
Ebola—Challenge and Revival of
Theoretical Epidemiology

Why Extrapolations from Early Phases of Epidemics are Problematic

A
t the beginning of the second half of the 20th century, there was a wide-

spread belief that science and in particular medicine had progressed so far

that Nature could be brought under complete control. It seemed that

healthcare and pharmacology were in the position to prevent or to cure almost

all diseases. In the 1980s, for example, the pharmaceutical industry stopped the

search for new antibiotic drugs that would be badly needed nowadays in the

light of the universal capabilities of bacteria to develop resistance factors. At

about the same time previously unknown or unnoticed virus transmitted infec-

tious human diseases appeared: acquired immunodeficiency syndrome caused

by human immunodeficiency virus (HIV), Ebola caused by Ebola virus (EBOV)

and four related other strains of filoviridae, as well as severe acquired respira-

tory syndrome (SARS) brought about by SARS coronavirus. Caused by prions

and not by a virus is been bovine spongiform encephalopathy (BSE). Neverthe-

less, it gave rise to an equally serious new epidemic. These and other cases as

well as the consequences of the ‘‘antivaccination movement’’ [1,2], for example,

the recent reoccurrence of pertussis and measles, revived a need of reliable

models in epidemiology. In particular, the recent Ebola epidemic starting in

December 2013 in West Africa [3] initiated a new boom in theoretical work on

infectious disease dynamics [4]. In PLoS Currents Outbreaks I counted 27

articles between the first publication on the recent Ebola epidemics on May 02,

2014 until March 09, 2015. In December 2014, researchers became aware that

the predictions made 3 months earlier, in Fall 2014, apparently overstated the

numbers of cases and deaths. A recent theoretical paper aims at an analysis of

the prediction errors and provides suggestions how to make better forecasts [5].

In this essay, we shall be concerned with the predictive power of one frequently

used model denoted as susceptible-exposed-infectious-removed (SEIR) model,

and try to analyze typical general problems of predictions from early stages of

exponentially growing systems to the final outcomes of the processes. In the

focus are the model inherent limitations of reliabilities and not the lack of

information or external problems like insufficient data or the uncertainty about

the effectiveness of intervention strategies or countermeasures.

Before considering epidemiological models, we illustrate the problem of pre-

dicting the longtime behavior of a process that starts with exponential growth and

later on goes into saturation by means of a well-known simple example: the logis-

tic equation introduced by Pierre-François Verhulst [6] in 1838. The equation

describes growth of a multiplying population in a world of finite resources. The
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model is formulated in the language of

ordinary differential equations and can

be solved by the standard analytical

techniques of calculus

dN

dt
5 rN 12

N

C

� �
;

NðtÞ5N0
C

N0 1 ðC2N0Þ e2 rt
:

(1)

Herein, N(t) is the number of multi-

plying individuals or the population

size as a function of time, N0 5 N(0) is

the initial value, r is the growth or Mal-

thus parameter, and C is called the car-

rying capacity and represents a

parameter, which determines the maxi-

mum number of individuals that can be

sustained by the ecosystem (Figure 1).

The initial phase of the process

(t< 3) yields practically the same

curves for all values of C within the

line width. It is straightforward to cal-

culate an approximate expression for

N(t) at short times by means of series

expansions that has the following two

first terms:
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for small t

Equation (2) illustrates well the

problem of parameter fitting to data

from the initial phase: In cases where N0

is small and C is large and N0/C << 1,

the growth parameter r can be deter-

mined from the slope of the linearized

growth curve, N(t) � N0 1 N0 r t, as

N0/C is only a small correction. The

determination of the second parameter

C is tricky, in particular for small N0/C

because the first and the second coef-

ficient of the series expansion are

needed and the equations for the fit of

C are commonly ill-conditioned.

Unfortunately small N0 and large C,

being tantamount to a few infected

individuals—in extreme but not

uncommon cases we have N0 5 1—and

a comparatively large population of

susceptible individuals, are almost

always the case in the spread of epi-

demics. For very good reasons, Aaron

King et al. [5] emphasize the require-

ment of highly reliable data and

sophisticated high-level stochastic

methods for parameter estimations

and potential error predictions from

the early phase of an exponentially

growing system to a final situation

when the process is under control. The

problem is very general and not

restricted to epidemiology. The politi-

cally reasonable but scientifically

unacceptable flaw in the predictions of

the famous Club of Rome [7] is pre-

cisely of the same kind: You cannot

extrapolate from the initial phase of an

exponentially growing process to the

final situation unless additional infor-

mation is or additional data are

available.

