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The many facets of brain aging
Applying big-data analytic techniques to brain images from 18,707

individuals is shedding light on the influence of aging on the brain.

LARS NYBERG AND ANDERS WÅHLIN

W
e are not all equal when it comes to

brain aging: while some people man-

age to maintain well-preserved cog-

nitive function into old age, others do not

(Nyberg et al., 2012). Brain-imaging studies

have attempted to capture brain aging by

exploring age-related changes to specific struc-

tures and different kinds of brain tissue

(Good et al., 2001; Walhovd et al., 2005). But

a more recent approach has been to use one or

more brain-imaging techniques to define a

global, single brain-age for each individual

(Franke et al., 2010). This estimate is then used

to derive a measure called brain-age delta,

which represents the gap between the age

expected from the brain status and the actual

age of the individual. Now, in eLife, Stephen

Smith (University of Oxford) and colleagues

report a refined brain-age approach that might

better represent how aging affects the biological

processes of the brain (Smith et al., 2020).

From a sample of 21,407 participants of the

UK Biobank study, Smith et al. reported the data

of 18,707 individuals over the age of 45 whose

brains have been imaged using the same MRI

and fMRI protocols. The team then generated

3913 imaging-derived phenotypes: each of the

phenotypes represents a different aspect of

brain structure or function, such as how specific

regions are connected or the structure of certain

cortical areas (Figure 1A).

Further computational analyses were con-

ducted to combine the phenotypes that vary

together with age across subjects. In total, 62 of

these groups (termed ‘modes’) were estab-

lished, each potentially representing a biological

process affected by aging: for instance, changes

in white-matter microstructure could reflect

degeneration of axons. These modes were then

weighted to describe how strongly each is pres-

ent in an individual.

The next step was to try to use the modes to

assess how an individual would fare in compari-

son to others, and to examine whether these

new measures could correlate with genetic fac-

tors. The modes were first grouped to create an

‘all-in-one’ brain-age delta for each participant,

a measure that turned out not to be associated

with a genetic signature. Next, each specific

mode was used to create a brain-age delta that

assesses the gap between the participant and

the population for this particular mode

(Figure 1B). Most of these ‘mode-specific’ brain-

age deltas turned out to be associated with the

genetic makeup of the individuals. This demon-

strates that superimposing distinct brain aging

processes in an all-in-one brain-age may obscure

biological relations.

While the individual modes might be related

to specific biological processes, Smith et al.

used data-driven optimization to group the 62

modes into coarser ‘mode-clusters’ (Figure 1C).

The six clusters that emerged helped to under-

stand larger patterns of age-related brain

changes, and how these relate to other ‘non-

imaging’ variables such as health parameters.
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The mode-cluster that was associated with the

greatest aging effect, for example, linked cogni-

tive processing speed with brain patterns like

ventricular volume and white-matter microstruc-

ture. Diabetes, hypertension, and smoking were

all risk factors distributed across mode-clusters,

suggesting that different aspects of vascular

health influence brain aging through different

biological processes.

This work highlights the challenge in deter-

mining the optimal balance between integration

and diversification in studies of brain aging,

where a single brain-age is at the extreme end

of integration. An argument in favor of diversifi-

cation is the fact that, unlike the all-in-one brain-

age delta, deltas defined from modes and

mode-clusters were associated with genetics

(Figure 1D). But what will the optimal ‘unit’ of

brain aging turn out to be in the end? Should it

be six (as the mode-clusters suggest), 62 (from

the analyses of the 3913 imaging-derived phe-

notypes), or another figure altogether? The rele-

vant number will depend on the type of imaging

used in a specific dataset – for example, if it

includes both MRI and PET images or MRI alone.

Unique brain-age deltas may be revealing a gap

between chronological and actual brain age –

thus stressing the vast heterogeneity in the older

population – but the work by Smith et al. repre-

sents the next generation of analytic methods
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Figure 1. Refining big-data analytic approaches to reveal the many facets of brain aging. (A) Smith et al. used a

technique called independent component analysis (ICA) to analyze MRI and fMRI data on brain structure,

connectivity or activity from more than 18,000 individuals over the age of 45. This enabled them to identify 62

modes. Most of these modes co-varied with age across the sample, thus potentially reflecting biological processes

affected by aging. (B) Schematic matrix in which each row represents an individual and each column represents a

mode. The color scale represents the brain-age delta, the difference between the actual age of the individual and

what age would have been expected for this person given the value of the mode. (C) The 62 modes can be

grouped into six mode-clusters, such as one which captures the microstructure of brain white-matter. (D) Smith

et al. were able to relate the brain-age deltas for specific modes and the mode-clusters to various phenotypes (for

instance health, genetics and cognition).
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that can help to decode the complexity of brain

aging. In the future, genetics and cognition may

even be considered in the early stages of analy-

sis, when distinct modes are initially computed.

As imaging data continue to be gathered at a

large scale, it is becoming increasingly relevant

to examine the complex intrinsic structure of

data collected through different imaging meth-

ods (Bzdok and Yeo, 2017). Techniques such as

the ones used by Smith et al. reduce complexity

while respecting the patterns created by actual

biological processes, thereby limiting the dilu-

tion and potential loss of valuable information.

As big-data approaches continue to be refined,

they will be able to detect biological processes

from brain images, and ultimately these mecha-

nisms might be linked to models of brain aging

established at the cellular level.
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https://orcid.org/0000-0001-6784-1945

Competing interests: The authors declare that no

competing interests exist.

Published 16 April 2020

References

Bzdok D, Yeo BTT. 2017. Inference in the age of big
data future perspectives on neuroscience. NeuroImage
155:549–564. DOI: https://doi.org/10.1016/j.
neuroimage.2017.04.061, PMID: 28456584
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