.82 2.45 2.62 0.05 0.76 0.10 0.24

n6/n3 ratio 3.77a 2.95ab 3.56ab 3.03b 3.47ab 3.14ab 0.10 0.26 0.69 0.02

MCFAk 37.7b 40.3a 38.5b 35.8c 35.5bc 34.3c 0.32 <0.01 0.08 0.04

(Continued)
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In the liver of animals fed both herbal mixtures, proportions of C16:0, C16:1, and MCFA,

and DI (16:1/16) decreased compared to CN and CI (Table 7). However, the increased ALA,

n3 FA, LCFA proportions (P< 0.01) in M1I and M2I compared to the CI group were

observed.

Among the various FA profiles in the longissimus dorsi muscle, significant (P< 0.03)

changes in C16:0 in M2I and C20:5 n-3 in M1I compared to CN were noticed. The MCFA sig-

nificantly decreased (P< 0.01) compared to CN and CI and LCFA significantly increased

(P< 0.02) in the M1I and M2I compared to CI (Table 8).

The subcutaneous fat from M2I group was characterized by higher proportions of C15:0,

C14:1, C18:1 cis-12, and C18:1 cis-14 compared to the CN and CI (Table 9). The M1I group

had higher proportions of C18:0 compared only to the CI (P< 0.05). Both herbal mixture

groups had higher proportions of C18:1 cis-14 and α-linolenic acid (ALA) in the subcutaneous

fat. The M2I group had decreased MUFA proportion and CI (MUFA/SFA), and M1I group

had decreased n6/n3 ratio compared to the CI group.

The CN and M2I groups had lower relative transcript abundances of LPL compared with

the CI group (P = 0.01) (Table 10). Lower relative transcript abundances of FASN in the CN

lambs compared to the M2I lambs (P = 0.03) and lower relative transcript abundances of SCD

in the CN lambs compared with the M1I lambs (P = 0.04) were observed. Also, lower relative

transcript abundances of FADS1 in the M2I group compared to the M1I group (P< 0.01)

were detected. The gene expression of ELOVL5 was not changed in any group.

The TBARS level in serum was influenced by time (P< 0.001), with significantly higher val-

ues after 70 days post-infection in the CI lambs compared with the CN lambs (Table 11). The

TBARS levels in the meat were also affected by the time of storage (P< 0.001) and by the

groups, which was higher in the CI group compared to CN and M1I groups (P< 0.05).

Discussion

It is well known that gastrointestinal endoparasites increase metabolic and nutritional demand

of the host, which is manifested by impaired growth, productivity, reproductive ability and

Table 3. (Continued)

Fatty acids, g/100 g FA Non-infected Infecteda SEM P value

CN Mix1N Mix2N CI Mix1I Mix2I I G I×G

LCFAl 61.7bc 59.4c 61.3bc 64.0a 64.1ab 65.0a 0.32 <0.01 0.11 0.11

Within each row, means with lower case superscripts (a–c) indicate significant differences at P< 0.05; SEM, standard error of the mean.
a Control non-infected (CN); Mix 1 non-infected (Mix1N); Mix2 non-infected (Mix2N); Control infected (CI); Mix1 infected (Mix1I); Mix 2 infected (Mix2I); I,

infected; G, group.
b ALA, [α]-Linolenic acid.
c RA/CLA, Rumenic acid/Conjugated linoleic acid.
d EPA, Eicosapentaenoic acid.
e DPA, Docosapentaenoic acid.
f DHA, Docosahexaenoic acid.
g SFA, Saturated fatty acids.
h UFA, Unsaturated fatty acids.
i MUFA, Monounsaturated fatty acids.
j PUFA, Polyunsaturated fatty acids.
k MCFA, Medium chain fatty acids.
l LCFA, Long chain fatty acids.

https://doi.org/10.1371/journal.pone.0231516.t003
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Table 4. The effect of herbal mixtures on rumen fermentation and microbial populations in lambs with H. contortus infection.

