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Abstract

Recent advances in electron microscopy have enabled the imaging of single cells in 3D at

nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to

simulate cellular processes using these observed geometries. Enabling such simulations

requires watertight meshing of electron micrograph images into 3D volume meshes, which

can then form the basis of computer simulations of such processes using numerical tech-

niques such as the finite element method. In this paper, we describe the use of our recently

rewritten mesh processing software, GAMer 2, to bridge the gap between poorly condi-

tioned meshes generated from segmented micrographs and boundary marked tetrahedral

meshes which are compatible with simulation. We demonstrate the application of a workflow

using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology

explored at three different length scales and show that the resulting meshes are suitable for

finite element simulations. This work is an important step towards making physical simula-

tions of biological processes in realistic geometries routine. Innovations in algorithms to

reconstruct and simulate cellular length scale phenomena based on emerging structural

data will enable realistic physical models and advance discovery at the interface of geometry

and cellular processes. We posit that a new frontier at the intersection of computational

technologies and single cell biology is now open.

Author summary

3D imaging of cellular components and associated reconstruction methods have made

great strides in the past decade, opening windows into the complex intracellular organiza-

tion. These advances also mean that computational tools need to be developed to work

with these images not just for purposes of visualization but also for biophysical
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simulations. In this work, we present our recently rewritten mesh processing software,

GAMer 2, which features both mesh conditioning algorithms and tools to support simu-

lation setup including boundary marking. Using a workflow that consists of other open-

source software along with GAMer 2, we demonstrate the process of going from electron

micrographs to simulations for several scenes of increasing length scales. In our prelimi-

nary finite element simulations of reaction-diffusion in the generated geometries, we reaf-

firm that the complex morphology of the cell can impact processes such as signaling.

Technologies such as these presented here are set to enable a new frontier in biophysical

simulations in realistic geometries.

This is a PLOS Computational BiologyMethods paper.

Introduction

Understanding structure-function relationships at cellular length scales (nm to μm) is one of

the central goals of modern cell biology. While structural determination techniques are routine

for very small and large scales such as molecular and tissue, high-resolution images of meso-

scale subcellular scenes were historically elusive [1]. This was primarily due to the diffraction

limits of visible light and the limitations of X-ray and Electron Microscopy (EM) hardware.

Over the past decade, technological improvements such as improved direct electron detectors

have enabled the practical applications of techniques such as volume electron microscopy [2–

6]. Advances in microscopy techniques in recent years have opened windows into cells, giving

us insight into cellular organization with unprecedented detail [7–13]. Volumetric EM enables

the capture of 3D ultrastructural datasets (i.e., images where fine structures such as membranes

of cells and their internal organelles are resolved, as shown in Fig 1A). Using these geometries

as the basis of simulations provides an opportunity for the in silico animation of various cellu-

lar processes and the generation of experimentally testable hypotheses. Popular biophysical

simulation modalities such as the finite element method [14, 15], particle-based stochastic

dynamics [16–19], and the reaction-diffusion master equation [20–26] among many others

require discretizations or meshes representing the geometry of the domain of interest. More-

over, in biological systems, the localization of molecular species is often heterogeneous [27, 28]

which necessitates the need for boundary and region marking to represent this heterogeneity.

To realize these simulations, therefore, a workflow is necessary to go from images to high-qual-

ity and annotated 3D meshes compatible with different numerical simulation modalities. As

we review below, significant community effort has been invested in the imaging and segmenta-

tion steps, as well as mesh generation for graphics and visualization (Fig 1A–1C). In an effort

to bridge advances in these fields, in this work we describe GAMer 2; software which takes

input meshes generated from contour-tiling and segmentation, applies mesh conditioning

algorithms from the graphics community, and marks faces to demarcate boundary conditions.

GAMer 2 is developed for the common biophysicist and features an easy to use user interface

implemented as an add-on to 3D modeling software Blender along with a Python API

PyGAMer. These user interfaces allow for the definition of marked boundaries corresponding

to molecular localizations. The output of GAMer 2 is a boundary marked and simulation

compatible surface or volume mesh (Fig 1D and 1E) on which one can run finite element-

based biophysical simulations (Fig 1F).
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Workflow steps from image to model

In order to develop models from image datasets, a series of steps must be executed. Starting

with image acquisition and ending with a simulation compatible mesh, we summarize the typi-

cal workflow steps and highlight potential difficulties along the way.

Image acquisition and segmentation. Sample preparation begins with either cell culture

or the harvesting of biological tissues of interest. Subsequent preparation steps can vary

depending upon the particular volume EM imaging modality used but primarily include sam-

ple dehydration, fixation/staining, embedding, and imaging through the different cross-sec-

tions [29–32].

Once the images are captured, they are post-processed to improve properties such as con-

trast and alignment/registration across the stack. From the processed image stack, the bound-

aries of interesting features are traced or segmented. To the best of our knowledge, the state-

of-the-art for segmenting electron micrographs of cells remains reliant upon the expertise of

biologists for recognition of organelles and membrane domains in cells. During the segmenta-

tion process, the algorithm or researcher must carefully separate boundary signal from noise.

Various schemes ranging from manual tracing, thresholding and edge-detection, to deep-

learning based approaches have been employed to perform image segmentation [32, 33].

The resulting segmentations from volume EM can be visualized as stacks of contours (Fig

1B). This provides an initial glimpse into the 3D shapes of objects of interest. In order to enable

modeling using the shapes represented by the contours, geometric meshes compatible with

numerical methods can be constructed. However, a myriad of complexities often confound

this process and necessitate flexible approaches for mesh generation.

Meshing challenges. A variety of challenges for meshing and subsequent physical simula-

tions can arise at each step. Even with near-perfect experimental execution, and despite the

enhanced surface contrast from heavy metal stains, images of cellular and organelle mem-

branes are often poorly behaved and contain sharp and otherwise irregular geometries that are

difficult to segment. In more serious cases, thinly sliced samples can tear or become contami-

nated during handling. Methodological errors are also possible. For example, Serial Block-

Face Scanning Electron Microscopy (SBF-SEM) datasets in optimum conditions may have 3

nm lateral (x,y) resolution but 25 nm axial (z) resolution, limited by the slicing capability of

the ultramicrotome [29]. Anisotropic resolution in tandem with variable slice thickness can

cause loss of axial detail.

Fig 1. Pipeline from electron microscopy data to a reaction-diffusion finite element simulation on a well-conditioned unstructured tetrahedral

mesh. A) Contours of segmented data overlaid on raw slices of electron microscopy data, B) Stacked contours from all slices of segmented data, C)

Primitive initial 3D mesh reconstructed by existing IMOD software, D) Surface mesh after processing with our system; note the significantly higher

quality of the mesh. The steps from C to D are the core contributions of this manuscript. Although this pipeline illustrates an application for images

from electron microscopy, GAMer 2 is a general mesh conditioning library and can be used with meshes regardless of experimental context. E)

Unstructured tetrahedral mesh suitable for finite element simulation obtained with TetGen software linked in GAMer 2, F) Reaction-diffusion model

simulated using FEniCS software.

https://doi.org/10.1371/journal.pcbi.1007756.g001
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There are many EM software that post-process image stacks to correct for these and other

artifacts. Most of our datasets have been manually segmented and corrected in software such

as IMOD [34], ilastik [35], or TrackEM2 [36]. IMOD and other tools such as Contour-
Tiler in VolRoverN [37] among others [38, 39] have the capacity to perform contour-til-

ing operations to generate a preliminary surface mesh suitable for basic 3D visualization. If the

end goal is visualizing the geometry of the cellular structure, then such meshing operations are

often sufficient.

Meshes generated in this manner, however, are often not directly suitable for physical simu-

lations due to various mesh artifacts as described below (Fig 1C). Some of these include jagged

boundaries, non-manifold features, and high aspect ratio faces, as shown in Fig 2. These prob-

lems must be corrected to produce a conditioned surface mesh that is compatible with physical

simulations (Fig 1D). For simulations that track concentrations in the volume, the conditioned

surface mesh is tetrahedralized (Fig 1E). We note that although there exist advanced tetrahe-

dral mesh generation tools, such as TetWild [40], and others [41–46], which can generate

Finite Element Analysis (FEA) compatible volume meshes from these poor quality initial sur-

faces, these tools are general purpose and currently not adapted to the length scales of single

cells and subcellular structures. Mesh defects such as disconnects in the Endoplasmic Reticu-

lum (ER) arising from the limited resolving powers of EM or errors in segmentation (e.g., Fig

2C and 2D) require more careful and often manual curation. Currently, manual curation of

cellular data sets remain the gold standard for identifying and matching cellular structures. A

specialist trained in imaging modalities is capable of subjectively matching the identity of a

surface with the underlying micrograph along with some history of observations from training

to determine if an error is likely.

