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Viral infections constantly jeopardize the global public health due to lack of effective 
antiviral therapeutics. Therefore, there is an imperative need to speed up the drug 
discovery process to identify novel and efficient drug candidates. In this study, we 
have developed quantitative structure–activity relationship (QSAR)-based models 
for predicting antiviral compounds (AVCs) against deadly viruses like human im-
munodeficiency virus (HIV), hepatitis C virus (HCV), hepatitis B virus (HBV), 
human herpesvirus (HHV) and 26 others using publicly available experimental data 
from the ChEMBL bioactivity database. Support vector machine (SVM) models 
achieved a maximum Pearson correlation coefficient of 0.72, 0.74, 0.66, 0.68, and 
0.71 in regression mode and a maximum Matthew’s correlation coefficient 0.91, 
0.93, 0.70, 0.89, and 0.71, respectively, in classification mode during 10-fold cross-
validation. Furthermore, similar performance was observed on the independent vali-
dation sets. We have integrated these models in the AVCpred web server, freely 
available at http://crdd.osdd.net/servers/avcpred. In addition, the datasets are pro-
vided in a searchable format. We hope this web server will assist researchers in the 
identification of potential antiviral agents. It would also save time and cost by prior-
itizing new drugs against viruses before their synthesis and experimental testing.
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Antiviral compounds (AVCs) inhibit the development of 
viruses in the host cell and are relatively harmless to the 
host.[1] They can be natural, for example, antivirals found in 
turmeric[2] and eucalyptus oil,[3] or synthetic, for example, 
zidovudine (a nucleoside analog)[4] and Tamiflu (neuramin-
idase inhibitor).[5] Many compounds and drugs have also 
been tested and found to be useful in restricting the growth of 
certain viruses.[6,7] Scientists are endeavoring to broaden the 
range of antivirals to other families of viruses.[8]

However, designing safe and effective antiviral drugs is a 
difficult task due to the high genetic diversity and consequent 
drug resistance in viruses.[9] Initially, antivirals were discov-
ered using traditional trial-and-error methods.[10] However, 
it was a very lengthy process for discovering effective antivi-
rals.[10, 11] Later, research on virology helped to identify many 
target pathways to block viral multiplication.[12, 13] Scientists 

are now using rational drug design strategies for developing 
antivirals that target the viruses at different stages of their 
life cycles.[14] During the past decade, many new drugs have 
been successfully identified in controlling the viral replica-
tion in host cells, for example, maraviroc (inhibits human 
immunodeficiency virus or HIV entry), pleconaril (inhibits 
picornavirus uncoating), acyclovir (inhibits herpesvirus rep-
lication), and oseltamivir (inhibits influenza release).[9,15]

To save time and money for discovering a new drug, 
researchers have widely used various computational meth-
ods to screen virtual libraries of compounds before the syn-
thesis and animal testing of chemicals. Among the different 
approaches, quantitative structure–activity relationship 
(QSAR) is mostly used.[16–18] In this approach, relation-
ships connecting molecular descriptors and activity are used 
to predict the property of other molecules.[19] Molecular 

http://crdd.osdd.net/servers/avcpred
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descriptors transform the chemical information (structure 
and linking of groups) of a molecule into simple numbers.[20] 
QSAR-based virtual screening is an effective computational 
technique leading toward identification and design of novel 
antiviral agents.[21]

Lately, many dedicated bioinformatic resources have 
been developed for antivirals. For example, in the area of 
RNA interference resources published are VIRsiRNAdb—
antiviral siRNAs resource for about 42 disease causing 
viruses,[22] HIVsirDB—anti HIV siRNAs database,[23] 
VIRsiRNApred—antiviral siRNA inhibition efficacy predic-
tor,[24] and VIRmiRNA—database of virus encoded miRNAs 
including antiviral miRNAs.[25] Similarly, for peptide-based 
antivirals, a few web servers have also been created like 
AVPdb—collection of antiviral peptides targeting more than 
60 medically important viruses,[26] HIPdb—HIV inhibit-
ing peptide repository,[27] and AVPpred—predictor of anti-
viral activity of peptides.[28]. Many general depositories 
provide information of antiviral molecules. For example, 
ChEMBL,[29] PubChem—a database of molecules and their 
activities,[30] ZINC—database of commercial compounds for 
virtual screening,[31] and DrugBank—a knowledgebase for 
drugs and drug targets.[32] In addition, there are a few QSAR 
studies targeting specific viral proteins.[33–41] However, till 
date there is no web server/software, which can regressively 
predict the percentage inhibition value of a compound against 
different human viruses under a single platform.

