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Abstract

Functional neuromuscular stimulation (FNS) can be used to restore seated trunk function in 

individuals paralyzed due to spinal cord injury (SCI). Musculoskeletal models allow for the design 

and tuning of controllers for use with FNS; however, these models often use aggregated estimates 

for parameters of the musculotendon elements, the most significant of which is maximum 

isometric force (MIF). Stimulated MIF for individuals with SCI is typically assumed to be 

approximately 50% of the values exhibited by able-bodied muscles, which itself varies between 

studies and individuals. A method for estimating subject-specific MIF during dynamic motions in 

individuals with SCI produced by electrical stimulation has been developed to test this assumption 

and obtained more accurate estimates for biomechanical analysis and controller design. A simple 

on-off controller was applied to individuals with SCI seated in the workspace of a motion capture 

system to record joint angles of three types of trunk motions: forward flexion, left and right lateral 

bending followed by returning, un-aided, to upright posture via neural stimulation delivered to 

activate the muscles of the hips and trunk. System identification was used with a musculoskeletal 

model to find the optimal MIF values that reproduced the experimentally observed motions. 

Experiments with five volunteers with SCI indicate that an MIF of the 50% able-bodied values 

commonly used is significantly lower than the identified estimates in 33 of 44 muscle groups 

tested. This suggests that the strengths of paralyzed muscles when stimulated with FNS have been 

underestimated in many situations and their true force outputs may be higher than the values 
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suggested for use in simulation studies with musculoskeletal models. These findings indicate that 

subject-specific musculoskeletal models can more closely mimic the motions of subjects by using 

individualized estimates of MIF, which may allow the design and tuning of controllers while 

reducing the time spent with subjects in the loop.
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1 Introduction

One of the most significant losses for people with spinal cord injury (SCI) is their ability to 

maintain trunk stability. Trunk stability is the ability for people to keep their torso upright 

without using their upper extremities or external surfaces for support. Anderson [1] polled 

individuals with paraplegia and tetraplegia about what the highest priority in functional 

restoration should be after an injury. In both populations, trunk stability was ranked third, 

highlighting its significance to persons with SCI.

Functional neuromuscular stimulation (FNS) is an intervention that can be applied to excite 

the nerves that innervate the trunk and hip muscles that are vital for pelvic and spinal posture 

and maintaining trunk stability [2–4]. However, delivery of FNS must be achieved via well-

defined control schemes; the development of which in turn requires extensive exploration of 

several musculoskeletal parameters for the individual subjects. This is because SCI affects 

people in entirely different ways, including the response to stimulation, thereby requiring 

that each individual has specific controller design parameters. Therefore, design of control 

systems for maintaining trunk stability requires extensive tuning experiments with the 

subjects. Musculoskeletal models that have been carefully created to be as anatomically 

realistic as possible with respect to the specific subject can greatly reduce the extent of these 

tuning experiments. Considering the versatility of musculoskeletal models and the 

availability of accurate model development software such as OpenSim [5], the design of 

stimulation control systems for trunk stability can be accelerated. Anatomic realism can be 

achieved by ensuring that the skeletal and muscular characteristics of the model are as close 

as possible to those of the subject under study.

The important muscular parameters for Hill-type muscle models [6] commonly used in 

musculoskeletal simulations are as follows: the optimum fiber length, the tendon slack 

length, the pennation angle, and the maximum isometric force (MIF), which is the maximum 

force that a muscle can produce when it is maximally excited with its length held fixed. The 

MIF is one of the parameters that is most affected by paralysis and has a more pronounced 

impact on the overall force-production capacity of the muscle [7].

Currently, the main method for estimating the MIF is to multiply the physiological cross-

sectional area (PCSA) with the specific tension. The PCSA is the cross-sectional area of the 

muscle in the plane perpendicular to the fibers at the thickest part of the muscle and the 

specific tension is a measure of intrinsic muscle strength that normalizes MIF to PCSA [8]. 
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Although this method of calculating the MIF is rather straight forward, the estimate can be 

an inaccurate measure of MIF for a specific individual. This is because the methods of 

estimating both the PCSA and the specific tension have a high uncertainty in themselves. 