The SEIR model of epidemiology is

very popular and despite relative sim-

plicity it has interesting dynamical fea-

tures that are highly relevant for

prediction. The model describes infec-

tion dynamics in a population of ini-

tially susceptible individuals and

attributes four different states to the

people: S means susceptible to infec-

tion, E implies exposed and infected

but not yet showing the symptoms

and not being infectious, I stands for

being infected, showing the symptoms

and being infectious, and eventually R

stands for the number of individuals

being out of the game by either being

recovered and immune to further

infection or being dead. For popula-

tion dynamics, the SEIR model can be

casted into equations of chemical

kinetics:

S 1 I! E 1 I (3a)

E! I (3b)

I! R (3c)

The rate parameters commonly

attributed to the three steps are denoted

FIGURE 1

Solution curves of the logistic Eq. (1). Shown is the population size N(t) as a function of time with different carrying capacities C 51 (black), 1000 (red),
800 (yellow), 600 (green), and 400 (blue). The black curve evidently represents pure exponential growth. The figure on the r.h.s. is an enlargement of the
l.h.s. figure. Further parameters: r 5 1 [t21] and N(0) 5 N0 5 1.
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by b/C, k, and c. As a matter of fact, the

epidemiological mechanism (3) is noth-

ing but a chemical reaction consisting

of three consecutive steps, and it can be

cast into the differential equation

ds

dt
5 2

b

C
s � i ; de

dt
5

b

C
s � i2 k � e ;

di

dt
5 k � e2 g � i ; and

dr

dt
5 g � i :

(4)

Herein, concentrations or numbers

of individuals are denoted by [S] 5 s,

[E] 5 e, [I] 5 i, [R] 5 r. Because of the

conservation relation, s 1 i 1 e 1 r 5 C,

the model has three independent vari-

ables. To take into account intrinsic

stochastic effects, the SEIR model can

be formulated as a renewal process [4]

that is frequently used in theoretical

epidemiology [8]. To visualize fluctua-

tions, we shall consider here the

expectation values embedded in the

one-standard deviation band derived

from numerical simulations of the

chemical master equation of mecha-

nism (3) [9]. The results are shown in

Figure 2: As expected the solution

curves of the deterministic approach

lie within the one-standard deviation

band but do not exactly coincide with

the expectation values E(x), x � s,e,i or

r—exact coincidence can only be

expected for first order or linear proc-

esses [10] and, indeed, the step (3a) is

corresponding to a bimolecular second

order reaction. The SEIR mechanism

contains two-step autocatalysis: S 1 I

! E 1 I ! 2 I resulting from (3a) and

(3b). One special property of an auto-

catalytic system concerns the require-

ment of a non-zero concentration of

the autocatalyst as no reaction will

take place otherwise. In the language

of epidemiology this fact is trivial:

There is no outbreak without infec-

tious individuals. Autocatalysis gives

also rise to a number of features,

which are uncommon in conventional

chemical kinetics. One property that is

relevant for the problem of prediction

will be discussed in detail in the next

paragraph. It concerns the longtime

result, which in chemistry is com-

monly a single state that does not

depend on initial conditions. In case

of autocatalysis, however, the final

state can be a one-dimensional (1D)

manifold and the particular marginally

stable stationary points depend on the

initial values of the variables (Figure 3;

see also a somewhat humoristic but

mathematically serious analysis of the

equilibria of epimemiological models

and their stability see [11]). In the

SEIR and as well in the simpler

FIGURE 2

Solution curves of the SEIR model (3). Shown are the numbers of susceptible individuals S(t) (red),
exposed individuals E(t) (blue), infectious individuals I(t) (green), and recovered or dead individuals
R(t) (black). Expectation values <X(t)> (X � S, E, I, R) are given in full color embedded in one-
standard deviation error bands, <X(t)>6 r(X(t)), with the limits in light color. The dashed lines
refer to the solutions of the ordinary differential equation (ODE) (4), x(t) with x � s, e, i, r, and the
yellow dashed curve represents d(t) 5 i(t) 1 r(t). The disease in this case affects the entire popula-
tion. Parameters: N 5 1000, b 5 0.5, k 5 0.05, c 5 0.025, which correspond to a high basic
reproductive number of R0 5 20. Initial conditions: S(0) 5 990, I(0) 5 10.