Item CNa CIa M1Ia M2Ia SEM P value

pH 6.75 6.49 6.62 6.85 0.06 0.17

NH3, mM 9.44 8.40 8.81 8.79 0.22 0.39

CH4, mM 0.39 0.40 0.42 0.40 0.01 0.96

CH4 production, mM 19.2 19.6 21.2 19.5 0.69 0.73

H2 production, mM 126 137 137 127 4.12 0.71

H2 utilization, mM 114 123 123 114 3.71 0.71

Total VFA, mM 63.8 70.2 68.7 64.6 2.06 0.68

Acetate, mol/100 mol 68.8 64.2 69.8 69.2 0.80 0.06

Propionate, mol/100 mol 18.1 20.8 17.0 17.5 0.82 0.43

Isobutyrate, mol/100 mol 0.44 0.40 0.30 0.43 0.05 0.81

Butyrate, mol/100 mol 10.5 11.3 10.7 10.4 0.38 0.88

Isovalerate, mol/100 mol 0.80 0.79 0.47 0.69 0.08 0.47

Valerate, mol/100 mol 1.26 2.31 1.69 1.61 0.14 0.08

Caproate, mol/100 mol 0.14 0.28 0.17 0.18 0.03 0.30

A:P ratio 3.97 3.40 4.16 4.13 0.19 0.53

Archaea, 107/ ml 1.03 0.96 0.70 0.94 0.07 0.96

Total bacteria, 108/ml 4.65b 5.95a 6.06a 5.98a 0.20 <0.01

B. fibrisolvens, AU b 0.03 0.02 0.01 0.06 0.01 0.08

B. proteoclasticus, AU 0.06b 0.08b 0.04b 0.57a 0.07 <0.01

R. albus, AU 0.02 0.03 0.05 0.05 0.01 0.10

F. succinogenes, AU 0.20 0.40 0.45 0.33 0.07 0.64

Total protozoa, 104/ml 45.7 40.2 66.5 71.0 5.00 0.07

Entodiniomorpha, 104/ml 45.3 39.7 66.2 70.6 5.01 0.07

Holotricha, 104/ml 0.34b 0.51a 0.29b 0.32b 0.02 <0.01

Within each row, means with lower case superscripts (a,b) indicate significant differences at P < 0.05; SEM, standard error of the mean.
aControl non-infected (CN); Control infected (CI); Mix1 infected (M1I); Mix2 infected (M2I).
bAU, The relative 16S rRNA gene copy abundance expressed as an arbitrary unit relative the total bacterial gene copy abundance of the control.

https://doi.org/10.1371/journal.pone.0231516.t004

Table 5. The effect of herbal mixtures on fatty acid proportions in ruminal fluid (g/100 g FA) in lambs with H. contortus infection.

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

Saturated

C8:0 0.05 0.04 0.04 0.05 0.00 0.64

C10:0 0.03 0.03 0.04 0.04 0.01 0.91

C12:0 0.65a 0.43b 0.42b 0.49ab 0.03 0.02

C13:0 3.36 2.89 4.64 6.05 0.63 0.18

C14:0 1.10 0.95 0.88 1.06 0.08 0.82

C15:0 1.62ab 1.18b 1.70ab 2.19a 0.13 0.02

C16:0 24.9 23.0 22.8 24.7 0.86 0.32

C17:0 0.78ab 0.74b 0.86ab 0.93a 0.03 0.04

C18:0 27.5 30.1 29.7 26.4 1.08 0.62

Monounsaturated

C14:1 0.94b 0.72b 1.03b 1.39a 0.07 <0.01

C15:1 1.34 1.11 1.05 1.40 0.07 0.22

C16:1 0.45 0.33 0.34 0.40 0.02 0.20

C17:1 0.22b 0.23b 0.24ab 0.31a 0.01 0.02
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reduction in feed intake up to 20–25% [41]. Limited research is available on the effect of the

GIN infection affecting ruminal fermentation and lipid metabolism profile in small ruminants.

Also, periparturient parasitism in sheep may increase greenhouse gas emission [3]. A recent

study showed that parasite infections in lambs can increase in methane yield (g CH4/kg) by

Table 5. (Continued)

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

C18:1 trans-6-8 0.32 0.55 0.45 0.25 0.08 0.57

C18:1 trans-9 0.38 0.56 0.43 0.30 0.05 0.35

C18:1 trans-10 0.66 0.71 0.83 0.49 0.68 0.19

C18:1 trans-11 2.96 2.88 3.64 2.77 0.17 0.29

C18:1 cis- 9 9.38 9.30 8.01 7.51 0.46 0.42

C18:1 cis-11 1.05 1.30 1.04 0.93 0.08 0.36

Polyunsaturated

C18:2 cis-9 cis-12 11.5 11.3 11.8 10.7 0.37 0.78

C18:3 cis-9 cis-12 cis-15 (ALA)a 0.52 0.10 0.28 1.44 0.21 0.46

C18:2 cis-9 trans-11(RA/CLA)b 1.84 3.41 1.73 1.96 0.59 0.72

C18:2 trans-10 cis-12 0.20 0.24 0.19 0.18 0.01 0.36

C18:3n6 0.10 0.08 0.06 0.11 0.01 0.32

C20:2 0.21 0.07 0.01 0.14 0.04 0.42

C20:3n6 0.66 0.68 0.83 1.14 0.08 0.15

C20:4n6 0.08 0.09 0.06 0.08 0.01 0.58

C20:5n3 (EPA)d 0.08 0.07 0.06 0.03 0.01 0.30

C22:2 0.07 0.05 0.08 0.05 0.00 0.16

C22:5n3 (DPA)e 0.19 0.17 0.22 0.15 0.03 0.84

C22:6n3 (DHA)f 2.51 2.13 2.19 2.81 0.13 0.21

SFAg 61.4 61.2 62.6 63.5 1.27 0.43

UFAh 38.6 38.8 37.4 36.5 1.27 0.43

MUFAi 20.3 20.0 19.6 17.7 0.99 0.24

PUFAl 18.3 18.8 17.8 18.8 0.66 0.96

n6 FA 12.7 12.6 13.3 12.4 0.36 0.86

n3 FA 3.61 2.90 3.06 4.43 0.23 0.07

n6/n3 3.79 4.76 4.38 2.84 0.33 0.19

MCFAk 34.4ab 28.1b 32.8ab 37.7a 1.29 0.03

LCFAl 65.5ab 71.8a 67.1ab 62.2b 1.30 0.03

Within each row, means with lower case superscripts (a–c) indicate significant differences at P< 0.05; SEM, standard error of the mean.
a Control non-infected, CN; Control infected, CI; Mix1 infected, M1I; Mix2 infected, M2I.
b ALA, [α]-Linolenic acid.
c RA/CLA, Rumenic acid/Conjugated linoleic acid.
d EPA, Eicosapentaenoic acid.
e DPA, Docosapentaenoic acid.
f DHA, Docosahexaenoic acid.
g SFA, Saturated fatty acids.
h UFA, Unsaturated fatty acids.
i MUFA, Monounsaturated fatty acids.
j PUFA, Polyunsaturated fatty acids.
k MCFA, Medium chain fatty acids.
l LCFA, Long chain fatty acids.

https://doi.org/10.1371/journal.pone.0231516.t005
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Table 6. The effect of herbal mixture on fatty acid proportions (g/100 g FA) in the serum of lambs with H. contortus infection.