The traditional method for estimating PCSA is performed by harvesting and measuring 

muscle areas from cadavers [9, 10] or more recently, by imaging studies using MRI [11]. 

The main disadvantage of the cadaveric approach is that the harvested tissue is not an ideal 

representation of the live muscles because the characteristics of the muscle change during 

contraction [8]. The estimated specific tension, which should be the same for all muscles, 

has been shown to vary substantially from 62 [12] to 155 kN/m2 [8] based on in vivo testing.

There also exist experimental techniques for estimating MIF in able-bodied as well as SCI 

individuals [13]. One popular method involves rigidly strapping the body segments on either 

side of a joint in a dynamometer machine such as the Biodex (Biodex Medical Systems, Inc., 

Shirley, NY), with the joint axis aligned with the rotational axis of the dynamometer. The 

subject is then asked to make maximum voluntary contractions of the muscles crossing that 

joint, or in the case of SCI, maximally stimulating some or all the individual muscles 

crossing the joint while keeping the segments rigidly fixed in place. This allows for 

isometric measurements of muscle strength often in terms of the joint moment. The MIF is 

then estimated by dividing the maximum moment with the estimated moment arm of the 

muscle or muscles. Using this static approach, Garner and Pandy [14] described a method 

for in vivo estimation of peak isometric force in muscles of able-bodied subjects using 

optimization. In that study, a nested optimization minimized the error between torque-angle 

curves of maximally contracted muscles with the torque-angle curves generated by a 

musculoskeletal model to get estimates for the MIF for each muscle involved. Optimization 

of the MIF values may also be a technique for estimating the MIF for a subject performing 

dynamic actions.

Dynamic optimizations have been shown to produce estimates of the muscle strengths 

required to execute an activity that are similar to static estimates. In a study by Morrow et 

al., the muscle forces required during wheelchair propulsion were optimized in a static and 

dynamic environment using a musculoskeletal model [15]. For all optimized muscles, there 

was a 9.9% global root-mean-squared error (RMSE) between the static and optimized 

estimates, which suggests that they are in good agreement. Anderson and Pandy [16] 

performed a similar comparison between static and dynamic optimization of gait and found 

an even greater similarity between the two outputs, going so far as to claim that they are 

“practically equivalent.”

The dynamometry method works well for joints such as the elbows, hips, knees, and ankles 

that typically join two clearly identified body segments. However, the method does not work 

well for trunk muscles which cross several spinal segments that are difficult to isolate. 

Keeping the trunk in a static pose during testing can also be challenging without highly 

elaborate equipment. In such situations where muscle actions are distributed simultaneously 

over numerous joints, dynamic measurement may serve as a better approach for estimating 

the MIF.
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For people with SCI, the MIF for some lower extremity muscles are assumed to be 30–50% 

of able-bodied values based on the maximum joint torque produced when the paralyzed 

muscle is completely activated with neural stimulation [17]. Using this as a guide, many 

previous musculoskeletal modeling studies [18–20] have been developed based on the 

assumption that the MIF of stimulated paralyzed muscles is of the order of 50% of that for 

able-bodied individuals. While this may hold true for some muscles, others may have 

substantially different values, and the differences may further be exacerbated by other 

individual variations due to the individual effects of the injury.

Considering the importance of MIF in musculoskeletal modeling, especially for people with 

paralysis, more accurate estimates of MIF for individual subjects are desired. With better 

MIF estimates, the models can become more realistic, which can lead to faster development 

of functioning stimulus controllers and improved neuroprosthesis performance. The 

objective of this work is to report on a new approach to obtain more accurate measures of 

MIF for hip and trunk muscle groups activated with FNS by matching the trajectories of the 

trunk obtained in constraint-free motion experiments with those generated by a three-

dimensional subject-specific musculoskeletal model actuated by equivalent realistic Hill-

type musculotendon elements.