Curating simulation metadata. Once a suitable mesh is generated, other steps may be

necessary to facilitate successful simulation. For example, when modeling biochemical signal

transduction, receptors and other molecules may be localized to particular regions of a scene

[47]. Realistic simulations must be able to represent the observed localization to effectively

Fig 2. Initial surface mesh model of a single spine scene with subcellular organelles imaged by Focused-ion Beam Milling

Scanning Electron Microscopy (FIB-SEM) (overlaid), courtesy of Wu et al. [7], contains many mesh artifacts and is not

compatible with physics-based simulations. A) The blue surface represents the Plasma Membrane (PM) which contains a hole

indicated by the red arrow. B) The yellow surface represents the membrane of the Endoplasmic Reticulum (ER). C, D) are two views

rotated and zoomed-in on B showing a disconnected region of the ER proofed against micrographs taken at different z-axis

locations. An untraced ghost, indicated by the red arrow, appears between the disconnected segments which suggests a possible error

in the segmentation.

https://doi.org/10.1371/journal.pcbi.1007756.g002
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predict cellular behavior [48–50]. In a simulated model, the confinement of molecules can be

presented as boundary conditions on a marked mesh region (Fig 1D). Depending on the situa-

tion, such localizations can be arbitrarily or randomly assigned for hypothesis testing [51]

Alternatively, the regions of confinement may be informed by the electron micrographs them-

selves or correlated from another experimental approaches. A robust mesh generation tool

capable of handing and resolving problems across all workflow steps including boundary

marking and other metadata curation is necessary to support simulations from images of sub-

cellular scenes (Fig 1E).

Here, we introduce our recently redesigned software, GAMer 2 (Geometry-preserving

Adaptive MeshER version 2), which features mesh conditioning algorithms and simulation

setup tools. In this redesign, we focused on the following software design criteria:

• Easy cross-platform code compilation and distribution.

• Runtime stability with meaningful error messages.

• Easy interactivity for the biophysicist user base.

• Version tracking for code provenance.

The algorithms in GAMer 2 for mesh conditioning remain those described by Yu et al.
[52, 53], by Gao et al. [54, 55], and Chen and Holst [56]. As described in the original manu-

scripts, the algorithms seek to preserve mesh features while producing smooth surfaces. We

will show in our illustrative examples that GAMer 2 approximately preserves volume. In this

redevelopment, we have introduced the capability to perform local refinements and now pro-

vide end-users with access to new meta-parameters such as the number of neighbor rings to

use in the calculation of the Local Structure Tensor (LST).

Details of the rewrite including the development of a new Python interface PyGAMer, and

GAMer Blender add-on called BlendGAMer follow. In addition, we summarize new geo-

metric capabilities such as the estimation of curvatures on meshes.

Methods

GAMer 2 development

GAMer 2 is a complete rewrite of GAMer in C++ using the CASC data structure [57] as the

underlying mesh representation. Prior versions of GAMer were susceptible to segmentation

faults under certain conditions, which is now fixed in this major update. In addition to

improving the run-time stability, we have added error handling code to produce actionable

notes for the convenience of the end-user. GAMer 2 continues to be licensed under LGPL

v2.1 and the source code can be downloaded from GitHub (https://github.com/ctlee/gamer)

[58].

In this update, we have also redeveloped the Python interface for GAMer and the Blender
add-on. The GAMer 2 Python API, called PyGAMer is generated using pybind11 [59] as

opposed to SWIG [60] used by GAMer. pybind11 provides superior wrapping of C++ tem-

plate objects which enables PyGAMer to interact with nearly all elements of GAMer 2 in a

Python environment. The GAMer 2-Blender add-on, now called BlendGAMer, has been

rewritten to use the PyGAMer interface. Moreover, the latest BlendGAMer release, v2.0.6,

supports Blender versions 2.79b, and 2.8X. Blender not only provides a customizable

mesh visualization environment, but also tools such as sculpt mode, which allows users to flex-

ibly manipulate the geometry [61]. With great care to remain truthful to the underlying data,

Blender sculpting tools can be useful for fixing topological issues such as disconnected ER
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segments. We briefly review the concepts behind the mesh processing algorithms from Yu

et al. [52, 53].

Mesh processing

Local structure tensor. The mesh processing operations in GAMer are designed to

improve mesh quality while preserving the underlying geometry of the data. We use a LST to

account for the local geometry [62–64]. The LST is defined as follows,

TðvÞ ¼
XNr

i¼1

ni � ni ¼
XNr

i¼1

nxi n
x
i nxi n

y
i nxi n

z
i

nyi nxi nyi n
y
i nyi nzi

nzi n
x
i nzi n

y
i nzi n

z
i

0

B
B
B
@

1

C
C
C
A
; ð1Þ

where v is the vertex of interest, Nr is the number of neighbors in the r-ring neighborhood,

and nx;y;zi form the normal of the ith neighbor vertex. Vertex normals are defined as the

weighted average of incident face normals. Performing the eigendecomposition of the LST, we

obtain information on the principal orientations of normals in the local neighborhood [65].

The magnitude of the eigenvalue corresponds to the amount of curvature along the direction

of the corresponding eigenvector. Inspecting the magnitude of the eigenvalues gives several

geometric cases:

• Planes: λ1� λ2� λ3� 0

• Ridges and valleys: λ1� λ2� λ3� 0

• Spheres and saddles: λ1� λ2� λ3 > 0

Feature preserving mesh smoothing. Finite element simulations are sensitive to the

mesh quality [66, 67]. Poor quality meshes can lead to numerical error, instability, long times

to solution, and non-convergence. Generally, triangular meshes with high aspect ratios pro-

duce larger errors compared with equilateral elements [68].

To improve the conditioning of the surface meshes derived from microscopy images, we

use an angle-weighted Laplacian smoothing approach, as shown in Fig 3A. This scheme is an

extension of the angle weighted smoothing scheme, formulated for 2D and described by Zhou

and Shimada, to three dimensions [69]. In essence, this algorithm applies local torsion springs

to the 1-ring neighborhood of a vertex of interest to balance the angles.

Given a vertex x with the set of 1-ring neighbors {v1, . . ., vN}, where N is the number of

neighbors, ordered such that vi is connected to vi−1 and vi+1 by edges. The 1-ring is connected

such that vN+1 ≔ v1 and v−1 ≔ vN. Traversing the 1-ring neighbors, we define edge vectors

ei� 1≔vivi� 1
���! and eiþ1≔viviþ1

���!. This algorithm seeks to move x to lie on the perpendicularly

bisecting plane Pi of ∠(vi−1, vi, vi+1). For each vertex in the 1-ring neighbors, we compute the

perpendicular projection, xi, of x onto Pi. Since small surface mesh angles are more sensitive

to change in x position than large angles, we prioritize their maximization. We define a weight-

ing factor, ai ¼
ei� 1 �eiþ1

jei� 1 j�jeiþ1 j
, which inversely corresponds with ∠(vi−1, vi, vi+1). The average of the

projections weighted by αi gives a new position of x as follows,

�x ¼
1

PN
i¼1
ðai þ 1Þ

XN

i¼1

ðai þ 1Þxi: ð2Þ
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There are many smoothing algorithms in the literature; the angle-weighted Laplacian

smoothing algorithm described here can outperform other popular smoothing strategies such

as those described in [70–73] which are primarily focused on optimizing the smoothness of

surface normals for computer graphics applications and not mesh angles. Our goal is not to

provide an elaborate comparison against existing algorithms in this manuscript but to demon-

strate the utility of our pipeline for biological images, with a specific goal of using EM-gener-

ated images for computational biology simulations.