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

Saturated

C8:0 0.11 0.06 0.11 0.22 0.02 0.14

C10:0 0.31 0.35 0.41 0.39 0.04 0.86

C12:0 0.18 0.14 0.37 0.52 0.07 0.18

C14:0 0.49 0.28 0.40 0.65 0.06 0.14

C15:0 0.56ab 0.45b 0.69ab 1.11a 0.09 0.03

C16:0 13.4b 12.0b 11.0b 17.5a 0.65 <0.01

C17:0 0.59 0.42 0.44 0.85 0.07 0.13

C18:0 12.8 15.3 15.7 13.5 0.66 0.36

Monounsaturated

C14:1 0.24 0.20 0.39 0.43 0.05 0.28

C15:1 0.19 0.10 0.19 0.34 0.03 0.09

C16:1 1.35ab 0.97b 0.39b 1.68a 0.13 <0.01

C17:1 0.52 0.49 0.45 0.58 0.04 0.71

C18:1 trans- 6–8 0.16b 0.10b 0.20b 0.47a 0.04 <0.01

C18:1 trans- 9 0.07 0.09 0.10 0.16 0.01 0.13

C18:1 trans- 10 0.18 0.35 0.24 0.46 0.06 0.45

C18:1 trans- 11 0.48 0.74 0.91 0.92 0.08 0.13

C18:1 cis-9 20.0ab 17.6ab 15.9b 20.4a 0.64 0.02

C18:1 cis-11 3.26a 3.49a 2.49a 1.17b 0.24 <0.01

C18:1 cis-12 0.58 0.67 0.54 0.35 0.05 0.19

C18:1 cis-13 0.13 0.16 0.13 0.12 0.02 0.95

C18:1 cis-14 0.21 0.17 0.21 0.31 0.03 0.52

Polyunsaturated

C18:2 cis-9 cis-12 31.1a 34.3a 33.1a 22.5b 1.29 <0.01

C18:3 cis-9 cis-12 cis-15 (ALA)b 2.50bc 1.95c 3.14ab 3.50a 0.17 <0.01

C18:2 cis-9 trans-11(RA/CLA)c 0.09 0.10 0.09 0.16 0.01 0.41

C18:2 trans-10 cis-12 0.14ab 0.11b 0.20ab 0.29a 0.02 0.02

C18:3n6 0.10 0.09 0.11 0.19 0.02 0.05

C20:2 0.17 0.13 0.21 0.12 0.02 0.14

C20:3n6 4.33 4.28 5.41 4.53 0.21 0.15

C20:4n6 0.31 0.14 0.20 0.23 0.05 0.72

C20:5n3 (EPA)d 0.29 0.29 0.35 0.25 0.03 0.72

C22:2 0.25 0.15 0.19 0.22 0.03 0.70

C22:5n3 (DPA)e 1.06 1.04 1.54 1.35 0.08 0.04

C22:6n3 (DHA)f 0.27 0.33 0.29 0.30 0.04 0.98

SFAg 30.3 30.4 30.6 36.6 1.04 0.07

UFAh 69.7 69.6 69.4 63.4 1.04 0.07

MUFAi 29.0a 26.7ab 24.5b 29.8a 0.68 0.01

PUFAj 40.7ab 42.9a 44.9a 33.6b 1.32 <0.01

n6 FA 36.7a 39.6a 39.6a 28.0b 1.39 <0.01

n3 FA 4.12ab 3.61b 5.32a 5.40a 0.23 <0.01

n6/n3 9.15ab 11.2a 7.59bc 5.32c 0.57 <0.01

MCFAk 16.4b 14.1b 13.4b 22.2a 0.88 <0.01

LCFAl 83.2a 85.4a 86.1a 77.2b 0.89 <0.01

Desaturation index

DI (16:1/16) 0.09a 0.07a 0.03b 0.09a 0.01 <0.01
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Table 6. (Continued)

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

DI (18:1/18) 0.38 0.46 0.50 0.40 0.02 0.03

DI (MUFA/SFA) 0.49 0.47 0.44 0.45 0.01 0.25

DI(20:4n6/20:3n6) 0.06 0.04 0.04 0.05 0.01 0.74

DI (20:4n6/18:3n6) 0.63 0.59 0.62 0.55 0.04 0.90

DI (22:6n3/22:5n3) 0.19 0.23 0.15 0.18 0.02 0.66

Thrombogenic index 0.61 0.64 0.57 0.70 0.03 0.36

Atherogenicity index 0.42 0.41 0.41 0.54 0.02 0.12

Within each row, means with lower case superscripts (a–c) indicate significant differences at P< 0.05; SEM, standard error of the mean.
a Control non-infected, CN; Control infected, CI; Mix1 infected, M1I; Mix2 infected, M2I.
b ALA, [α]-Linolenic acid.
c RA/CLA, Rumenic acid/Conjugated linoleic acid.
d EPA, Eicosapentaenoic acid.
e DPA, Docosapentaenoic acid.
f DHA, Docosahexaenoic acid.
g SFA, Saturated fatty acids.
h UFA, Unsaturated fatty acids.
i MUFA, Monounsaturated fatty acids.
j PUFA, Polyunsaturated fatty acids.
k MCFA, Medium chain fatty acids.
l LCFA, Long chain fatty acids.

https://doi.org/10.1371/journal.pone.0231516.t006

Table 7. The effect of herbal mixture on fatty acid proportions (g/100 g FA) in the liver of lambs with H. contortus infection.