2 Methods

2.1 Participants

Five volunteers with SCI at different thoracic and cervical levels who lacked volitional trunk 

control participated in the study. Table 1 lists their anthropometric and neurological 

characteristics. Each of the volunteers was implanted with intramuscular, epimysial, or nerve 

cuff electrodes to excite the motor nerves of hip and back muscles as listed in the last 

column of Table 1. All experiments were conducted by activating the nerves of the paralyzed 

muscles with the implanted electrodes which were sometimes augmented by surface 

stimulation to ensure complete muscle recruitment or to access muscles not part of the 

implanted systems. All participants signed the consent form approved by the local 

institutional review board before participating in the experiments.

2.2 Experimental setup

Volunteers sat in their own wheelchairs, which were placed in the work volume of a 16-

camera motion capture system (Vicon Motion Systems Ltd., Oxford, UK). A schematic of 

the experimental setup is shown in Fig. 1. A wireless sensor containing a CMA3000-D01 

accelerometer (VTI Technologies, Vantaa, Finland) and CC430F6137IRGC microcontroller 

(Texas Instruments, Dallas, TX) was taped to the back of the subject around the posterior 

spinal process of the T1 vertebra to measure tilt of the trunk in the sagittal and coronal 

planes representing trunk flexion/extension (sagittal plane) and trunk lateral bending 

(coronal plane). An external control unit (ECU) allowed for feedback and modulation of the 

stimulation signals sent to the implanted and surface electrodes based on the readings from 

the tilt sensor [21].
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Retro-reflective markers were taped to the skin at the left and right anterior- and posterior-

superior iliac spines, shoulders, and on top of the T1 tilt sensor. Others were attached 

laterally on the thighs, arms (elbows, upper-arm, forearms, wrists), a headband, and on the 

wheelchair. With these markers, it was possible to compute the total trunk angle in the 

coronal and sagittal planes. Motion capture data were recorded at 100 Hz.

2.3 Experimental procedure

In the experiments, the input variable to the musculotendon elements was the stimulation 

pulse width (PW) to the nerves serving the paralyzed muscles. With the subject sitting 

quietly upright, the muscles were kept at baseline stimulation levels to ensure a stable erect 

seated posture. These baseline stimulation levels were generally kept at 0 μs unless the 

subject was unable to sit upright without contracting the muscle, in which case these 

baseline values ranged between 0 and 50 μs as necessary to ensure an erect posture. 

Throughout, stimulation was controlled via a MATLAB Simulink program running in the 

xPC Host-Target real-time control environment [22]. The tilt sensor signal was sampled at 

40 Hz and stimulation was applied at 20 Hz.

The subject was asked to use volitional upper extremity effort to commence moving the 

trunk in the desired direction (forward, rightward, or leftward) and, once started, to let the 

trunk continue to tilt under the action of gravity alone without further voluntary input. As 

soon as the trunk tilt exceeded a value set by a “flexion threshold” (OF in Fig. 1), 

appropriate muscles were maximally stimulated to return the trunk to the erect position. The 

maximum stimulation PW varied between 50 and 250 μs depending on the subject and the 

muscles required to complete the motion. Once the trunk tilt crossed another “extension 

threshold” (OE in Fig. 1), close to the erect posture, stimulation was reduced to the baseline 

level appropriate for the original erect posture [23]. The pulse amplitudes were chosen based 

on the individual responses of the implanted muscles and were kept constant during 

experiments for each individual. Trials were captured with the trunk moving either forward 

in the sagittal plane or to the right or to the left in the coronal plane. A spotter was always 

present to ensure the subject did not fall in case the stimulus was insufficient or was not 

triggered. A pulse signal from the real-time xPC Target computer synchronized the 

beginning and end of a trial with the Vicon motion capture system.

For each subject, a total of 3 to 5 trials were captured. In each trial, the subject leaned in the 

forward, left, or right directions 2 times for a maximum of 6 cycles per trial. In each trial, the 

order of directions was randomly assigned. There was a 3–5-s interval between each cycle 

and a 5–10-min rest between each trial to allow the muscles to recover. Sometimes the 

subject was not able to recover fully to an erect position and had to be helped by the spotter 

to return to erect. Such cycles were removed from the analysis.