To cater this need, we developed AVCpred, a web server for 
prediction and design of antiviral compounds. In this method, 
we used previously known AVCs against HIV, hepatitis C virus 
(HCV), hepatitis B virus (HBV), human herpesvirus (HHV) 
and 26 other viruses with experimentally validated percentage 
inhibition from ChEMBL, a large-scale bioactivity database 
for drug discovery.[29] This was followed by descriptor calcu-
lation and selection of best performing molecular descriptors. 
The latter were then used as input for support vector machine 
(in regression mode) to develop QSAR models for different 

viruses as well as a general model for other viruses. We have 
integrated these models in the AVCpred web server, which 
will be helpful for virtual screening of AVCs and designing 
new compounds to target the viruses.

1  |   METHODS AND MATERIALS

1.1  |  Datasets
In this study, we have used different datasets of AVCs hav-
ing experimentally verified percent inhibition values against 
HIV, HCV, HHV, HBV and a general dataset having AVCs 
against 26 human viruses. The data were obtained from the 
ChEMBL resource (https://www.ebi.ac.uk/chembl/). The 
desired data were fetched using target browser (taxonomy 
tree) as well as target search using keywords such as HIV, 
HCV, HBV, HHV, virus, viral, viruses. Initially, among the 
AVCs, the majority of data belonged to HIV (1383 com-
pounds), HCV (803 compounds), HHV (473 compounds), 
HBV (416 compounds), and other viruses (1635 compounds). 
After filtering entries with desired information and remov-
ing redundant entries, we were left with 389 compounds for 
HIV, 467 in case of HCV, 124 for HHV, 112 against HBV, 
and 1391 AVCs targeting the 26 viruses (Table 1 and Table 
S1). These datasets were used for descriptor selection and 
model development. The datasets are available along with 
references on the web server and can be downloaded from 
this URL: http://crdd.osdd.net/servers/avcpred/datasets.php.

1.2  |  Descriptor calculation
To develop virus specific as well as general QSAR models, 
we computed about 18000 chemical descriptors (1D, 2D, and 
3D), including geometric, constitutional, electrostatic, topo-
logical, hydrophobic, binary fingerprints, using PaDEL, an 
open-source software to calculate molecular descriptors and 
fingerprints.[42]

T A B L E   1   Creation of datasets for the development of prediction models

S. no. Virus Overall data

Data filtera

Percent inhibition[1] Reference[2] Non-redundant[3]

1 Human immunodeficiency virus (HIV) 1383 594 535 389

2 Hepatitis C virus (HCV) 803 648 618 467

3 Hepatitis B virus (HBV) 416 284 283 112

4 Human herpesvirus (HHV) 473 312 278 124

5 General (26 viruses)b 5684 2662 1635 1391

aData from ChEMBL were filtered, and only compounds with [1] percent inhibition, [2] reference, and [3] non-redundant SMILES were considered.
bThe general dataset is comprised of below viruses with unique number of AVCs in brackets: Dengue virus 1,[1] dengue virus 2,[16] enterovirus,[30] human adenovirus 
5,[41] human cox B1,[4] human cox B5,[21] human echovirus 13,[3] human echovirus 9,[2] human enterovirus 71,[19] human enterovirus C,[1] human polio virus 1,[4] human 
rhinovirus,[1] human rhinovirus 14,[29] human rhinovirus 1B,[18] human rhinovirus 2,[2] human T lymphotropic virus,[42] influenza A,[36] influenza A (H1N1),[16] influenza 
B,[1] monkeypox virus,[1] respiratory syncytial virus,[4] Rift Valley fever virus (Cercopithecidae),[1] sandfly fever Sicilian virus,[2] SARS coronavirus,[23] simian virus 
40,[45] Sindbis virus,[4] vaccinia virus,[12] vaccinia virus WR,[22] variola virus,[1] vesicular stomatitis virus,[63] West Nile virus,[17] yellow fever virus.[51]

https://www.ebi.ac.uk/chembl/
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1.3  |  Feature selection
To improve the speed of calculation, we selected the most 
essential descriptors using ‘RemoveUseless’ filter followed 
by ClassifierSubsetEval (attribute evaluator) with BestFirst 
(search method) module available in Weka package.[43] 
ClassifierSubsetEval evaluates attribute subsets on training/
testing data using a classifier to estimate the merit of a set of 
attributes.[44,45] The selected descriptors were then used to 
develop the QSAR models (Table S3).