Conceptually the fidelity of the local geometry can be maintained by restricting vertex

movement along directions of low curvature. This constraint is achieved by anisotropically

dampening vertex diffusion using information contained in the LST. Although the weighted

vertex smoothing scheme, as described, will reasonably preserve geometric structure, the struc-

ture preservation can be further improved by using the LST. Computing the eigendecomposi-

tion of the LST, we obtain eigenvalues λ1, λ2, λ3 and eigenvectors E1, E2, E3, which correspond

to principal orientations of local normals. We project �x � x onto the eigenvector basis and

scale each component by the inverse of the corresponding eigenvalue,

x̂ ¼ x þ
X3

k¼1

1

1þ lk
½ð�x � xÞ � Ek�Ek: ð3Þ

This has the effect of dampening movement along directions of high curvature i.e., where λ
is large. In this fashion, our algorithm improves triangle aspect ratios while preserving local

geometric features. We note that our actual implementation iterates between rounds of vertex

smoothing and conventional angle based edge flipping to achieve the desired smoothing effect.

Edge flips are common in mesh processing, and provide a mechanism for both improving

angles and reducing the valency of vertices [74]. A comparison of the angle-weighted smooth-

ing algorithm with and without LST correction is shown in Fig 4.

Feature preserving anisotropic normal-based smoothing. To remove additional bumpi-

ness from the mesh, we use a normal-based smoothing approach [75, 76], as shown in Fig 3B.

The goal is to produce smoothly varying normals across the mesh without compromising

mesh angle quality. Given a vertex x of interest, for each incident face i, with normal ni we

rotate x around a rotation axis defined by opposing edge ei such that ni aligns with the mean

Fig 3. Schematic illustrating GAMer mesh conditioning algorithms. A) angle-based surface mesh conditioning, and B)

anisotropic normal smoothing algorithms which are previously described by Yu et al. [52, 53] and implemented in

GAMer.

https://doi.org/10.1371/journal.pcbi.1007756.g003
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normal of neighboring faces �ni ¼
P3

j¼1
nij=3. We denote the new position which aligns ni and

�ni as R(x;ei, θi). Summing up the rotations and weighting by incident face area, ai, we get an

updated position,

�x ¼
1

PN1

i¼1
ai

XN1

i¼1

aiRðx; ei; yiÞ: ð4Þ

Fig 4. Comparison of 50 iterations of angle weighted smoothing algorithm. A) without and B) with Local Structure

Tensor (LST) based correction. The LST helps to preserve the geometric structure albeit with slight degradation to the

mesh angles. It is a simple metric to capture local geometric information which can be used to constrain conditioning

operations. C) Mesh angles are improved in both the LST weighted and unweighted meshes. The distribution of the

mesh angles with LST correction are left shifted from 60 degrees.

https://doi.org/10.1371/journal.pcbi.1007756.g004
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This is an isotropic scheme that is independent of the local geometric features; meaning

that many iterations of this algorithm may weaken sharp features.

Instead, we use an anisotropic scheme [76, 77] to compute the mean neighbor normals,

�ni ¼
1

P3

j¼1
eKðni�nijÞ

X3

j¼1

eKðni �nijÞnij; ð5Þ

where K is a user defined positive parameter which scales the extent of anisotropy. Under this

scheme, the weighting function decreases as a function of the angle between ni and nij resulting

in the preservation of sharp features.

Feature preserving mesh decimation. The number of degrees of freedom in the mesh

influences the computational burden of subsequent physical simulations. One strategy to

reduce the number of degrees of freedom is to perform mesh decimation or simplification.

There are many strategies for decimation, some reviewed here [78, 79], including topology

preserving Euler operators, other algorithms such as vertex clustering which may not guaran-

tee topological invariance [80], and remeshing [81]. It is typically desirable to preserve the

mesh topology for physical simulation based applications. Conventional Euler operations for

mesh decimation include vertex removal, edge collapse, and half-edge collapse. As noted ear-

lier, finite element simulations are sensitive to angles of the mesh. Edge and half-edge collapses

can sometimes lead to vertices with high or low valency and therefore poor angles. Although

algorithms to detect topology-changing edge collapses have been developed [82], we avoid this

problem by employing a vertex removal algorithm. First, vertices to be decimated are selected

based upon certain criteria discussed below. We then remove the vertex and re-triangulate the

resulting hole. This is achieved using a recursive triangulation approach, which heuristically

balances the edge valency. Given the boundary loop, we first connect vertices with the fewest

incident edges. This produces two resulting holes that we then fill recursively using the same

approach. When a hole contains only three boundary vertices, they are connected to make a

face. We note that while this triangulation scheme balances vertex valency, it may degrade

mesh quality. We solve this by running the geometry preserving smoothing algorithm on the

local region.

We employ two criteria for selecting which vertices to remove. These criteria can be used in

isolation or together. First, to selectively decimate vertices in low or high curvature regions,

information from the LST can be used. Comparing the magnitudes of the eigenvalues of the

LST provides information about the local geometry near a vertex. For example, to decimate

vertices in flat regions of the mesh, given eigenvalues λ1� λ2� λ3, vertices can be selected by

checking if the local region satisfies,

l2

l1

< R1; ð6Þ

where R1 is a user specified flatness threshold (smaller is flatter). In a similar fashion, vertices

in curved regions can also be selected. However, decimation of curved regions is typically

avoided due to the potential for losing geometric information.

Instead, to simplify dense areas of the mesh, we employ an edge length based selection crite-

rion,

maxN1
i¼1dðx; viÞ

�D
< R2; ð7Þ

where N1 is the number of vertices in the 1-ring neighborhood of vertex x, d(�, �) is the dis-

tance between vertices x and vi, �D is the mean edge length of the mesh, and R2 is a user
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specified threshold. This criterion allows us to control the sparseness of the mesh. We

note that the aforementioned criteria are what is currently implemented in GAMer 2, how-

ever the vertex removal decimation scheme can be employed with any other selection

criteria.

Boundary marking and tetrahedralization. To support the definition of boundary con-

ditions on the mesh, it is conventional to assign boundary marks or identifiers which corre-

spond to different boundary definitions in the physical simulation. In simplified and idealized

geometries it is possible to define functions to assign boundary values. However, in subcellular

scenes where the geometry may be tortuous, local receptor clusters can be arbitrarily distrib-

uted on the manifold, and the resolution may be insufficient to resolve these features, bound-

ary definition is a non-trivial challenge. In many scenarios, the most biologically accurate

boundary definition may be based off of a biologist’s understanding of the specimen which

transcends the particular datset. For example, a particular image may not be able to resolve

how receptors are distributed but knowledge of relevant immunogold labeling studies may

allow the biologist to propose a physiologically meaningful receptor distribution. The Blend-
GAMer add-on supports the facile user-based definition of boundary markers on the surface

[61]. Users can utilize any of the face selection methods (e.g., circle selection demonstrated in

Fig 5) which Blender provides to select boundaries to mark. Boolean operations and other

geometric strategies provided natively in Blender can also be used for selection. Boundary

markers are associated with a unique material property which helps visually delineate

marked assignments. After boundaries are marked, stacks of surface meshes corresponding to

different domains can be grouped and passed from GAMer 2 into TetGen, which generates

a volume mesh by constrained Delaunay tetrahedralization [83]. Each surface mesh can also

be assigned a region marker, which is used by TetGen to assign marker values for the

enclosed tetrahedra.

Fig 5. Marking boundaries using BlendGAMer. A) The Postsynaptic Density (PSD) is annotated as a contour in the

segmentation and represented as a patch (purple) neighboring the plasma membrane (yellow). B) Screenshot of

boundary marking using BlendGAMer v2.0.5 in Blender 2.80. The circle select tool is used to select faces of the

plasma membrane mesh in proximity to the PSD patches. A user interface allows the user to name boundaries, assign

and unassign face membership, along with setting the marker value. At the time of writing, BlendGAMer runs in

Blender versions ranging from 2.79b and onward.

https://doi.org/10.1371/journal.pcbi.1007756.g005
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Results

As a demonstration, we apply GAMer 2 to build simulations from electron micrographs and

segmentations from Wu et al. [7] which were graciously shared by De Camilli and coworkers.