For each experiment, the trunk pitch (sagittal) and trunk bend (coronal) angles were 

calculated from the Vicon motion capture data recorded while the subject returned to the 

upright posture. The muscle activation profiles during each trial and the corresponding trunk 

joint angles were stored for use as inputs to the stimulation component. The joint angle data 

was resampled to match the 20-Hz stimulation PW data for use in the simulation component 

of the study.
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2.4 Computer simulation component

The height and weight for each subject were used along with anthropometric tables to 

generate skeletal models scaled to match the individuals’ bone segments and joints. The 

tables were based on studies of anthropometry and segment inertial parameters from the 

Naval Biodynamics Lab [24] and De Leva [25]. The overall musculoskeletal models were 

created in the OpenSim/SIMM software (National Center for Simulation in Rehabilitation 

Research/Musculographics, Inc) modeling environments with each model consisting of 13 

joints, 13 bone segments, and 36 Hill-type muscle elements which encompass the pelvis, 

trunk, and upper extremities in a seated posture [20]. The 36 muscle elements represent the 

muscle groups which are either directly or indirectly affected by a stimulus pulse provided 

by the implanted or surface electrodes.

Table 2 shows the tested muscle groups for each subject in the study. In particular, we 

arranged the muscles into groups as follows: Trunk Benders [lumbar Erector Spinae (ES), 

Quadratus Lumborum (QL) and External Obliques (ES)], Trunk Extensors (ES), Hip 

Adductors [posterior Adductor Magnus (AM)], Hip Flexors [Iliopsoas (IP), Rectus Femoris 

(RF)], Hip Extensors [3 branches of Gluteus Maximus (GX)], and Hamstrings 

[Semimembranosus (SM), Semitendinosus (ST) and Biceps Femoris (BF)]. Each group 

contained muscles that provide similar functions when stimulated and that are anatomically 

near the implanted muscles. The suggested groupings were used to account for the 

possibility of stimulation spillover and co-activation of the muscles neighboring the primary 

target [26, 27]. The Hamstrings and Hip Adductor groups mostly function as hip extensors 

because the thighs were firmly secured to the wheelchair with a lap belt. Each muscle group 

corresponds with an implanted electrode, and accounts for any spillover that may result from 

it.

A system identification method was designed that utilizes the musculoskeletal models along 

with the activations and joint angles from the experimental procedure to estimate optimal 

values of MIF for the electrically activated muscles. In the identification simulations, the 

maximum stimuli applied to the muscles were scaled to the maximum activation levels of 

the muscles in the model and served as the model inputs; the model outputs were the 

resultant trunk angles. The total trunk pitch was further sub-divided into its pelvic pitch and 

lumbar pitch components according to a synergy termed the lumbo-pelvic rhythm [28]. In 

the lumbo-pelvic rhythm, the approximate formula most commonly used to relate pelvic to 

lumbar contributions to trunk position is [29]:

Lumbar Pitcℎ
Pelvic Pitcℎ ≈ 2.2 (1)

Thus the 3 angles (pelvic pitch, lumbar pitch, and lumbar bend) serve as the outputs from 

the musculoskeletal model.

Forward simulations were conducted with the musculoskeletal model in an optimization 

loop generating the 3 joint angle outputs as a function of the stimulus input while the MIF 

was varied. In the optimization, the objective function was the square root of the residual 

sum of squares (RSS) between the simulated joint angles from the model and the actual joint 
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angles from the experimental trials. A genetic algorithm (GA) code-named SOGA (single-

objective genetic algorithm) which is a part of the JEGA library [30] from the DAKOTA 

package [31] was used to minimize the objective function. The optimization problem was 

solved using the parallel cluster at the CWRU High Performance Computing Facility. The 

overall identification cycle is depicted in Fig. 2.

Equation 2 shows the objective function, JD(x), for each direction that the subject could lean. 