1.4  |  Machine learning
We developed individual QSAR models for each of the 
4 viruses (HIV, HCV, HHV, and HBV) as well as a gen-
eral model comprising 26 different viruses using SMOreg 
algorithm[46] in Weka machine learning software[43] freely 
available at http://www.cs.waikato.ac.nz/ml/weka. SMOreg 
implements the support vector machine in regression mode. 
In SMOreg, Pearson VII function-based universal kernel 
(Puk) and RegSMOImproved optimizer were used along 
with parameters such as (i) the regularization constant/com-
plexity value (c) that allows trade-off between training error 
and margin, (ii) the omega exponent value (ω) that controls 
peak half-width, and (iii) the sigma bandwidth value (σ) that 
controls peak tailing factor.[47,48] Simultaneously, software 
SVMlight (freely available at http://svmlight.joachims.org) 
was employed for machine learning in classification mode. 
In SVMlight, radial basis function (RBF) kernel was used with 
parameters (i) gamma (g) that defines how far the influence 
of a single training example reaches and (ii) complexity con-
stant (c) that allows trade-off amid training error and mar-
gin.[49] Selected molecular descriptors and fingerprints were 
used as input features for the development of QSAR models.

1.5  |  Evaluation
In order to evaluate performance of our models, we employed a 
number of statistical parameters including Pearson’s correlation 
coefficient, coefficient of determination, mean absolute error 
root-mean-square error, sensitivity, specificity, accuracy, and 
Mathew’s correlation coefficient as briefly described below.

The Pearson’s correlation coefficient (R) is a measure of 
correlation between two variables.

where n is the size of test set, and Ei
pred and Ei

act is the pre-
dicted and actual efficacy of AVCs respectively.

A value of 1 denotes total positive correlation, 0 is no cor-
relation, and −1 is total negative correlation.

The coefficient of determination (R2) indicates how well 
data fit a statistical model. An R2 of 1 indicates that the model 
perfectly fits the data, while an R2 of 0 means that the model 
does not fit the data at all.

The mean absolute error (MAE) measure indicates how 
close the predictions are to the eventual outcomes.

where Ei
pred is the prediction, Ei

act the true value, and   
| Ei

pred – Ei
act | the absolute error.

MAEs are negatively oriented scores; that is, lower values 
are better.

The root-mean-square error (RMSE) measures the aver-
age magnitude of the error.

RMSEs are also negatively oriented scores; that is, lower 
values are better.

Sensitivity (Sn) or the true positive rate measures the per-
centage of correctly identified positives.

An ideal predictor would be expressed as 100% sensitive.
Specificity (Sp) or the true negative rate measures the per-

centage of correctly identified negatives

An ideal predictor would be expressed as 100% specific.
Accuracy (Ac) is the percentage of correct results (i.e. 

both true positives and true negatives) among the total num-
ber of cases.

An ideal predictor would be expressed as 100% accurate.
The Matthew’s correlation coefficient (MCC) is used 

in machine learning to evaluate the performance of binary 
classifications.
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In the above Eqs. (4–7), TP, FP, TN, and FN represent 
the true positives, false positives, true negatives, and false 
negatives respectively.

Its value ranges from −1 to 1 and a value close to 1 means 
a better prediction.

2  |   RESULTS

2.1  |  Performance of QSAR models
In order to identify the most effective features or descrip-
tors of antiviral drugs, we computed the correlation between 
selected chemical features of antiviral drugs and their percent 
inhibition using comprehensive pharmacological screening 
datasets from ChEMBL[29] (Figure 1).

After attribute selection, the relevant descriptors were 45 
for HIV, 52 for HCV, 15 for HBV, 20 for HHV, and 65 for rest 
of the viruses. A combination of selected chemical descrip-
tors like partial charge, atom-type electrotopological state, 
extended topochemical atom, chi cluster, weighted path, and 
fingerprints based on substructure, graph, path, and extended 
features including PubChem and Klekota-Roth were found 
to be useful in prediction. The selected descriptors were 
then used to develop the QSAR models (Table S3). During 
10-fold cross-validation, we achieved maximum Pearson’s 
correlation coefficient (PCC) of 0.72 in case of HIV; 0.74 in 
case of HCV; 0.66 in case of HBV; 0.68 in case of HHV; and 
0.71 in case of rest of the viruses. Also during validation on 
independent dataset, we achieved a maximum PCC of 0.63, 
0.65, 0.61, 0.64, and 0.67, respectively (Table 2). Other sta-
tistical parameters used in the development of QSAR models 
are depicted in Table S2. A scatter plot between actual and 
predicted efficacy in each case is shown in Figure 2.