In their work, Wu et al. imaged dendritic spines from neurons taken from the mouse cerebral

cortex or nucleus accumbens using Focused-ion Beam Milling Scanning Electron Microscopy

(FIB-SEM) [7]. In addition to their important role in synaptic and structural plasticity, these

cellular structures demonstrate highly tortuous morphologies, high surface-to-volume ratios,

and a geometric intricacy that serves as a good test-bed for our approach. Here we consider

several scenes of increasing length scale: the ER of the single spine geometry which requires

nanometer precision and the Plasma Membrane (PM) of the single spine which has a length

scale of a couple of microns (Fig 6A), the two spine geometry, a few microns (Fig 6B), and the

dendrite with about 40 spines, with a length scale in the tens of microns (Fig 6C). For each of

these geometries, using the segmentations produced by Wu et al., we generated preliminary

meshes using the imod2obj utility included with IMOD [34]. The output initial meshes have

units of pixels and were scaled to nm using an 8 nm isotropic voxel size. Each initial mesh was

then processed using algorithms described in §Mesh processing and implemented in GAMer 2
[58]. We note that for some meshes, features such as disconnections of the ER, were manually

reconnected using Blender mesh sculpting features. We will provide a candid discussion of

the manual curation steps in the following paragraphs discussing each scene. Boundaries were

marked using BlendGAMer, although PyGAMer and GAMer 2 can be scripted to assign

boundary labels as well, and the conditioned surface meshes were tetrahedralized using Tet-
Gen [83].

The one spine geometry contains two separate membranes: the PM and the ER Fig 6A—

each with their own problems. The PM contained several large holes on the surface which cor-

respond to the top and bottom of the image stack. As the dendrite meanders throughout the

tissue block, the cutting planes of the experiment or sample block may result in the artificial

truncation of the image. We have remedied this truncation by triangulating the holes and pro-

cessing using GAMer 2 algorithms.

The ER mesh contained many more initial artifacts. This is because the detailed and vari-

able nature of the ER membrane can be poorly resolved by the imaging method. Nixon-Abel

and coworkers found using superresolution fluorescence microscopy that ER tubules have a

diameter of 50 to 100 nm and sheet-like structures at the cellular periphery can be much finer

[84]. Some ER morphology cannot even be resolved by the powers of EM [7]. For example, if

the ER undergoes large spatial variation between z-slices then tubules may appear discon-

nected. Alternatively, the boundaries of the ER membrane may have poor contrast and can

sometimes be missed during segmentation. We have manually reconnected the ER segments

in Blender under the guidance of the underlying EM micrographs. An animated compari-

son of the initial mesh with the stack of images is shown in S1 Movie. This type of topological

artifact arising from errors in segmentation or poor imaging resolution remains a major chal-

lenge to the field. In this work, to produce a model faithful to the biological context, we have

employed human judgement to detect and rectify similar problems. As imaging technology

and machine recognition algorithms improve, we anticipate that the need for manual curation

will be reduced. The decision to manually curate, or not, is at the discretion of the end-user.

BlendGAMer provides only the option for the tight integration of sculpting and automated

mesh processing.

After curation and processing with GAMer 2, the geometric detail of the one spine scene is

preserved. An animated comparison of the meshes output by GAMer 2 is shown in S2 Movie.

Notably, this spine contains a specialized form of ER termed the spine apparatus, Fig 6A, inset,
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Fig 6. Quantification of mesh quality pre- and post-GAMer 2 processing for several geometries. Data at varying spatial scales can be processed via

the GAMer 2 framework. Surface meshes of dendritic spine geometries before (left) are compared with their mesh after GAMer 2 processing

(middle). The shift in distribution of angles highlights the improvement in mesh quality (right). A) Surface meshes of a single dendritic spine; the PM is

colored cyan and the ER yellow. Inlay: close-up of the spine apparatus. The standard deviation of the distribution of triangular angles before is 35.9 and

after 9.1. B) Surface mesh of PM of two dendritic spines. Faces marked as purple are the PSD. Inlay: close-up of a region with a large variance in angle

distribution before GAMer 2 processing. The standard deviation of the distribution of triangular angles before is 41.1 and after 11.1. C) Surface mesh

of PM of a dendrite segment with many spines. Inlay: GAMer 2 preserves the intricate details of a highly curved spine head with multiple regions of

PSD. The standard deviation of the distribution of triangular angles before is 41.9 and after 11.1.

https://doi.org/10.1371/journal.pcbi.1007756.g006
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which consists of seven folded cisternae. This highly organized structure bears geometrical

similarities to a parking garage structure and helicoidal geometries [85–88]. The geometric

detail of the spine apparatus is preserved by the conditioning process in our pipeline.

In Fig 6, we also show the distribution of the triangular angles of the surface mesh before

and after conditioning. One metric of a well-conditioned mesh is that all the surface triangles

are nearly equilateral [68]. Prior to conditioning, the angle distribution is spread out and con-

tains many large and small angles. After processing using GAMer 2, the angles of triangles of

the one spine PM mesh are improved, as indicated by the peaked distribution around 60

degrees. Although the ER structure is significantly more complex, the angles of triangles of the

mesh are also improved, albeit to a lesser extent than the PM. In scenarios such as this where

the length scales of interest are closer to the acquisition resolution, it may be necessary to

increase the number of triangles to accurately capture the fine details with high mesh quality.

Table 1 summarizes the number of vertices and triangles in the initial vs conditioned meshes as

well as vertices and tetrahedra in the resultant volumetric meshes. To accurately capture the

curvature of the PM mesh in Fig 6A about 48% more triangles were needed compared to the

ER mesh in Fig 6A, inset, which required 270% more triangles, both relative to the initial mesh.

The approach described here is also applicable for larger systems as we demonstrate with

two spines and a full dendrite. The two spine geometry shown in Fig 6B is a few microns in

length. Based on the length scales we would expect a well conditioned mesh for this geometry

to contain approximately double the number of triangles in the single spine mesh; however,

the orientation of z-stacks in this mesh is different from that in the single spine geometry

which led to an abnormally large number of triangles: 320,976 versus just 9,330 in the mesh of

PM in the single spine. After GAMer 2 conditioning algorithms were applied, the number of

triangles was reduced to 36,050, a much more reasonable count. As demonstrated, our pipeline

is robust and can handle cases where the initial mesh either generates too few or too many tri-

angles as required for capturing geometric details. The ER of the two spine geometry was pro-

cessed in a similar manner to that of the one spine.

At the tens of microns length scale, we constructed a mesh of a full dendritic segment. We

show a zoomed in section of the mesh before and after conditioning in Fig 6C. As in the one

and two spine cases, our system robustly handles artifacts such as poor quality triangles and

intersecting faces; Fig 6C shows that the distribution of the angles post conditioning are com-

parable to the one and two spine examples, showing that size does not alter the capability to

produce well-conditioned meshes. Fig 6C shows an intricate spine head with many different

regions of PSD shown in purple; this geometry is preserved post-conditioning and the PSD is

marked with BlendGAMer to denote a boundary condition.

For all meshes the initial surface area is greater than that of the final result (Table 1. This is

due to the jagged nature of the initial meshes which reflects small deviations in the alignment

and registration of the micrographs and segmentation. As the surfaces are smoothed, the sur-

face area is therefore reduced. On the other hand, the initial and final volumes of each geome-

try remain similar. This is a good indication of the feature-preserving nature of the algorithms.

In Fig 7 we compare the meshes generated by GAMer 2 with other software including

TetWild [40], CGAL 3D Mesh Generation (referred to as CGAL in the subsequent

text) [44–46], Hu et al. Remesh [89], and VolRoverN [37]. For this analysis, we performed a

best faith effort to use these tools using recommended default settings where possible, addi-

tional details are provided in S1 Appendix. We do not make any claims of software supremacy

and instead highlight feature differences between the codes. Shown in Fig 7A are the distribu-

tion of triangular angles for the final surface mesh. We find that GAMer 2 produces a mesh

with more equilateral triangles than other tools.
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The radius-ratio is a useful metric for determining the quality of both triangles and tetrahe-

dra, it is defined as
nri
ro

where n is the geometric dimension (i.e. 2 for triangles, 3 for tetrahedra),

ri is the radius of the largest n-sphere which can be inscribed within the shape, and ro is the

radius of the smallest n-sphere which circumscribes the shape. An equilateral triangle and an

equilateral tetrahedron both correspond to a radius-ratio of one [90]. As the radius-ratio

approaches zero the element approaches degeneracy which can affect numerical accuracy, sta-

bility, and convergence [66, 67].