The objective values for all lean directions are then summed together into a total objective 

function, Jtotal(x), as indicated in Eq. 3.

JD(x) = ∑
i = 1

n
xS

i − xE
i

pitch,P
2 + xS

i − xE
i

pitch,L
2 + xS

i − xE
i

bend,L
2

(2)

With n as the number of time intervals for the trial, x as the joint angles, subscript S as 

simulation, subscript E as experimental, P as pelvic component, and L as lumbar component. 

The subscript D indicates the direction which varied between forward, left, and right.

Jtotal (x) = Jforward (x) + Jleft (x) + Jright (x) (3)

The total objective function is the sum of the objective functions in all three directions: 

forward flexion, left, and right lateral bending. The total objective function uses one 

experimental cycle in each lean direction. These cycles are chosen randomly from the set of 

cycles collected during the experimental trials.

The GA minimized the total objective function with the MIF for each muscle as the decision 

variables. The optimization determined the MIF values for each active muscle that would 

result in a minimization of the objective function. Each trial of the system identification 

required the input of the actual activations and joint angles from a trial in each direction. To 

ensure mainly the effect of stimulation is processed, the cycle breakdown of a typical 

experimental trial run through the system identification was as follows: 1% before the 

stimulation turns on, 49.5% when stimulation is active, and 49.5% after stimulation ends as 

depicted in Fig. 3. The muscle groups included in the optimization are outlined in Table 2, 

which lists the muscles that make up each grouping as well as the stimulation status for each 

subject. The optimization was stopped when any of three set criteria were satisfied. These 

were as follows: (1) the number of function evaluations exceeded 100,000, (2) the number of 

iterations exceeded 1000, and (3) changes in successive objective function values were less 

than a small number (set at 1.0e–3). Most of the optimization runs were stopped primarily to 

satisfaction of condition 3, and occasionally to condition 2.

2.5 Statistical analyses

Single-sample 2-sided t test comparisons were carried out to test the alternative hypothesis 

that the mean values of the identified MIF for each subject/direction differ from the 

commonly used 50% able-bodied values. The Shapiro-Wilk tests for normality were 

conducted for the mean MIF calculated over all cycles in a given direction. Significant 
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values were set at p < 0.05. All statistical analyses presented were based on individual 

subject data.

To quantify the difference between the experimental and simulated joint angles, we 

computed the normalized root-mean-squared error (NRMSE), a metric expressing the 

average deviation of the simulated joint angles from the experimental joint angles as a 

percentage of the range of the experimental values for the condition (ex. pelvic pitch and 

forward lean). It is computed as the square root of the average squared difference between 

the measured and estimated (model) signals, divided by the range of the measured, 

multiplied by 100. That is:

NRMSE = RMSE
Xmea,max − Xmea,min

) ⋅ 100 (4)

Where

RMSE =
∑i = 1

n Xmea, i − X mod , i
2

n
(5)

In these equations, Xmea, i and Xmod, i are the ith entries in the measured and estimated 

(model) variable signals, respectively, n is the number of frames in each of the two signals, 

and Xmea, max and Xmea, min are respectively the maximum and minimum entries in the 

measured signal.

3 Results

Figure 4 a–c show typical joint angle outputs from the simulations of the data for subject S-2 

compared with the equivalent experimental results in all three directions of leaning. The 

experimental joint angles (blue) were the input to the identification procedure, and the 

simulated joint angles (red) were output from the model following the exit from the 

optimization loop. The difference between the simulation joint angles and the experimental 

joint angles was minimized in the optimization as described in the minimization of Eq. 3. 

The plotted lines are the means of 5 or more trials, and the dashed lines are 1 standard 

deviation from the mean. These plots depict the typical output for each subject following the 

system identification procedure. The scales for the plots in each direction were kept the 

same so that the differences in magnitude can be compared across joint angles. From Fig. 4 a 

for the forward leaning direction, the most prominent angles are the pelvic and lumbar pitch 

angles, with the lumbar bend angle remaining low, at around ± 7.5°. As expected, forward 

trunk flexion primarily involves muscles acting in the sagittal plane with minimal 

involvement of those responsible for lateral bending. On the other hand, from Fig. 4 b and c 

for the left and right lateral bending, the bend angles are more prominent. There are also 

smaller magnitude changes in the pelvic and lumbar pitch angles, which imply that most 

sideways movements are accompanied by some small forward movements of the trunk since 

the trunk is dynamically moving without restraint.