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

Saturated

C8:0 0.06 0.07 0.05 0.05 0.01 0.78

C10:0 0.06 0.11 0.06 0.04 0.01 0.10

C12:0 0.21 0.24 0.17 0.14 0.02 0.45

C13:0 0.16 0.11 0.12 0.13 0.02 0.80

C14:0 0.66a 0.51ab 0.33b 0.42ab 0.04 0.01

C15:0 0.56 0.43 0.47 0.52 0.03 0.36

C16:0 13.1a 13.6a 11.1b 11.1b 0.34 <0.01

C17:0 1.55 1.45 1.32 1.36 0.05 0.44

C18:0 18.9c 19.3bc 21.7ab 21.9a 0.43 0.01

Monounsaturated

C14:1 0.16 0.11 0.15 0.16 0.02 0.62

C15:1 0.17 0.13 0.19 0.19 0.01 0.36

C16:1 1.52a 1.49a 0.39b 0.49b 0.15 <0.01

C17:1 0.78ab 0.82a 0.47b 0.51ab 0.05 0.01

C18:1 trans-6-8 0.24b 0.39a 0.27ab 0.19b 0.02 0.01

C18:1 trans-9 0.29 0.35 0.24 0.24 0.02 0.10

C18:1 trans-10 0.25 1.13 0.42 0.20 0.14 0.05

C18:1 trans-11 0.61 0.70 1.05 0.85 0.08 0.21

C18:1 cis-9 16.6 17.1 13.3 15.0 0.56 0.06

C18:1 cis-11 1.45ab 1.67a 1.02b 1.05b 0.08 <0.01

C18:1 cis-12 0.14 0.14 0.17 0.18 0.02 0.82

(Continued)
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Table 7. (Continued)

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

C18:1 cis-13 0.07 0.27 0.06 0.05 0.04 0.14

C18:1 cis-14 0.22 0.25 0.25 0.24 0.02 0.94

Polyunsaturated

C18:2 cis-9 cis-12 10.7 10.1 11.1 9.94 0.27 0.46

C18:3 cis-9 cis-12 cis-15 (ALA)b 1.04ab 0.64b 1.26a 1.97a 0.15 0.01

C18:2 cis-9 trans-11(RA/CLA)c 0.32 0.25 0.35 0.31 0.02 0.40

C18:2 trans-10 cis-12 0.26a 0.23ab 0.17ab 0.14b 0.02 0.03

C18:3n6 0.08 0.14 0.09 0.07 0.01 0.22

C20:2 1.88a 1.79ab 1.10b 1.32ab 0.11 0.03

C20:3n6 8.71 9.02 10.5 9.61 0.27 0.09

C20:4n6 0.50a 0.33ab 0.19b 0.19b 0.04 0.02

C20:5n3 (EPA)d 1.57 1.84 1.75 1.52 0.07 0.30

C22:2 0.39 0.39 0.22 0.25 0.03 0.06

C22:5n3 (DPA)e 4.65 4.28 6.10 5.42 0.30 0.14

C22:6n3 (DHA)f 0.14 0.13 0.15 0.18 0.01 0.27

SFAg 40.2 39.7 39.6 40.4 0.31 0.83

UFAh 59.8 60.3 60.4 59.6 0.31 0.83

MUFAi 29.6 31.1 27.4 28.7 0.53 0.08

PUFAj 30.2 29.2 32.9 30.9 0.61 0.17

n6 FA 20.5 20.1 22.2 20.2 0.43 0.28

n3 FA 7.39ab 6.90b 9.25a 9.08a 0.37 0.04

n6/n3 2.84ab 3.03a 2.40ab 2.26b 0.11 0.03

MCFAk 16.5a 16.6a 12.9b 13.2b 0.51 <0.01

LCFAl 83.4b 83.2b 87.0a 86.7a 0.51 <0.01

Desaturation index

DI (16:1/16) 0.10a 0.10a 0.03b 0.04b 0.01 <0.01

DI (18:1/18) 0.54b 0.53b 0.62a 0.59ab 0.01 0.01

DI (MUFA/SFA) 0.42 0.44 0.41 0.42 0.01 0.13

DI (20:4n6/20:3n6) 0.64 0.50 0.65 0.73 0.03 0.09

DI (20:4n6/18:3n6) 0.86 0.68 0.70 0.72 0.03 0.23

DI (22:6n3/22:5n3) 0.03 0.03 0.02 0.04 0.00 0.51

Thrombogenic index 0.03 0.02 0.01 0.02 0.00 0.28

Atherogenicity index 0.29a 0.27ab 0.22b 0.23ab 0.01 0.02

Within each row, means with lower case superscripts (a–c) indicate significant differences at P< 0.05; SEM, standard error of the mean.
a Control non-infected, CN; Control infected, CI; Mix1 infected, M1I; Mix2 infected, M2I.
b ALA, [α]-Linolenic acid.
c RA/CLA, Rumenic acid/Conjugated linoleic acid.
d EPA, Eicosapentaenoic acid.
e DPA, Docosapentaenoic acid.
f DHA, Docosahexaenoic acid.
g SFA, Saturated fatty acids.
h UFA, Unsaturated fatty acids.
i MUFA, Monounsaturated fatty acids.
j PUFA, Polyunsaturated fatty acids.
k MCFA, Medium chain fatty acids.
l LCFA, Long chain fatty acids.

https://doi.org/10.1371/journal.pone.0231516.t007
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Table 8. The effect of herbal mixture on fatty acid proportions (g/100 g FA) in the longissimus dorsi muscle of lambs with H. contortus infection.