FIGURE 3

Dependence of the outcome of an epidemic on the number of initially infected individuals. The two
curves represent the final number of susceptible and recovered individuals, lim t!1 sðtÞ (red) and
lim t!1 rðtÞ (black) for different numbers of initially present infectious individuals i(0). The param-
eters were taken from the 1995 Ebola outbreak in Congo [14]: b0 5 0.33, b1 5 0.09, s 5 100,
th 5 0.71, k 5 0.189, and c 5 0.178 with time measured in days. A small population size,
N 5 1000, was chosen for the purpose of illustration. The critical value of the stationary number
of susceptible is �scr 5 539:4.

C O M P L E X I T Y 9Q 2015 Wiley Periodicals, Inc.
DOI 10.1002/cplx



susceptile-infectious-recoverd (SIR)

model,* the final outcome in the sense of

the residual ‘‘susceptibles,’’ lim t!1

SðtÞ 5 S1, is a function of the number of

initially infected people expressed by I(0).

Next, we perform stationary state

analysis of the SEIR model (4) and cal-

culate the longtime solutions ð�s ; �e ; �i ;

�rÞ from the equations ds
dt 5 0 ; de

dt 5 0 ;
�

di
dt

5 0 ; dr
dt

5 0 Þ. The result is not a sin-

gle stationary state but a 1D manifold

of states defined by

�e5 0 ; �i5 0 ; �s1 �r5N: (5a)

The number of individuals, which

are not infected by the disease is lim-

ited by 0 � �s < N. Stability analysis of

this 1D line of stationary points by

means of the evaluation of the eigen-

values of the Jacobian matrix at the

steady states yields three eigenvalues,

one is zero and two are real:

k0 5 0 ;

k1;2 5 2
1

2
k1 g 7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk2 gÞ2 1 4b k �s

q� �
:

(5b)

The zero eigenvalue expresses mar-

ginal stability and concerns migration

along the line of stationary states. The

other two eigenvalues are both nega-

tive in the range 0 � �s < �scr with �scr

5 c N=b and depending on the initial

conditions the longtime solution will

lie somewhere in this range. An exam-

ple is shown in Figure 3, the larger the

initial number of infected individuals

is, the smaller is �s, the number of peo-

ple that remained unaffected by the

epidemic (The parameter values for

the calculations are taken from the

1995 Ebola epidemic in Congo [12]).

In this context, it is illustrative to

mention a result of the SIR model in

the simplest version, which does not

consider exposed individuals—as said

above, S 1 I ! 2 I and I ! R with the

two rate parameters b and c. For sim-

plicity, we replace the numbers of indi-

viduals by normalized variables s ) s/C,

i ) i/C, r ) r/C such that s 1 i 1 r 5 1.

The analysis of the system reveals again

a one-dimensional manifold of station-

ary points with �i 5 0 and �s 1 �r 5 1: Sta-

bility analysis yields stable points in the

range 0 � �s < �scr and unstable points

for �scr < �s � 1, where �scr 5 c=b. In

Figure 4, it is shown how the initial ratio

of susceptible to recovered or here bet-

ter immune individuals determines the

final number of people that were

affected by the epidemic: The more sus-

ceptibles are initially present, the

smaller is the number of individuals,

which remain spared from the disease.

Moreover, in the range 0 � �s < �scrno

epidemic can occur and this has a

straightforward consequence for vacci-

nation: If the fraction of immune peo-

ple, r/(r 1 s), is above 1 2�scr, the

population cannot be invaded by the

proliferating disease but, of course, the

nonvaccinated individual can still be

infected. From c being larger than b fol-

lows �scr > 1 and the population is sta-

ble in the whole range, 0 � s � 1, and

no outbreak can occur. The fraction of

immune people is very hard to know a

priori and this implies another uncer-

tainty in modeling.