In addition, we also checked the performance of our mod-
els developed using classification mode of machine learn-
ing. During 10-fold cross-validation, we achieved maximum 
Matthew’s correlation coefficient (MCC) of 0.91 in case of 
HIV; 0.93 in case of HCV; 0.70 in case of HBV; 0.89 in case 
of HHV; and 0.71 in case of rest of the viruses. Similar per-
formance was shown on the independent datasets (Table 3). 
The machine learning parameters used for model develop-
ment are shown in Table 4. Receiver operating characteristic F I G U R E   1   Schematic diagram demonstrating workflow of AVCpred

ChEMBL
(database of bioac
ve 

chemicals)

Experimentally validated 
An
viral compounds 

Selec
on of compounds with 
percentage inhibi
on value

Crea
on of 
non-redundant virus 

specific datasets

Descriptor calcula
on

Crea
on of
non-redundant 
general dataset

Feature selec
on

Machine learning

Model development

T A B L E   2   Pearson correlation values obtained for each viral dataset on their respective QSAR models

S. no. Virus

Antiviral compounds

No. of 
selected 
descriptors

Pearson’s correlation coefficient (PCC)

Total Training Validation

Training

Validation(10x)a

1 Human immunodeficiency virus (HIV) 389 351 38 45 0.72 0.63

2 Hepatitis C virus (HCV) 467 421 46 52 0.74 0.65

3 Hepatitis B virus (HBV) 112 101 11 15 0.66 0.61

4 Human herpesvirus (HHV) 124 112 12 20 0.68 0.64

5 General (26 viruses)b 1391 1252 139 65 0.71 0.67

a10-fold cross-validation.
bThe general dataset is comprised of below viruses with unique number of AVCs in brackets: Dengue virus 1,[1] dengue virus 2,[16] enterovirus,[30] human adenovirus 
5,[41] human cox B1,[4] human cox B5,[21] human echovirus 13,[3] human echovirus 9,[2] human enterovirus 71,[19] human enterovirus C,[1] human polio virus 1,[4] human 
rhinovirus,[1] human rhinovirus 14,[29] human rhinovirus 1B,[18] human rhinovirus 2,[2] human T lymphotropic virus,[42] influenza A,[36] influenza A (H1N1),[16] influenza 
B,[1] monkeypox virus,[1] respiratory syncytial virus,[4] Rift Valley fever virus (Cercopithecidae),[1] sandfly fever Sicilian virus,[2] SARS coronavirus,[23] simian virus 
40,[45] Sindbis virus,[4] vaccinia virus,[12] vaccinia virus WR,[22] variola virus,[1] vesicular stomatitis virus,[63] West Nile virus,[17] yellow fever virus.[51]
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(ROC) plots illustrating the performance of the QSAR mod-
els are shown in Figure 3.

2.2  |  Web server
The QSAR models have been integrated into a freely avail-
able and easy to use web server, ‘AVCpred’, where users 
can predict the antiviral potential of their query molecules 

against the different viruses in terms of percent inhibition 
value. AVCpred web server includes the following modules:

2.2.1  |  Submission
This allows users to submit on or more molecules at a time. 
Users have to choose the viruses on which they want to test 
their query chemical compounds. On submission, it returns 

F I G U R E   2   Scatter plot between actual and predicted percentage inhibition on independent validation datasets of (A) HIV, (B) HCV, (C) HBV, 
(D) HHV, and (E) general (26 viruses)
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T A B L E   3   Performance of QSAR models obtained for each viral dataset using classification mode of machine learning

S. no. Virus

Training/Testing (10-fold) Validation

Sensitivity Specificity Accuracy MCC Sensitivity Specificity Accuracy MCC

1 HIV 94.30 96.40 95.10 0.91 88.10 82.30 86.10 0.70

2 HCV 96.90 96.40 96.60 0.93 86.61 87.20 86.80 0.73

3 HBV 87.10 81.60 85.80 0.70 87.20 80.40 84.30 0.69

4 HHV 93.40 92.30 93.50 0.89 87.10 91.30 88. 6 0.77

5 General (26 viruses) 88.30 82.20 85.70 0.71 81.70 82.10 81.90 0.64
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with percent inhibition values against the selected viruses. 
Also users can view the different properties of the query 
molecule such as structure, charge, molecular weight, logP 

value, hydrogen and Lipinski bond donors/acceptors, rigid 
and rotatable bonds to identify drug-like molecular structures 
(Figure 4).