The NRMSE for the means for each subject and for all movement directions are summarized 

in Table 3. Each column in the table contains the NRMSE value for each of the three joint 
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angles in the average motion of 5 or more trials: pelvic pitch, lumbar pitch, and lumbar 

bend. The number of cycles used to analyze the data for the subject/direction is shown in 

parenthesis under each direction label. The Shapiro-Wilk tests for normality yielded p values 

greater than 0.05 (minimum p = 0.13) for all directions except two—subjects S4 and S5, 

Right Lean direction (p = 0.04 and p = 0.04, respectively). The NRMSE is below 33% when 

simulating the prominent joint angles, except for the left lumbar bend of subject S-4, with 12 

of the 15 columns (5 subjects, 3 directions) having the smallest NRMSE in these prominent 

joint angle combinations (pitches and forward lean, bends, and lateral bending). The pelvic 

and lumbar pitch in forward lean and the lumbar bend in both left and right lateral bending 

should be expected to have the largest magnitude, as the motions are in their respective 

planes.

All three directions were optimized at the same time, meaning the MIF estimates consider 

the motion in all three directions. The prominent combinations were the ones with the 

smallest NRMSE in 12 of the 15 columns of Table 3, suggesting that the optimization 

algorithm in most cases was able to minimize the difference in the prominent combinations. 

In the comparisons where the change in magnitude is smaller, the higher NRMSE could be 

explained by random variations within the individual cycles.

The final outcomes from the system identification were the MIF estimates for the 12 

bilateral muscle groups, which are shown in Fig. 5 a and b for all 5 subjects. Figure 5 a 

displays the estimates for the left muscle groups and Fig. 5 b displays the estimates for the 

right muscle groups. The mean MIF estimates (in Newton) for each muscle group and their 

error bars (± 1 standard deviation) are plotted side-by-side with the 50% able-bodied 

estimates typically adopted for musculoskeletal modeling after SCI. If a subject did not have 

one of the muscle groups stimulated during the experiments, the estimate bar is left blank for 

that muscle group. Figure 5 a and b also contains significance bars and asterisks (p < 0.05) 

for single-sample 2-sided t test comparisons between the 50% able-bodied MIF values and 

the means of the identified MIF values for each subject. The p values from these t tests are 

shown in Table 4.

Of the 44 muscle groups estimated over 5 subjects, 33 of the estimates were significantly 

greater than the 50% able-bodied estimate (p < 0.05) using this two-sided t test. With a 

higher degree of significance (p < 0.01), the number of significantly different MIF values is 

reduced to 22. Up to 50% of the muscle groups still showed significant differences in the 

MIF values between the value estimated from able-bodied quantities and the ones 

determined by the subject-specific identification process.

4 Discussion

MIF estimates currently used in musculoskeletal modeling for SCI are based entirely on 

assumptions about the relative strength of SCI muscles to able-bodied muscles. Able-bodied 

estimates of MIF themselves also vary substantially depending on the method used. This 

paper outlines estimates for SCI muscles of the trunk and hip that are subject-specific and 

can be used in place of the assumed values when designing musculoskeletal models for the 
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subjects tested, allowing for models that will be able to more properly mimic the stimulated 

motions of these subjects.