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

Saturated

C8:0 0.10 0.12 0.15 0.25 0.02 0.08

C10:0 0.10 0.19 0.15 0.32 0.04 0.20

C12:0 0.61 0.85 0.65 0.71 0.07 0.64

C13:0 0.26 0.90 0.29 0.78 0.13 0.16

C14:0 1.05 1.00 0.68 0.62 0.09 0.28

C15:0 0.32 0.19 0.18 0.17 0.03 0.22

C16:0 17.7a 16.5ab 14.2ab 13.7b 0.58 0.03

C17:0 0.87 0.54 0.46 0.43 0.08 0.13

C18:0 18.1 15.5 15.5 14.4 0.76 0.36

Monounsaturated

C14:1 0.19 0.25 0.12 0.13 0.03 0.31

C15:1 0.98 1.01 1.05 1.58 0.11 0.17

C16:1 1.01 0.97 0.85 0.79 0.05 0.41

C17:1 1.05 0.89 0.93 1.37 0.08 0.16

C18:1 trans-6-8 0.45 0.38 0.40 0.44 0.05 0.95

C18:1 trans-9 0.66 0.76 0.61 0.87 0.06 0.44

C18:1 trans-10 0.76 0.79 0.51 0.53 0.08 0.46

C18:1 trans-11 0.62 0.62 0.66 0.47 0.07 0.81

C18:1 cis-9 24.2 21.4 20.5 22.5 0.86 0.50

C18:1 cis-11 1.49 1.52 1.53 1.44 0.04 0.89

C18:1 cis-12 0.16 0.15 0.19 0.17 0.03 0.97

C18:1 cis-13 0.12 0.10 0.12 0.12 0.01 0.93

C18:1 cis-14 0.13 0.25 0.17 0.16 0.03 0.57

Polyunsaturated

C18:2c9c12 13.4 13.8 16.3 15.2 0.84 0.63

C18:3 cis-9 cis-12 cis-15 (ALA)b 1.26 1.24 1.47 1.16 0.08 0.67

C18:2 cis-9 trans-11(RA/CLA)c 0.11 0.10 0.10 0.11 0.02 0.98

C18:2 trans-10 cis-12 0.25 0.24 0.33 0.25 0.02 0.52

C18:3n6 0.16 0.15 0.09 0.16 0.02 0.36

C20:2 0.43 0.36 0.40 0.69 0.05 0.08

C20:3n6 3.47 3.20 4.42 5.04 0.30 0.09

C20:4n6 0.09 0.09 0.10 0.12 0.01 0.82

C20:5n3 (EPA)d 0.59b 0.65ab 1.11a 0.98ab 0.07 0.02

C22:2 0.13 0.20 0.28 0.28 0.03 0.20

C22:5n3 (DPA)e 0.68 1.62 1.52 2.17 0.25 0.18

C22:6n3 (DHA)f 0.30 0.42 0.25 0.37 0.03 0.19

SFAg 44.7 46.5 43.4 39.7 1.16 0.22

UFAh 55.2 53.5 56.6 60.3 1.16 0.22

MUFAi 34.4 31.4 30.3 33.7 0.86 0.30

PUFAj 20.8 22.1 26.4 26.6 1.14 0.18

n6 FA 17.4 17.6 21.4 21.0 1.00 0.36

n3 FA 2.83 3.94 4.35 4.68 0.29 0.09

n6/n3 5.99 5.01 5.12 4.59 0.33 0.52

MCFAk 22.1a 21.6a 18.1b 18.5b 0.60 0.01

LCFAl 77.7ab 78.1b 81.6a 80.9a 0.58 0.02

Desaturation index
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Table 8. (Continued)

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

DI (16:1/16) 0.06 0.06 0.06 0.05 0.00 1.00

DI (18:1/18) 0.43 0.42 0.43 0.39 0.01 0.70

DI (MUFA/SFA) 0.44 0.40 0.41 0.46 0.01 0.26

DI (20:4 n6/20:3 n6) 0.66 0.75 0.73 0.66 0.03 0.43

DI (20:4 n6/18:3 n6) 0.33b 0.40ab 0.58a 0.38b 0.03 0.03

DI (22:6 n3/22:5 n3) 0.45 0.43 0.21 0.20 0.05 0.14

Thrombogenic index 0.15 0.28 0.26 0.19 0.03 0.38

Atherogenicity index 0.69 1.07 0.96 0.72 0.08 0.31

Within each row, means with lower case superscripts (a–c) indicate significant differences at P< 0.05; SEM, standard error of the mean.
a Control non-infected, CN; Control infected, CI; Mix1 infected, M1I; Mix2 infected, M2I.
b ALA, [α]-Linolenic acid.
c RA/CLA, Rumenic acid/Conjugated linoleic acid.
d EPA, Eicosapentaenoic acid.
e DPA, Docosapentaenoic acid.
f DHA, Docosahexaenoic acid.
g SFA, Saturated fatty acids.
h UFA, Unsaturated fatty acids.
i MUFA, Monounsaturated fatty acids.
j PUFA, Polyunsaturated fatty acids.
k MCFA, Medium chain fatty acids.
l LCFA, Long chain fatty acids.

https://doi.org/10.1371/journal.pone.0231516.t008

Table 9. Effect of herbal mixture on fatty acid proportions (g/100 g FA) in the subcutaneous fat of lambs with H. contortus infection.

