Skip to main content
. 2020 Apr 16;15(4):e0231172. doi: 10.1371/journal.pone.0231172

Table 4. Performance of the four machine-learning models for PIH prediction.

Naïve Bayes Logistic regression Random forest ANN
All features accuracy 55.74 62.01 76.28 70.7
precision 80 70.25 77.99 74.51
recall 13.33 60.79 81.28 74.5
AUC 60.16 60.47 79.5 76.01
95% CI 45.41–74.62 46.69–74.26 67.87–91.14 64.03–88
Feature set A
(Remove redundant features)
accuracy 53.64 59.97 68.28 64.53
precision 78.5 67.11 71.36 69.14
recall 28.02 59.23 74.61 69.27
AUC 67.23 66.78 71.85 70.72
95% CI 53.19–81.27 52.74–80.81 58.58–85.1 56.98–84.47
Feature set B
(Rank features by importance)
accuracy 70.2 79.16 78.8 70.61
precision 71.54 79.95 79.5 72.92
recall 79.71 85.01 84.58 77.64
AUC 77.82 75.56 83.78 67.57
95% CI 65.87–89.76 63.02–88.11 73.36–94.2 53.53–81.6
Feature set C
(Recursive feature elimination)
accuracy 70.02 68.56 79.48 68.62
precision 77.08 72.75 81.16 72.25
recall 67.13 71.67 83.65 72.97
AUC 77.25 73.42 84.23 72.3
95% CI 65.13–89.38 60.57–86.27 73.63–94.84 59.5–85.09

ANN, artificial neural network; AUC, area under receiver operating characteristic curve. Table notes the precision and recall for the hypotension class.