Fig 7B compares different codes and their resultant distributions of radius-ratios when

applied to the single spine PM surface mesh. One important difference is that TetWild,

CGAL, and Hu et al. Remesh are fully automated algorithms which employ constraints to guar-

antee preservation of input features. We note that all methods tested here, except TetWild,

require a watertight and manifold surface mesh as input. For the sake of this comparison, the

same manually curated watertight and manifold meshes were used as input for all methods.

Noisy features such as the jagged boundaries resulting from misaligned micrographs or seg-

mentation are often preserved in the surface meshes generated by these codes. As a result, the

triangular angles often deviate from equilateral in order to represent these preserved fine fea-

tures. GAMer 2 on the other hand does not strictly preserve the fine features of the input

mesh. The LST is a metric of the local curvature averaged over a mesh patch. Thus, GAMer 2
generated meshes are smoother but deviate, from the input, more than those generated by

TetWild, CGAL, and Hu et al. Remesh. VolRoverN, on the other hand, implements

the Level Set Boundary-Interior-Exterior (LBIE) algorithm which employs a geometric flow.

The LBIE algorithm is known to work well for spherical geometries and was designed for

smoothing biomolecular meshes constructed as the union of hard spheres [37, 91, 92]. Given

the complex geometry of the dendritic spine, VolRoverN does not preserve the geometry

well.

The tetrahedral mesh qualities of meshes produced by each code are compared in Fig 7C

and 7D. Notably, no volume meshes are shown for Hu et al. Remesh and VolRoverN since

Hu et al. is a surface remeshing code only and VolRoverN failed to produce a valid volume

mesh when called from the software’s graphical user interface. The other codes TetWild,

CGAL, and GAMer 2 all produced quality tetrahedral meshes as output. The distribution of

tetrahedral radius-ratios are shown in Fig 7D. We find that CGAL under-performs in

Table 1. Vertex and element counts for meshed geometries.

Surface Mesh Volume Mesh�

# Vertices # Triangles Area ½μm2� # Vertices # Tetrahedra Volume [5μm3]

Single Spine Initial PM 4,695 9,330 6.99 6,726 27,581 0.64

Conditioned PM 6,924 13,844 6.52 13,734 62,557 0.65

Initial ER 6,546 19,654 2.70 – – 0.028�

Conditioned ER 36,294 72,620 2.39 53,134 211,018 0.027

Two Spines Initial PM 160,733 320,976 26.09 – – 2.82�

Conditioned PM 18,027 36,050 23.58 28,989 122,082 2.94

Initial ER 20,111 40,370 10.90 – – 0.13�

Conditioned ER 80,419 161,050 9.73 101,033 352,741 0.13

Dendritic Segment Initial PM 207,448 410,896 139.1 – – 10.403�

Conditioned PM 126,336 252,668 110.0 194,848 798,626 10.611

�Non-manifold and other mesh artifacts prevent the tetrahedralization of these meshes. Volumes reported are computed using the corresponding surface mesh.

https://doi.org/10.1371/journal.pcbi.1007756.t001
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comparison to the other two codes. This observation may be due, in part, to our usage of

CGAL. The 3D mesh generation subproject of CGAL is provided as a library along with several

example C++ scripts. For this comparison, we have applied the bundled script to our mesh of

interest with minimal modification. We note that the default settings in the script may not be

ideal for our application. It is possible that by setting stricter mesh quality targets for optimiza-

tion, CGAL could perform better.

Fig 7. Comparison of GAMer 2 generated meshes with leading mesh generation software. A) Distribution of triangular angles of the final Plasma

Membrane (PM) and Endoplasmic Reticulum (ER) surface meshes. B) Quantification of the surface mesh triangle radius-ratios. The order of meshes is

identical to the software ordering in panel A. C) Quantification of tetrahedron radius-ratios of the tetrahedral mesh output by each software. We note

that the tetrahedral mesh produced by GAMer 2 is generated using TetGen from a GAMer 2 conditioned surface mesh. Also, in our best faith effort,

we were not able to tetrahedralize the PM and ER mesh using VolRoverN. D) Distribution of tetrahedron radius-ratios of the resulting tetrahedral

meshes.

https://doi.org/10.1371/journal.pcbi.1007756.g007
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GAMer 2 operations preserve mesh topology

As aforementioned, where we deemed appropriate, manual curation was used to modify the

topology of the input meshes. In order to differentiate between the manual modifications and

to verify whether GAMer 2 operations change the topology of the mesh we have computed

Betti numbers at several mesh processing stages. Betti numbers are topological invariants and

thus can be used to distinguish between topological spaces. The kth Betti number βk describes

the number of k-dimensional holes on a surface. Intuitively β0 is the number of connected

components, β1 is the number of circular holes, and β2 is the number of enclosed voids.

The computation of Betti numbers is performed using a modified algorithm by Definado-

Edelsbrunner [93]. In their original work, they describe an algorithm to compute the Betti

numbers of tetrahedral meshes by iterating over a filtration. Since GAMer 2 is primarily a sur-

face mesh conditioning library, there are no tetrahedra and therefore the Delfinado-Edels-

brunner algorithm is not applicable. The challenge lies in the determination of when the

addition of a triangular face (i.e., 2-simplex) to a filtration forms an enclosed volume. In the

original algorithm, the tetrahedral simplices are colored such that all adjacent tetrahedra not

separated by a closed boundary will be the same color. The addition of a triangular face in a fil-

tration will produce a void if and only if it completes a boundary such that the interior and

exterior tetrahedra can be colored differently. While algorithms such as flood-filling or ray-

casting and counting surface crossings have been described, these approaches are often com-

putationally cumbersome especially when applied to meshes with reentrant surfaces.

We simplify the problem at hand by restricting our calculation to apply for the set of topo-

logically manifold surface meshes with or without boundaries. If a mesh is both orientable

(i.e., a consistent normal orientation can be assigned for all faces such that no neighboring

faces have opposing normals) and all edges belong to two faces, we say that the mesh is a closed

manifold. After iterating through a filtration in the manner described by Delfinado-Edelsbrun-

ner, if we find that a mesh is a closed manifold then we increment the first and second Betti

numbers (β1, β2) by one. If the mesh is not a closed manifold, then no action is taken and the

algorithm terminates and reports the first three Betti numbers. At any point iterating through

the filtration, if an edge is found to participate in three or more faces, the mesh is not topologi-

cally manifold and only the zeroth Betti number is reported.

Betti numbers of the meshes at several processing stages, produced by the modified Delfi-

nado-Edelsbrunner algorithm, are computed and shown in Table 2. As aforementioned, the

initial meshes produced by imod2obj often contain disjoint surfaces or holes. Comparing

against the underlying micrographs and data, we have curated each mesh to produce a water-

tight model. As an alternative to manual curation, other approaches such as persistent homol-

ogy can be used to filter out defects [94]. At this point we apply GAMer 2 meshing operations

to produce a conditioned mesh. We find that the topology of the watertight meshes are identi-

cal to that of their corresponding conditioned mesh.

Estimating membrane curvatures in realistic geometries

In addition to the generation of simulation compatible meshes of realistic cell geometries, the

meshes from GAMer 2 are amenable to other geometric analysis. The conditioned meshes

can yield improved results for many geometric quantities of interest such as surface area and

volume along with other more complex observables such as surface curvature. Membrane cur-

vatures and minimal surfaces have long been of interest to biophysicists and mathematicians

alike.

One of the advantages of using electron micrographs of membrane structures in cells is that

we can now bridge the gap between membrane mechanics, curvature studies, and realistic
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geometries. Current studies of membrane mechanics often assume that the initial membrane

configuration is flat or spherical. However membranes are rarely so well behaved and to the

best of our knowledge, currently no estimates of the curvatures of the plasma membrane or

internal membranes exist.

Using the conditioned surface meshes, the curvature can be estimated using methods from

discrete differential geometry. In GAMer 2, we have implemented the algorithms to compute

curvatures as described by Cazals and Pouget (JETS) [95, 96] and Meyer et al. (MDSB) [97].