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

Saturated

C8:0 0.02 0.04 0.03 0.04 0.00 0.25

C10:0 0.02 0.02 0.02 0.02 0.00 0.30

C12:0 0.09 0.12 0.12 0.12 0.01 0.41

C13:0 0.02 0.01 0.03 0.02 0.00 0.33

C14:0 1.48 1.45 1.48 1.75 0.06 0.34

C15:0 0.58b 0.50b 0.61b 0.93a 0.05 0.01

C16:0 17.8 17.7 18.0 18.9 0.25 0.38

C17:0 2.19 2.26 1.97 2.14 0.06 0.48

C18:0 36.9ab 33.6b 39.5a 38.7ab 0.81 0.05

Monounsaturated

C14:1 0.33b 0.22b 0.34b 0.46a 0.03 <0.01

C15:1 0.36 0.36 0.42 0.49 0.03 0.30

C16:1 0.70 0.85 0.56 0.54 0.05 0.09

C17:1 0.52 0.58 0.36 0.42 0.03 0.08

C18:1 trans-6-8 0.45 0.44 0.30 0.33 0.03 0.27

C18:1 trans-9 0.50 0.49 0.32 0.33 0.04 0.23

C18:1 trans-10 2.81 3.55 0.73 0.68 0.55 0.16

C18:1 trans-11 2.02 3.82 1.90 2.13 0.32 0.15

C18:1 cis-9 21.6 22.1 22.0 20.0 0.53 0.50

C18:1 cis-11 1.34 1.58 1.21 1.31 0.05 0.10
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Table 9. (Continued)

Fatty acids, g/100 g FA CNa CIa M1Ia M2Ia SEM P value

C18:1 cis-12 0.22b 0.22b 0.25ab 0.28a 0.01 0.01

C18:1 cis-13 0.03 0.05 0.03 0.03 0.01 0.36

C18:1 cis-14 0.32b 0.30b 0.42a 0.41a 0.02 <0.01

Polyunsaturated

C18:2 cis-9 cis-12 5.66 6.08 5.27 5.27 0.26 0.73

C18:3 cis-9 cis-12 cis-15 (ALA)b 0.84ab 0.72b 1.02a 1.00a 0.04 0.04

C18:2 cis-9 trans-11(RA/CLA)c 0.26 0.28 0.28 0.28 0.01 0.94

C18:2 trans-10 cis-12 0.16 0.19 0.12 0.13 0.01 0.13

C18:3n6 0.04 0.04 0.04 0.04 0.00 1.00

C20:2 0.03 0.06 0.05 0.03 0.01 0.27

C20:3n6 0.17 0.32 0.21 0.38 0.04 0.36

C20:4n6 0.03 0.05 0.03 0.04 0.00 0.17

C20:5n3 (EPA)d 0.04 0.06 0.05 0.07 0.01 0.66

C22:2 0.13 0.10 0.12 0.16 0.01 0.23

C22:5n3 (DPA)e 0.10 0.08 0.14 0.16 0.03 0.78

C22:6n3 (DHA)f 0.27 0.28 0.22 0.21 0.02 0.42

SFAg 59.8 56.3 62.3 63.3 0.99 0.06

UFAh 40.2 43.7 37.7 36.7 0.99 0.06

MUFAi 32.4ab 35.4a 30.2ab 28.9b 0.85 0.03

PUFAj 7.74 8.27 7.54 7.76 0.31 0.91

n6 FA 6.25 6.81 5.93 6.16 0.27 0.79

n3 FA 1.25 1.15 1.42 1.43 0.06 0.29

n6/n3 5.00ab 5.93a 4.14b 4.38ab 0.24 0.03

MCFAk 21.4 21.3 21.5 23.2 0.32 0.08

LCFAl 78.6 78.7 78.4 76.8 0.31 0.07

Desaturation index

DI (16:1/16) 0.04 0.05 0.03 0.03 0.00 0.07

DI (18:1/18) 0.63 0.60 0.64 0.66 0.01 0.07

DI (MUFA/SFA) 0.35ab 0.39a 0.33ab 0.31b 0.01 0.03

DI (20:4 n6/20:3 n6) 0.86 0.86 0.84 0.83 0.01 0.77

DI (20:4 n6/18:3 n6) 0.42 0.54 0.40 0.46 0.04 0.64

DI (22:6 n3/22:5 n3) 4.26 3.45 3.52 1.95 0.54 0.51

Thrombogenic index 0.03 0.02 0.02 0.03 0.00 0.84

Atherogenicity index 0.50 0.44 0.51 0.55 0.02 0.27

Within each row, means with lower case superscripts (a–c) indicate significant differences at P< 0.05; SEM, standard error of the mean.
a Control non-infected, CN; Control infected, CI; Mix1 infected, M1I; Mix2 infected, M2I.
b ALA, [α]-Linolenic acid.
c RA/CLA, Rumenic acid/Conjugated linoleic acid.
d EPA, Eicosapentaenoic acid.
e DPA, Docosapentaenoic acid.
f DHA, Docosahexaenoic acid.
g SFA, Saturated fatty acids.
h UFA, Unsaturated fatty acids.
i MUFA, Monounsaturated fatty acids.
j PUFA, Polyunsaturated fatty acids.
k MCFA, Medium chain fatty acids.
l LCFA, Long chain fatty acids.

https://doi.org/10.1371/journal.pone.0231516.t009
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33% compared to the free-parasites lambs [42]. Thus, parasite control in ewes can improve

production efficiency and may decrease the adverse environmental impacts of sheep pro-

duction systems. In the present study, methane production was not affected by parasitism.