F I G U R E   3   ROC curves depicting performance of QSAR models for (A) HIV, (B) HCV, (C) HBV, (D) HHV, and (E) general (26 viruses)
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T A B L E   4   Machine learning parameters selected for the development of the QSAR models

S. no. Model

Parameters

SMOreg SVMlight

Kernel Optimizer c ω σ Kernel g c

1 HIV Puk RegSMOImproved 4 2 3 RBF 0.02 200

2 HCV Puk RegSMOImproved 5 5 5 RBF 0.02 50

3 HBV Puk RegSMOImproved 0.1 0.3 0.3 RBF 0.001 300

4 HHV Puk RegSMOImproved 3 3 3 RBF 0.1 100

5 General (26 viruses) Puk RegSMOImproved 3 3 5 RBF 0.01 50

Abbreviations: Puk: Pearson VII function-based universal kernel. RegSMOImproved: optimizer for algorithm speed improvement. c: regularization constant/complexity 
parameter allows trade-off between training error and margin. ω: omega exponent value (controls half-width of the peak) σ: sigma bandwidth value (controls tailing factor 
of the peak). RBF: radial basis function g: parameter gamma in RBF kernel.
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2.2.2  |  Design analogs
It has been found that analogs of known chemical compounds 
are sometimes more effective than the parent molecule.[50] In 
order to identify potent analogs of an existing AVC, we have 
included the ‘Design analogs’ tool, where user can design 
analogs based on given building blocks and predict their 
inhibition on the viruses.

2.2.3  |  Draw structure
Using the ‘Draw tool’, one can sketch the structure of the 
query molecule using Marvin editor (Figure 5). This tool also 
gives the predicted percent inhibition values against the dif-
ferent viruses. In addition, one can view the various proper-
ties of the query structure.

2.2.4  |  Search
AVCpred also provides the users a search tool to browse the 
compounds used in our datasets. In this module, different 

compounds targeting the viruses are stored in a database. The 
records can be readily searched, filtered/sorted, and down-
loaded via the web interface.

2.3  |  Implementation
AVCpred has been developed using the open-source LAMP 
(Linux-Apache-MySQL-PHP) system. The prediction soft-
ware runs on Red Hat Enterprise Linux 5 environment using 
Apache httpd server.

3  |   DISCUSSION

To inhibit viral growth, the antiviral molecules or drugs target 
different phases of viral life cycle such as fusion, integration, 
replication, maturation and should be relatively non-toxic 
to the host organism.[51,52] Each stage can be targeted using 
AVCs that can, for example, inhibit entry receptors (CD4, 
CCR5) or viral enzymes (protease, neuraminidase).[53–55] 

F I G U R E   4   AVCpred submission form with output
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Various AVCs are currently in medical use, and new ones 
are in clinical trials.[56,57]

Finding new and improved viral inhibitors is a major con-
cern in the treatment of deadly human viruses.[58,59] However, 
discovery of novel AVCs is a tedious process.[60] To speed 
up the identification of new AVCs, a computational approach 
using QSAR method is a rational strategy to decrease cost 
and time efforts in the wet laboratory.[20] QSAR techniques 
have been widely used in drug designing and further identifi-
cation of lead molecules.[17]

Although there are many QSAR studies pertaining to dif-
ferent types of viral protein inhibitors, they are very specific 
in their approach and deal with a particular class of inhibitors 
such as endonuclease inhibitors[33] in which 40 compounds 
were used and reached a correlation of 0.76, thiourea deriva-
tives[34] where 85 compounds had a correlation of 0.92, pro-
tease inhibitors[39] in which 170 compounds had a correlation 
of 0.60–0.83, and flavonoid inhibitors[38] where 20 com-
pounds had a correlation of 0.75–0.97 etc. (Table 5). In most 
of the cases, the studies are carried out on a limited number 

of inhibitors. Due to this reason, they predict the inhibitors 
that are similar to the compound type with a high correlation, 
but do not work on other dissimilar inhibitors for the same 
target virus. To address these limitations, AVCpred mod-
els have been developed using diverse and large number of 
inhibitors. In the current algorithm, we have employed anti-
viral compound datasets from different studies due to which 
the overall correlation is less than above studies, yet the mod-
els are comparatively more robust to predict different classes 
of inhibitors. However, as new high-throughput screening 
data tested under homogeneous conditions on antiviral drugs 
becomes available, performance of the QSAR method can be 
improved.