We note that the curvature values produced by GAMer 2 are estimates suitable for qualitative

comparison and visualization only. The JETS algorithm fits an osculating jet to a local patch

using interpolation or approximation. From this fitted jet, the curvature is calculated. Depend-

ing on the fineness of the mesh, the jet order, and the details of patch selection, the error in the

curvature may vary. On the other hand, Borelli et al. has previously showed that the estimation

of the Gaussian curvature using the angle defect, which is used by the MDSB algorithm, is

valid only for regular meshes with a vertex valency of 6 [98]. The robust calculation of curva-

ture estimates from discrete meshes remains an open problem and the accuracy of many

approaches are surveyed by Váša et al. in Ref. [99]

Here, we use the meshes produced by GAMer 2 to calculate the curvature of the geometries

using the MDSB algorithm. The principal curvatures κ1 and κ2 are shown in Figs 8 and 9,

respectively. We note that we have adopted the sign convention where a negative curvature

corresponds to a convex region (cf. S1 Table). A comparison of the MDSB estimate and JETS

is shown in S1 Fig. We find that both algorithms produce qualitatively similar results.

Looking at the first principal curvature, Fig 8, corresponding to the maximum curvature of

the local region, we find that the distribution of κ1 spans both positive and negative values,

centered around zero for both the PM and ER. The negative regions of κ1 are in regions where

Table 2. Computed Betti numbers for each mesh.

Geometry Component β0 β1 β2

Single Spine Initial PM† 1 4 0

Watertight PM� 1 0 1

Conditioned PM 1 0 1

Initial ER† 6 18 6

Watertight ER� 1 18 1

Conditioned ER 1 18 1

Two Spines Initial PM† 1 0 1

Watertight PM� 1 0 1

Conditioned PM 1 0 1

Initial ER† 3 110 3

Watertight ER� 1 110 1

Conditioned ER 1 110 1

Dendritic Segment Initial PM† 45 62 0

Watertight PM� 1 0 1

Conditioned PM 1 0 1

† Betti number computation in GAMer 2 only supports manifold surface meshes. Initial meshes have been curated

in a best faith effort to preserve the initial topology (i.e., edges connected to three or more faces are cleaned up while

holes and disconnected components are untouched)

� These meshes have been edited to be watertight. Furthermore disconnected components which are artifacts of

earlier workflow steps have been reconnected.

https://doi.org/10.1371/journal.pcbi.1007756.t002

PLOS COMPUTATIONAL BIOLOGY Using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007756 April 6, 2020 17 / 35

https://doi.org/10.1371/journal.pcbi.1007756.t002
https://doi.org/10.1371/journal.pcbi.1007756


the membrane is convex and the positive regions are in regions where the membranes are

concave.

The second principal curvature, which corresponds to the minimum curvature of the local

region, shows a different behavior (Fig 9). We first observe that for all geometries, this value is

Fig 8. Estimated first principal curvatures of the spine geometries. The signed first principal curvature, corresponding to the

maximum curvature at each mesh point, is estimated using GAMer 2. Color bars correspond to curvature values with units of μm-1.

We have adopted the sign convention where negative curvature values refer to convex regions. Geometries are A) single spine model,

left: plasma membrane, right: endoplasmic reticulum; B) two spine model, left: plasma membrane, right: endoplasmic reticulum; and

C) plasma membrane of the dendritic branch model. Scale bars: full geometries 2 μm, inlays: 200 nm. Curvature schematic modified

from Wikipedia, credited to Eric Gaba (CC BY-SA 3.0).

https://doi.org/10.1371/journal.pcbi.1007756.g008
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primarily negative. The regions of high bending such as the folds of the spine apparatus in the

spine head (Fig 9A and 9B, left panels) are highly curved and are connected by sheets with low

curvature. The curvature along the entire dendrite highlights that the structure is mostly char-

acterized by low curvature throughout with regions of concentrated high curvature (Fig 9C).

Fig 9. Estimated second principal curvatures of the spine geometries. The signed second principal curvature, corresponding to

the minimum curvature at each mesh point, is estimated using GAMer 2. Color bars correspond to curvature values with units

of μm-1. We have adopted the sign convention where negative curvature values refer to convex regions. Geometries are A) single

spine model, left: plasma membrane, right: endoplasmic reticulum; B) two spine model, left: plasma membrane, right: endoplasmic

reticulum; and C) plasma membrane of the dendritic branch model. Scale bars: full geometries 2 μm, inlays: 200 nm. Curvature

schematic modified from Wikipedia, credited to Eric Gaba (CC BY-SA 3.0).

https://doi.org/10.1371/journal.pcbi.1007756.g009
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The positive regions of κ2 are in regions where the membrane is convex and the negative

regions are in regions where the membranes are concave. Thus using the meshes generated

from GAMer 2, we are able to quantify the curvatures along the plasma membrane and the

internal organelle membranes using tools from discrete differential geometry. In addition to

estimating the curvatures, we can use the mesh models to interrogate the impacts of curvature

on signaling.

Simulations of a coupled volume and surface diffusion model

To showcase how simulations performed on meshes of realistic biological geometries can elu-

cidate structure-function relationships, we reproduce the results of Ref. [100] on a dendritic

spine. The one spine geometry was used as the spatial domain for a numerical simulation

using the finite element method. Consider the reaction,

Aþ XÐ
kon

koff
B;

where A is a cytosolic component which binds to X, a membrane bound component, to pro-

duce B, another membrane bound component. The governing equations consist of a volumet-

ric Partial Differential Equation (PDE),

@A
@t
¼ DADA in O; ð8Þ

two surface PDEs,

@X
@t

¼ DXDSX � konAj@OXþ koffB on @O ð9Þ

@B
@t

¼ DBDSBþ konAj@OX � koffB on @O; ð10Þ

and a boundary condition for A which couples all three species at the interface:

DAðn � rAÞ ¼ � konAXþ koffB on @O: ð11Þ

DA, DX, and DB are the diffusion coefficients for A, X, and B respectively. n is the outwardly-

oriented unit normal vector, Δ is the standard Laplacian operator, ΔS is the Laplace-Beltrami

operator, O is the volumetric (cytosolic) domain, and @O is the surface (plasma membrane)

domain (illustrated in Fig 10A). The parameters used in this system are as follows: kon =

1 μM−1s−1 koff = 0.1s−1,DA = 0.1. . .300 μm2s−1,DX = 0.1 μm2s−1, and DB = 0.01μm2s−1. The ini-

tial conditions were set to A(t = 0) = 1.0 μM, X(t = 0) = 1000 molecules μm−2, and B(t = 0) = 0

molecules μm−2. The initial concentration of X was set to a large value such that it would not

be a rate-limiting factor.

Multiplying each PDE by a test function, integrating over their respective domains, and

applying the divergence theorem results in the variational or weak form of the problem. After

discretizing the time derivatives using the backward Euler method with time-step size δt, and

decoupling the volumetric and surface PDEs using a first-order operator splitting scheme the
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system becomes:

Z

O

Aðnþ1Þ � AðnÞ

dt
vA þ DArA

ðnþ1Þ � rvA dOþ
Z

@O

konA
ðnþ1Þ ~XvA � koff ~BvA dG ¼ 0; ð12Þ

Z

@O

Xðnþ1Þ � XðnÞ

dt
vX þ DXrSX

ðnþ1Þ � rSvX þ kon ~AXðnþ1ÞvX � koffB
ðnþ1ÞvX dG ¼ 0; ð13Þ

Z

@O

Bðnþ1Þ � BðnÞ

dt
vB þ DBrSB

ðnþ1Þ � rSvB � kon ~AXðnþ1ÞvB þ koffB
ðnþ1ÞvB dG ¼ 0: ð14Þ

Here, ~A, ~X, and ~B represent the most recent estimates of A(n+1), X(n+1), and B(n+1). At each

time-step Eq 12 is solved to estimate A(n+1), this estimate is then used in Eqs (13) and (14) to

obtain an estimate for X(n+1) and B(n+1) which are used again in Eq 12 to further improve the

estimate of A(n+1). This cycle continues until a satisfactory convergence criterion is met.

Note that Eqs (9) and (10) are PDEs that govern phenomena occurring entirely on the sur-

face @O. The geometry of the surface @O is encoded in the differential operatorsrS and ΔS
which represent the surface gradient and Laplace-Beltrami operators, respectively cf. [14, 101].