Archaea plays a crucial role in methanogenesis, but although the Archaea population in
vitro was slightly diminished, it did not affect methane production. No differences were

found both in vitro and in vivo as the effect of Mix1 or Mix2, could be due to the relatively

low content of the anti-methanogenic compounds in the herbal mixtures [43,44,45]. The

methane production which showed no differences both in in vitro and in vivo by Mix1 or

Mix2 confirmed the results of the previous study, which presented the interaction of S. offi-
cinalis basic components and phytochemical compounds causing the reduced antimethano-

genic activity due to lower availability of substances for microorganisms [46]. The reduction

of the Archaea population was not noted in vivo, suggesting a lower dose of the herbal mix-

tures or adaptation of the Archaea [47]. Total bacteria and B. proteoclastus in the M2I group

in in vivo study increased. This indicates low concentrations of PSM may stimulate some

bacterial populations, while high concentrations of PSM are inhibitory to ruminal microbial

populations [48,49]. Holotricha population of the CI group was higher compared to the CN

group. It may be due to higher susceptibility of Entodinia to H. contortus infection. H. con-
tortus infection alters microbial community composition and diversity, which facilitates the

parasite survival and reproduction [50]. Variations in ruminal microbiota composition

Table 10. The effect of herbal mixture treatment on expression of five genes (lipoprotein lipase (LPL), fatty acid synthase (FASN), stearoyl-CoA desaturase (SCD),

fatty acid desaturase 1 (FADS1), fatty acid elongase 5 (ELOVL5), relative transcript abundance) in the m. longissimus dorsi of lambs with H. contortus infection.

Item CNa CIa M1Ia M2Ia SEM P value

LPL 0.86b 2.39a 1.14ab 0.72b 0.21 0.01

FASN 1.15b 2.89ab 1.54ab 3.10a 0.30 0.03

SCD 1.64b 6.62ab 10.3a 1.56b 1.37 0.04

FADS1 3.04bc 8.59ab 11.7a 0.87c 1.28 <0.01

ELOVL5 6.26 7.93 10.4 5.15 1.04 0.26

Within each row, means with lower case superscripts (a–c) indicate significant differences at P< 0.05; SEM, standard error of the mean.
aControl non-infected, CN; Control infected, CI; Mix1 infected, M1I; Mix2 infected, M2I.

https://doi.org/10.1371/journal.pone.0231516.t010

Table 11. Lipid peroxidation in serum and oxidative stability of meat in lambs with H. contortus infection.

Parameter Day Dietary treatment groupa SEM P value

CN CI M1I M2I Gb Time G × Time

Serum TBARS c 22 0.24 0.24 0.19 0.27 0.013 0.099 <0.001 0.059

(μmol/l) 37 0.28 0.26 0.35 0.35 0.016

51 0.30 0.36 0.31 0.33 0.016

70 0.22a 0.33b 0.30ab 0.28ab 0.014

Muscle TBARS 0 0.45 0.53 0.48 0.56 0.018 0.037 <0.001 0.770

(mg MDA d/kg) 1 0.51 0.54 0.52 0.58 0.019

7 0.64b 0.83a 0.63b 0.77ab 0.043

Within each row, means with lower case superscripts (a–c) indicate significant differences at P < 0.05; SEM, standard error of the mean.
aControl non-infected, CN; Control infected, CI; Mix1 infected, M1I; Mix2 infected, M2I.
bG, Group.
cTBARS, Thiobarbituric acid reactive substances.
dMDA, Malondialdehyde.

https://doi.org/10.1371/journal.pone.0231516.t011
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response and adaptation to anti-methanogenic compounds, fermentation kinetics, and diet

composition are among the major factors contributing to the inconsistent efficacy [51]. The

concentrations of total VFA increased in the groups supplemented with herbal mixtures in
vitro, compared to CN and CI. Observed changes were associated with the increased in vitro
digestibility in the herbal mixture groups. These results indicated that herbal mixtures per-

haps affected the ruminal cellulolytic bacterial activity to increased digestibility (R. albus, R.

flavefaciens, and F. succinogenes). Lower concentrations of PSM sometimes may be stimula-

tory to certain bacterial populations increasing digestibility of feeds. However, significant

effects of herbal mixtures on pH, ammonia N and VFA have not been observed in vivo, nei-

ther in this nor other studies [52], perhaps due to the use of a lower dose of herbal mixture

allowing metabolic redundancy of the ruminal ecosystem [49].

Results of in vitro FA analyses showed that the infection of H. contortus and herbal mixes

can modulate the ruminal FA proportion. The infection increased the C18:0 proportion in all

infected groups. We hypothesized that the infection increased ruminal microbial lipase activ-

ity, the main factor for ruminal BH process [53]. On the other hand, the oxidative stress caused

by parasitic infection can stimulate the rumen metabolism of the lambs to fight against the

pathogens [54] and hence, the rumen microbial population increased leading to more effective

BH process. The decreased effectiveness of BH might be the effect of the antimicrobial proper-

ties of PSM against biohydrogenating bacteria [13].

The rumen FA proportion measured in the rumen of lambs did not reflect the results

obtained in the in vitro experiment. The C14:1 and C17:1 proportion of M2I group slightly

increased compared to the CN and CI. The C15:0, C17:0 and total MCFA proportion also

increased compared to the CI group. Rumen microbes synthesize odd-chain saturated FA by

different pathways, which remove the α-carbon through the conversion of end products of de
novo lipogenesis (C16:0 and C18:0) to a hydroxyl FA, subsequently by decarboxylation to pro-

duce C15:0 and C17:0, respectively [55], or elongation of propionate carbon chain [56]. After

absorption, FA proportions were modulated and a numerically higher UFA and lower SFA

proportions were found in the blood (Table 6) and liver (Table 7). The PUFA and MUFA pro-

portions in serum were higher than in the rumen, which occurs due to desaturation of FA

after absorption from the gastrointestinal tract. Previous studies also showed higher propor-

tion of UFA compared to SFA in ruminants’ blood [35], however rumen fluid was character-

ized with a higher content of SFA [13]. The final values of plasma FA proportions are

dependent on the dietary FA source, de novo FA synthesis in tissues, and bacterial synthesis of

FA including FA biohydrogenation in the rumen [57,58].