Initial analysis with individual implanted muscles alone resulted in unusually high MIF 

estimates, pointing to the possibility that stimulation was spilling over to other neural 

structures, resulting in co-activation of synergistic muscles that provided additional force. To 

accommodate the potential for co-activation or spillover to multiple muscles, the muscle 

groupings in Table 3 were chosen instead of using only the muscle targeted for activation in 

the musculoskeletal model. During the experiments, there may have been some spillover 

from the stimulated nerves which lead to the innervation of surrounding muscles [26, 27]. In 

the case of the spillover in these trials, the additional muscles are synergistic, so they would 

likely also act in the same direction as intended. This addition of muscle groups also 

addressees the assumption that the targeted muscle is the one that is activated, when it could 

be a combination of synergistic muscles functioning together. The suggested muscle 

groupings consider the muscles which are most likely to receive spillover stimulation due to 

the proximity of their innervating nerve branches. By comparing the whole group rather than 

only the individual muscle targeted for activation, the effects of spillover should be more 

accurately accounted for in the results.

The able-bodied MIF values were calculated by multiplying the specific tension specified in 

Wilkenfeld et al. [32] with the PCSA of the muscles of the gluteus maximus, upper legs [9], 

and lumbar trunk [11]. In the current study, 75% of the muscle groups resulted in MIF 

values that were statistically significantly larger than the common assumption that the MIF 

for SCI muscles are around 50% of able-bodied values. This suggests that using such an 

assumption for the force-generating capabilities of stimulated muscles after SCI could lead 

to an underestimation of the values in general.

The methods of estimating able-bodied MIF by multiplying PCSAwith specific tension are 

themselves associated with a lot of uncertainty, both in the PCSA values and in the values of 

specific tension. In the optimizations conducted by Garner and Pandy with able-bodied 

subjects [14], the PCSA values obtained were generally larger than the values from the 

literature. In addition, the PCSA value for the same muscle could vary substantially 

depending on the method of estimation [33]. Delp et al. [10] inspected cadavers to describe 

the anatomy of lumbar muscles (quadratus lumborum, erector spinae, rectus abdominus) and 

predict their moment generating capacities. The values for the PCSA reported were smaller 

than values found using imaging techniques like those completed by Tracy et al. [11]. 

Similarly, the specific tension, the other component of MIF, also has a rather large variance 

in its possible values. In vivo tests [8] and simulations [34] show that specific tension has 

been found to lie anywhere between 62 and 155 kN/m2. As a result, the MIF variance for 

able-bodied values is even greater.

Calculating model parameters like MIF via a musculoskeletal model requires that the model 

itself is robust enough to be insensitive to slight changes in the model parameters. Were the 

model too sensitive, there would likely be large variations in the estimates and the results 

would be difficult to trust. Valente et al. [35] examined the robustness of subject-specific 

musculoskeletal models to see how they responded to uncertainties in parameter 
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identification. That study showed that the uncertainties in parameter identification only have 

a moderate effect on model predictions, and that there were no crucial parameters required 

for model estimation. Although the study was inconclusive about the robustness of the 

model, it did find that there was a low probability for the uncertainty to be on the same 

magnitude as the output values, suggesting that calculating model parameters using the 

musculoskeletal model can be an effective technique. That study, however, was performed 

with a musculoskeletal model in gait, meaning the number of degrees of freedom was higher 

than compared with our study.

The 50% assumption that has been commonly applied appears to be smaller than is required 

to represent the muscle outputs for the individuals with SCI participating in this study. With 

the results of the current study, it is possible to create an estimate which is a function of 

able-bodied values for MIF and more closely matches the identified MIF values. An 

estimate of 65% of the able-bodied value is much closer to matching the identified values 

displayed in Fig. 5 a, b resulting from the experiments described. If this estimate is used, the 

number of significantly (p < 0.05) different MIF estimate values is reduced substantially: 

only 14 of the 44 muscle groups, compared with 33 of 44 with the 50% estimate.

There are several limitations in the current study. The musculoskeletal model utilized in the 

system identification is based on the work of Lambrecht et al. [20], which has several 

assumptions that are also present in the current study. One such assumption is that the pelvis 

does not rotate in the coronal plane during lateral bending movements of the trunk. This was 

implemented experimentally by strapping the thighs to the chair. Despite these efforts, there 

is still a possibility that there was some amount of pelvic roll that was unaccounted for in the 

results. Another limitation is that muscle fatigue was not accounted for within the model. To 

minimize the effects of fatigue in the experiments, the subjects were given ample time to rest 

(5 min) between trials and used only a few (3–5) cycles of trunk movement in each trial.