This class of PDEs with spatial domains being represented by two-dimensional surfaces, or

more generally Riemannian n-manifolds, are known as geometric PDEs, and arise in a number

of areas of pure mathematics and mathematical physics, as well as in applications in science

and engineering. Unfortunately, two distinct challenges arise in developing numerical meth-

ods for geometric PDEs with the necessary convergence properties to allow for drawing

Fig 10. Simulations of coupled surface volume diffusion. A) Illustration of the domains for the volume and surface

PDEs. B) and C) The concentrations of species A and B, respectively, at t = 1.0swhen DA is set to 10 μm2/s. D)

Difference between maximum and minimum values of B at t = 1.0s; the pointDA = 10 μm2/s corresponding to panels

B) and C) is marked. E) the minimum, mean, and maximum of B over time when DA = 10 μm2/s; a vertical bar is

drawn at t = 1.0s. Scale bar: 500nm.

https://doi.org/10.1371/journal.pcbi.1007756.g010
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scientific conclusions from simulations. The first is the necessity of treating the continuous

curved spatial manifold only approximately, using some type of computable discrete proxy

(such as an interpolatory triangulation of a smooth two-surface), and then accounting for the

impact of this domain approximation on the overall error in a numerical simulation. The sec-

ond difficulty is the need to approximate the metric of the smooth surface that appears in the

definition of the Laplace-Beltrami operator itself, using some type of computable approxima-

tion (such as a polynomial), and again accounting for the impact of this second distinct

approximation on the overall error in the numerical simulation of phenomena on the

surface.

Surface finite element methods have emerged [101–104] over the last few years as an

approach to developing finite element methods for this class of problems that have well-

understood convergence properties, and are both efficient and reliable. The method is formu-

lated on a “flat” triangulated approximation of the curved domain surface, and the error pro-

duced by this approximation is then controlled using a “variational crimes” framework

known as the Strang Lemmas. Our recent work in this area leverages the Finite Element Exte-

rior Calculus framework [105] to provide a more general error analysis framework for sur-

face finite element methods on n-surfaces, for static linear and nonlinear problems [106,

107], as well as for evolution problems on surfaces [108, 109]. Surface finite element methods

for geometric PDE have the advantage of allowing for the use of standard finite element soft-

ware originally developed for standard (non-geometric) PDE problems in two-dimensional

“flat” domains or three-dimensional volumes, after a fairly simple modification to the refer-

ence element maps commonly used by such software packages. Our approach here is to make

use of the standard finite element software package FEniCS [110], and to use surface finite

element modifications to FEniCS (described e.g. in [14]) for solving our geometric PDE

Eqs (9) and (10) above.

To demonstrate the role of membrane shape in coupled reaction-diffusion simulations of

membrane and volume components, we simulated the reaction of a volume component A

reacting with membrane bound species X to form membrane bound species B. The volumet-

ric domain, O, and the boundary domain, @O, are labeled in Fig 10A. Shown in Fig 10B and

10C, are the concentrations of species A and B in the volume and on the surface respectively.

We found that the shape of the dendrite has a significant effect on the formation of B on the

surface and on the depletion of A in the volume. In regions of high curvature, such as the

small protrusions in the head, we found that the density of B is lower because of local deple-

tion of A. This effect can be seen very clearly along the spine neck, where the surface area to

volume ratio is high and the resulting density of B is lower than in the dendrite. To investi-

gate if the diffusion coefficient of A affects these results, we varied the diffusion of A and ana-

lyzed its effects on the surface distribution of B. As expected, we found that as the diffusion

coefficient of A is increased, the effects of local depletion are weakened (Fig 10D). Fig 10E

shows the maximum and minimum concentrations of B plotted with respect to time. We

find that there is a large initial difference in rates of B formation, as indicated by the large gap

between the maximum and minimum concentrations, subsequently this gap narrows as A is

slowly depleted from the volume. Thus, we show that the meshes generated from GAMer 2
can be used for systems biology with coupled surface-volume interactions in realistic

geometries.

Mesh convergence analysis. Next, we illustrate the effects of GAMer 2 mesh condition-

ing on FEA results for the model described above. We investigate the performance improve-

ment as a function of rounds of conditioning. A common error metric used in FEA is the L2

norm of the difference between a solution computed on a coarser mesh (u0) and a solution

PLOS COMPUTATIONAL BIOLOGY Using GAMer 2 to enable reaction-diffusion simulations in realistic cellular geometries

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007756 April 6, 2020 22 / 35

https://doi.org/10.1371/journal.pcbi.1007756


computed on a very fine mesh, which is taken to be the ground-truth (u), i.e.,

εL2
¼

Z

O

ðu0 � uÞ2 dO
� �1

2

: ð15Þ

This is a standard procedure that can be used to measure h-refinement convergence rates;

however between iterations of GAMer 2 algorithms the boundaries of the mesh are perturbed

slightly. Attempting to use εL2
as an error metric is problematic as its integrand is undefined in

regions where O0, the domain of u0, and O do not intersect.

Therefore, to illustrate the convergence of solutions as the mesh quality is improved using

GAMer 2, we used an error metric based on the relative difference in total molecules,

εrel ¼

R

O0
u0 dO0 �

R

O
u dO

R

O
u dO

�
�
�
�

�
�
�
�: ð16Þ

Fig 11(D)–11(G) shows tetrahedral meshes generated at intermediary steps during the

GAMer 2 refinement process. For each mesh, a given number of surface mesh smoothing iter-

ations was performed; any remaining artifacts that would prevent tetrahedralization such as

intersecting faces were removed and the resultant holes were re-triangulated. The surface

meshes were all tetrahedralized using TetGen with the same parameters. As the surface mesh

Fig 11A and 11B show how as the distribution of surface mesh angles improves, the distribu-

tion of radius-ratios in the corresponding tetrahedral mesh improves. The system Eqs (8) to

(11) was solved on the aforementioned tetrahedral meshes for a single time-step and the rela-

tive error for B was computed using Eq (16). The simulation on the most refined mesh (Fig

11G) was assumed to be the ground-truth. Fig 11C shows that the relative error consistently

decreased as a result of further mesh conditioning in GAMer 2. This analysis highlights not

only the importance of using a high quality mesh in FEA but also that GAMer 2 can generate

such high quality meshes.

Simulation of reaction-diffusion equations on a dendrite

Using the mesh of the dendritic segment we simulated N-methyl-D-aspartate Receptor

(NMDAR) activation due to a Back Propagating Action Potential (BPAP) and Excitatory Post-

synaptic Potential (EPSP) along the entire dendrite shown in Fig 12 and S3 Movie. Because the

goal of this simulation was not to show biological accuracy, but rather to demonstrate that our

approach is capable of producing biophysically relevant FEA simulations, we use a simplified

version of the model found in Bell et al. [111].

We model a BPAP and EPSP which stimulates NMDAR opening and calcium ion influx

into the cell. The reaction-diffusion of u, corresponding to calcium ion concentration, is

described as follows,

@u
@t
¼ DDu �

u
t

in O; ð17Þ

where D is the diffusion coefficient of u, Δ is the Laplacian operator, τ is a characteristic decay

time, and O is the volumetric domain. We define boundary conditions corresponding to the

ionic flux through NMDARs, JNMDAR, lining the post synaptic density, @Opsd,

Dðn � ruÞ ¼ JNMDARðtÞ on @Opsd; ð18Þ
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where n is the outwardly-oriented unit normal vector, and JNMDAR is of the form,

JNMDAR ¼ GNMDARðtÞBðVÞðVðtÞ � VrestÞa: ð19Þ

GNMDAR(t) is a variable conductance which accounts for deactivation of the receptor, B(V) is a

term which accounts for Mg2+ inhibition, the voltage difference V(t) − Vrest is prescribed to

emulate a BPAP and EPSP, and α is a scaling term which groups factors such as probability of

opening, receptor area density at the PSD, etc.