In this study, we developed virus specific as well as gen-
eral prediction models to identify the likelihood of a com-
pound being antiviral using selected chemical attributes of 
experimentally validated AVCs. PaDEL, an open-source 
software, was used to calculate molecular descriptors and fin-
gerprints. However, the software calculates a large number of 
descriptors, and hence, we used attribute selection approach 
to reduce their number by eliminating unrelated and extra-
neous descriptors to get a highly correlated descriptor set. 
Our analysis revealed that several chemical descriptors are 
important in predicting the compound inhibition activity, for 
example, partial charge, atom-type electrotopological state, 
extended topochemical atom, chi cluster, weighted path, and 
fingerprints.

We employed machine learning to train the QSAR mod-
els on different sets of experimentally validated data. These 
models were validated on independent datasets, not used 
during training, and were found to have satisfactory perfor-
mance. We used the pharmacological data from the ChEMBL 
resource for training/testing the models developed for general 
as well as specific viruses. These models were integrated in 
an open-source web server for evaluation and screening of 
antiviral compounds.

The applicability domain of the QSAR models was 
demonstrated using Williams plot (Figure 6) in which 

T A B L E   5   Existing QSAR studies pertaining to antiviral compounds

S. no. Compound type No. of compounds Correlation
Target 
virus

Web server/
Software Year References

1 PA endonuclease inhibitors 40 0.76 INFV No 2014 [33]

2 Thiourea derivatives 85 0.92 HCV No 2013 [34]

3 Integrase inhibitors 77 0.98 HIV No 2012 [35]

4 Three different series of HBV inhibitors 30 0.92 HBV No 2010 [36]

5 HIV-1 entry inhibitors 36 0.72 HIV No 2010 [37]

6 Neuraminidase flavonoid inhibitors 20 0.75–0.97 H1N1 No 2010 [38]

7 Protease inhibitors 170 0.6–0.83 HIV No 2010 [39]

8 HPV6-E1 helicase ATPase inhibitors Full text not available 0.92 HPV No 2010 [40]

9 Thymidine kinase N2-phenylguanine inhibitors 20 0.85–0.98 HSV No 2000 [41]

F I G U R E   5   Web interface of ‘AVCpred Draw’ tool
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standardized residuals are plotted against leverages.[61] If 
the standardized residual of a compound is greater than 
three times standard deviation units (±3σ), the compound 
is treated as an outlier. The warning value of leverage (h*) 
is considered as 3p/n, where p is the number of model 
descriptors plus one and n is the number of training com-
pounds.[62, 63] If the leverage of a compound exceeds h*, 
it is regarded as dissident. The plots demonstrate that the 
leverages of majority of the compounds do not surpass the 
critical value (h*) in the regression models, and hence, the 
compounds are within the chemical domain, implying that 
the predictivity of the models is reliable.

The web server also provides useful services like design-
ing analogs based on given building blocks and drawing 
structure to sketch novel compounds and predict their inhi-
bition potential against multiple viruses. The AVCpred algo-
rithm is hoped to assist the researchers in discovering novel 
antiviral compounds as well as virtually check the effect of 
modifications on existing drugs.

4  |   CONCLUSIONS

AVCpred is the first web-based algorithm for prediction 
of AVCs based on experimentally validated datasets. Five 
prediction models pertaining to HIV, HCV, HHV, HBV, 
and a general one were implemented in the web server to 
make comprehensive predictions. In addition, tools for drug 
design, virtual screening, and collection of existing AVCs 
have also been integrated. This web server would be help-
ful for researchers working for the development of antiviral 
therapeutics.
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F I G U R E   6   Applicability domain plots of the QSAR models for (A) HIV, (B) HCV, (C) HBV, (D) HHV, and (E) general (26 viruses)
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