The parameter b determines the rate

of infection and may be controlled by suc-

cessful intervention strategies. In model-

ing this can be taken into account using

the parameter as a function of time [12]

bðtÞ5
b0 for t < s

b1 1 ðb02b1Þ e2qðt2sÞ for t � s

( )
:

(6)

The parameter s is the instant

when the interventions start and q is

FIGURE 4

Trajectories of the simple SIR model. Trajectories of individual epidemics, #(t), calculated by the
simple SIR model are shown on the unit simplex S3, #(t) 5 {s(t), i(t), r(t)} with s 1 i 1 r 5 1. Every
trajectory starts at t 5 0 at the right end and progresses with increasing time to the left end that
corresponds to the limit t ! 1. The initial conditions are given by s0 5 a 2 d, i0 5 d, and
r0 5 1 2 a, with d 5 0.001 and a 5 1.0, 0.9, 0.8, 0.7, 0.6, 0.5, and 0.4, or in other words a popu-
lation of a susceptible and 1 2 a immune individuals is infected by a small fraction of diseased
people. The number of infectious individual increases, passes through a maximum at �scr 5 g=b,
and for long times converges to limt!1 i(t) 5 0, the disease has disappeared. Parameters: b 5 3,
c 5 1, and �scr 5 1=3.

*The SIR model is distiguished from

the SEIR model by the omission of the

state ‘‘exposed.’’ It contains one-step

autocatalysis, S 1 I ! 2 I , and has

many features in common with the

SEIR model, in particular, the outcome

of the SIR process depends also on the

initial conditions (see next paragraph).
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the time constant of the implementa-

tion of the countermeasures. This

approach is particularly appropriate

for Ebola in developing countries since

b1 is there much smaller than b0. The

quantity, which is the key to modeling

the course of an epidemic outbreak, is

the basic reproduction number R0,

which is a measure of the average

number of secondary infections

caused by a single primary case in a

pool of mostly susceptible individuals

[12]. For R0> 1, the epidemic is

spreading whereas R0< 1 implies that

the infections are under control. The

primary goal of politics and healthcare

is to drive b(t) below one. The basic

reproduction number in a population

before intervention is simply given by

R0 5 b0/c, and the relation to the criti-

cal fraction of susceptible individuals

is �scr=N5 c/b0 5 R21
0 . Although being a

flexible and appropriate approximation

for real situations, Eq. (6) provides an

additional problem for the modelers: It

contains three new parameters b1, s,

and q that have to be derived from

data and further information about the

course of the epidemic.

Summarizing the current situation

in modeling epidemics in view of the

recent Ebola outbreak in West Africa

we come to the main conclusions: (i)

The epidemic provided a unique occa-

sion for testing epidemiological mod-

els. (ii) Extrapolations from the phase

of exponential growth to the final out-

come—as rigorous and careful they

might be [13]—are very risky because

they suffer not only from external

uncertainties but also from intrinsic

instabilities that are common in proc-

esses with autocatalytic steps. Elabo-

rate statistics can substantially

improve the situation and reduce the

problem if enough and reliable data

are available [5]. Low robustness of the

predictions results also from dynami-

cal systems that are more complex

than conventional chemical reaction

networks. Simple models can, never-

theless, give important insights and

help to understand complex relations.

In Table 1, finally we present some

recent data in the light of the esti-

mates of Ebola cases in early 2015

that were calculated to reach from

several hundred thousand to even a

million and more. Fortunately enough

the severeness of the Ebola epidemic

in West Africa so far has been overes-

timated by orders of magnitude. In

addition, the dynamics of the epi-

demic was and is different in the

three countries. At the beginning of

March Liberia had reported no new

case since 42 days but a few single

cases were reported after that,

whereas in Guinea and Sierra Leone

the disease continues at a slowly

down going rate.

The recent Ebola outbreak is so

well-documented that it provides a

unique opportunity for theoretical epi-

demiologists to test the existing and to

develop new models. The take-home

lesson nevertheless is: whenever one

cannot avoid extrapolating a process

from the growth phase to saturation,

special care in needed because the

early data contain little information on

the parameters that determine the late

behavior. Complex dynamics may

enlarge the uncertainties.
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