Fig 11. GAMer 2 mesh conditioning reduces error in the simulated result. A) Distribution of angles on the surface

mesh after 0, 5, 10, 30 smoothing operations. B) Distribution of tetrahedral radius-ratios�. The tetrahedron radius-

ratio is defined as
3ri
ro

where ri is the radius of the inscribed sphere and ro is the radius of the circumsphere (a value of 1

corresponds to an equilateral tetrahedron). C) Relative error (Eq 16) of B when solving Eqs (8) to (10) for a single time

step. (D-G) Tetrahedral radius-ratios after 0, 5, 10, 30 smoothing iterations. Generally, for simulation using the finite

element method, most radius-ratios should be greater than 1

3
[90]. �Artifacts which prevented tetrahedralization, e.g.

intersecting faces, were removed and the holes were remeshed at each step.

https://doi.org/10.1371/journal.pcbi.1007756.g011
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On the remainder of the plasma membrane which we denote as @Opm, we enforce the no-

flux boundary condition,

Dðn � ruÞ ¼ 0 on @Opm: ð20Þ

Fig 12. Time series of calcium dynamics from N-methyl-D-aspartate Receptor (NMDAR) opening in response to a

prescribed membrane voltage trace in a full dendritic segment. A) Boundaries demarcating the Plasma Membrane

(PM) and Postsynaptic Density (PSD) are shown in blue and orange respectively. B) Snapshots of calcium ion

concentration throughout the domain are also shown for several time points. We apply a voltage corresponding to a back

propagating action potential and excitatory postsynaptic potential. NMDAR localized at the PSD membrane, open in

response to the voltage and calcium flows into the cell. Over time, the NMDAR close, and calcium is scavenged by

calcium buffers.

https://doi.org/10.1371/journal.pcbi.1007756.g012
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At time t = 0, we set the initial concentration of calcium ions to naught throughout the vol-

ume of the dendrite,

uðx; t ¼ 0Þ ¼ 0 in �O: ð21Þ

Where �O is the union of the volumetric and boundary domains,

�O � O [ @O: ð22Þ

The surface of the geometry is composed of only post synaptic density and plasma mem-

brane,

@O � @Opsd [ @Opm: ð23Þ

Finite element simulations of this model were solved using FEniCS [110].

In this simplified model, we assume that the back propagating potential stimulates the

entirety of the dendritic branch simultaneously, leading to the opening of NMDARs localized

to the PSD and an influx of calcium ions. Several representative snapshots of Ca2+ concentra-

tion over time, across the geometry, are shown in Fig 12. The Ca2+ transient can be probed by

monitoring the concentration at specific locations, shown in Fig 13. As expected, we first

observe that the calcium dynamics are spine size, spine shape and PSD-dependent. Probes 1

and 2 in Fig 13 are in different spine heads and report differing Ca2+ transients. Furthermore,

we observe that the narrow spine necks act as a diffusion barrier to calcium, preventing diffus-

ing calcium ions from entering the dendritic shaft as illustrated by probe 3 in Fig 13. This

behavior of the spine neck as a diffusion barrier is consistent with other observations in the lit-

erature [112–115].

Fig 13. Representative traces of Ca2+ concentration over time at three positions. Spine and PSD morphology affect

the calcium ion dynamics. For traces 1 and 2, variations in the PSD area and spine head volume lead to different peak

calcium ion concentrations. At point 3, the calcium ion concentration values are diminished due to both calcium

buffering in the cytosol and the spine neck behaving as a diffusion barrier.

https://doi.org/10.1371/journal.pcbi.1007756.g013
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This example demonstrates that the meshes produced by GAMer 2 through the workflow

are directly compatible with finite element simulations and will allow for the generation of bio-

physically relevant hypotheses.

Discussion

The relationship between cellular shape and function is being uncovered as systems, structural

biology, and physical simulations converge. Beyond traditional compartmentalization, plasma

membrane curvature and cellular ultrastructure have been shown to affect the diffusion and

localization of molecular species in cells [100, 116]. For example, fluorescence experiments

have shown that the dendritic spine necks act as a diffusion barrier to calcium ions, preventing

ions from entering the dendritic shaft [112]. Complementary to this and other experiments,

various physical models solving reaction-diffusion equations in idealized geometries have

been developed to further interrogate the structure-function relationships [51, 100, 111, 117–

119].

An important next step will be to expand the spatial realism of these models to incorporate

realistic geometries as informed by volume imaging modalities. Our tool GAMer 2 serves as

an important step towards filling the need for community driven tools to generate meshes

from realistic biological scenes. We have demonstrated the utility of the mesh conditioning

algorithms implemented in GAMer 2 for a variety of systems across several length scales and

upwards of hundreds of thousands of triangles. The surface mesh conditioning algorithms in

GAMer 2 are local operations, which therefore scale linearly with the number of vertices. The

hardware requirements to run GAMer 2 are modest and all meshes shown in this work were

processed on a laptop. In the future, GAMer 2 can be improved to support parallel (shared

and/or distributed) processing and conditioning on GPUs. We refer the reader to Ref. [83] for

the analysis of runtime complexities of algorithms in TetGen. The volume meshes that result

from our tools are of high quality (Fig 7) and we show that they can be used for estimating

membrane curvatures (Figs 8 and 9) and in finite element simulations of reaction-diffusion

systems (Figs 10, 12 and 13).

Bundled with GAMer 2 we include the BlendGAMer add-on which exposes our mesh

conditioning algorithms to the Blender environment. Blender acts as a user interface that

provides visual feedback on the effects of GAMer 2 mesh conditioning operations. Blender
also enables the painting of boundaries using its many mesh selection tools. Beyond the algo-

rithms in GAMer 2, Blender also provides an environment for manual curation of mesh

artifacts.

Current meshing methods are limited by the need for human biological insight. Experi-

mental setups for volume electron microscopy are arduous and often messy. Microscopists

take great care to optimize the experimental conditions, however small variations can lead to

sample contamination, tears, precipitation of stain, or other problems. Many of these issues

will manifest as artifacts on the micrographs, which makes it challenging to evaluate the

ground truth. Automated segmentation algorithms using computer vision and machine learn-

ing approaches can fail as a result of these artifacts, and biologists will default to the time-

tested, reliable but error-prone mode of manually tracing boundaries.

This is a unique opportunity for biological mesh generation to differentiate from other

meshing tools employed in other engineering disciplines. To account for the challenges inher-

ent to biology and wet experiments along with physical simulations, the realization of an auto-

mated mesh generation pipeline will require the development of specialized algorithms which

tightly couple information across the workflow. As additional annotated datasets become
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available, machine learning models can be trained to perform tasks that are currently manually

executed, such as reconnecting disconnected ER tubules.

The approach and tools presented here, coupled with advances in localization of various

membrane proteins [120], brings us closer to the goal of in silico biology within realistic geom-

etries. Towards the goal of making 3D cell modeling more routine, experimentalists can con-

tribute by sharing segmented datasets from their work along with biological questions of

interest. In exchange, modelers can generate testable predictions and measurements inaccessi-

ble to current experimental methods. Specifically, we anticipate that models enabled using

GAMer 2 will be of significant interest to two broad communities in computational biology:

membrane biophysicists, focused on the analysis and simulation of membrane shapes, curva-

ture generation, and membrane-protein interactions, and systems biologists, focused on

understanding how cell shape and internal organization can impact signal transduction and

the dynamics of second messenger microdomains. Through this interdisciplinary exchange,

any gaps in our current meshing workflows will be identified and patched.

Conclusion

In this study, we present our mesh generation code GAMer 2 and described several applica-

tions going from contours of electron micrographs as input to generate surface and volume

meshes that are compatible with finite element simulations for reaction-diffusion processes.

Using the resulting meshes, we have demonstrated the spatio-temporal dynamics of calcium

influx in multiple spines along a dendrite. Future efforts will focus on the development of bio-

logically relevant models and generation of experimentally testable hypotheses.

Supporting information

S1 Fig. Comparison of Meyer-Desbrun-Schröder-Barr (MDSB) and Cazals-Pouget (JETS)

curvature estimates for the single spine geometry.

(PDF)

S1 Table. Local geometry associated with signs of principal curvatures according to our

sign convention.

(PDF)

S1 Appendix. Protocols for the generation and comparison of meshes between software.

(PDF)

S1 Movie. Animation proofing the initial mesh against the segmented micrographs. The

PM (blue) is rendered as a wireframe. The ER (yellow) is displayed as a solid surface. Purple

patches in the segmentation correspond to regions where the PSD is localized. It is using these

labeled patches that the boundary marking is generated.

(MP4)

S2 Movie. Animation proofing the GAMer 2 conditioned mesh against the segmented

micrographs. The PM (blue) is rendered as a wireframe. The ER (yellow) is displayed as a

solid surface. Purple patches in the segmentation correspond to regions where the PSD is local-

ized.

(MP4)

S3 Movie. Trajectory of calcium ion signaling in the full dendrite geometry.

(MP4)
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