The MUFA proportion in the serum of infected Mix1 group was lower compared to the CN

group. The reduced PUFA proportion of infected Mix2 was caused by lower linoleic acid (LA;

C18:2n6) content in serum. Moreover, the C16:0; C16:1, C18:1 cis-11, conjugated linoleic acid

(CLA; C18:2 cis-9 trans-11) and C20:4n6 proportions in the liver were reduced, while C18:0

and linolenic acid (ALA; C18:3n3) proportions were improved in the herbal mixtures groups.

But, no major effect of infection associated with FA proportion was observed in serum and

liver of the CN and CI, which were fed a similar type of diet. Therefore, it seems that the bioac-

tive compounds in both herbal mixtures affected the enzymatic lipolysis process, leading to

modulation of FA proportions [59]. The C18:3 cis-9, cis-12, cis-15 can be converted to C20:4n-
6 in the liver by desaturases and elongases, however in the present, study we noticed a lower

proportion on C20:4n-6 in the liver of lambs fed herbal mixtures, which may suggest the other

possible mode of action. In the liver of lambs, the positive effect of M2I was obtained on C18:3

cis-9, cis-12, cis-15, n3 FA, and n6/n3 ration. On the other hand, herbal mixtures both M1I

and M12 groups were able to decrease MCFA and increase LCFA, which are also considered

favorable within lipid metabolism.
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Several studies indicated that diets strongly affected the deposition of intramuscular fat

and the proportion of SFA and PUFA [60], as well as the activity of enzymes involved in

fatty acids synthesis such as Δ-9 desaturase (converts SFA into cis-9 MUFA), elongase (con-

verts C16:0 into C18:0) and Δ-4, Δ-5 and Δ-6 desaturase (convert C18 PUFA into C20-C22

PUFA) [61–64]. A lower biosynthesis of MUFA in the subcutaneous fat of infected Mix2

group was supported by a lower LPL in the infected Mix2 group and a higher SCD activity

in the Mix1 group. The SCD is responsible for biosynthesis of cis-9, trans-11 CLA from

trans-vaccenic acid (C18:1 trans-11 CLA) [65]. Therefore, lower LPL activity suggests that

biosynthesis of MUFA by the insertion of a double bond between carbon C9 and C10 of

SFA, such as stearic acid (C18:0) into oleic acid (C18:1 cis-9), is low. In addition, preferential

oxidation of FA or competition for desaturation and elongation enzymes by ALA and LA

could affect conversion of ALA into a product of metabolites [64]. Moreover, catalytic pro-

cess for cis double bonds into hydrocarbon chains for biosynthesis of UFA increases the n-3

long-chain PUFA, i.e. C20:5 n-3 [66]. Therefore, the C20:5 n-3 was higher in the M1I sup-

ported by the FADS1 abundance in muscle, but was lower in the M2I group. Although

FADS1 gene expressions in the M2I group decreased, it seems that there is a different mode

of action between herbal mixtures groups. Therefore, the results of the present study and

those of other researchers suggest that varying FA levels, phytochemical compounds in

ruminant diets and varying degree of unsaturation of dietary FA could affect the expression

of these lipogenic genes in different ways.

The effects of GIN parasite on the meat quality in sheep had received little attention [26].

Infections with GIN alter energy metabolism to cope with the extra energy required for

tackling infection and decrease the body weight of animals [41], which may in turn change

FA metabolism. However, in this study, infection did not generally induce major changes in

the FA profiles in the tissues, which may be associated with energy utilization by the animal

itself. The infection also did not decrease body weight gain in lambs [17]. It has been recog-

nized that the nematode infection induces the production of reactive oxygen, causing oxida-

tive stress in the hosts [67,68]. The concentration of TBARS in meat in the present study

showed a constant increase during storage, which indicated that secondary products of lipid

oxidation were accumulated during storage. The addition of Mix1, but not Mix2, to the diet

of infected lambs exhibited antioxidant potential resulting in a decrease in lipid oxidation in

meat by reducing the TBARS level on day 7 of storage as compared to the infected animals.

Mix2 herbal mixture had lower concentrations of phenolic and flavonoids compounds than

in the Mix1, which was not effective to affect lipid peroxidation in meat. Herbs or forages

containing PSM with antioxidative properties also improved meat quality such as chemical

composition, colour and lipid stability [69,70].

Conclusion

Infection did not elicit major impacts on the ruminal fermentation characteristics and FA pro-

files in tissues, but it increased TBARS in serum and meat after storage. Herbal mixtures sup-

plementation had no effect on the ruminal fermentation characteristics including the ruminal

methane production, but increased total VFA concentrations and DM digestibility in vitro.

Supplementation of herbal mixtures to the diets of GIN parasite infected-lambs decreased

MCFA and increased LCFA in liver and meat, and decreased lipid oxidation in meat due to

their inhibitory effects on the ruminal biohydrogenation. From this result and previous results

[17], it can be concluded that Mix1 may reduce parasitic burdens as well as improve LCFA

proportion and oxidative stability in meat, which may prove win-win situations in ruminant

production.
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