A third limitation, which is common in the solving of most optimization problems, is the 

potential of landing in a local rather than a global minimum. In the current study, several 

optimization algorithms were considered such as pattern search and gradient descent. In the 

final analysis we chose to use a genetic algorithm because it has a much higher potential to 

find a global minimum with a large search space while also reaching a solution relatively 

quickly [36].

One final limitation that may have had an impact on the results is the time following 

implantation. The users had a variable amount of time with the implant before the beginning 

of this study that ranged from 2 to 20 years. It is possible that the time spent using an 

implanted FNS system may have an impact on the MIF when compared with typical SCI 

subjects without access to a means to stimulate.

5 Conclusions

We estimated the MIF of trunk and hip muscles for 5 subjects with implanted 

neuroprosthesis systems through dynamic optimizations of a musculoskeletal model. These 

estimates were greater than the 30–50% able-bodied values typically assumed in previous 
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musculoskeletal modeling studies. With these subject-specific estimates, future 

musculoskeletal modeling work can be more subject-specific. This may allow for tuning and 

testing of controllers in simulation that will reduce the need of testing with subjects in the 

loop. With improved controllers, the functionality and performance of implanted 

neuroprostheses can continue to be improved.

The results of the current study also support the feasibility of using system identification of a 

musculoskeletal model to estimate the MIF values for the paralyzed muscles of individuals 

SCI. Adapting this technique of dynamic optimization to other model parameters is an area 

of continuing investigation.
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Fig. 1. 
Schematic of trunk self-righting control system showing subject seated in work volume of 

motion capture cameras. Two computers (target and host) manage the real-time environment 

for the experiments. Settings for the tilt sensor are defined as OE for the extension threshold 

and OF for the flexion threshold. Experiments were conducted with trunk tilt in the sagittal 

and coronal planes. The ECU generates the stimulation inputs to the implanted and surface 

electrodes, which are modulated depending on the signal from the tilt sensor. The xPC host-

target environment allowed for real-time control during the experiment
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Fig. 2. 
The optimization loop in the computer simulation component. A genetic algorithm is used as 

the optimization algorithm. XS represents the kinematics from the simulation and XE 

represents the kinematics from the experiments. Once the exit condition is reached, the 

solution outputs the MIF estimates and final kinematics from the musculoskeletal model
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Fig. 3. 
Typical variation of trunk tilt as a function of time (not to scale). With trunk supported in 

erect posture with baseline stimulation, it starts to fall freely until the flexion threshold is 

reached. Thereafter, maximum stimulation is applied which arrests the fall and starts to 

return the trunk toward erect. Maximum stimulation varies between 50 and 250 μs 

depending on the subject and muscle. Once tilt returns to the extension threshold, baseline 

stimulation is resumed. Portions covered by red box depict the portion of the trial being 

analyzed (a cycle). The cycle makeup is 1% before maximum stimulation is applied, 49.5% 

during maximum stimulation, and 49.5% after maximum stimulation
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Fig. 4. 
Plots of the joint angle outputs from S-2 in all three directions of lean: a Forward flexion in 

the sagittal plane (N = 14), and b leftward lateral bending (N = 13) and c rightward lateral 

bending (N = 10) in the coronal plane. The three joint angles are pelvic pitch, lumbar pitch, 

and lumbar bend. The blue lines are the means of the joint angle from the experimental trials 

and the red lines are the results from the simulation. The dashed lines are 1 standard 

deviation from the means
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Fig. 5. 
Maximum isometric force (MIF) estimates for each subject compared with the 50% able-

bodied estimate for each muscle group on the a left and b right. Error bars are given for each 

identified value. For subjects that do not have a certain muscle group stimulated, the MIF 

estimate is blank. Significance bars and asterisks are shown which indicate the significance 

of the difference from the identified values with the 50% able-bodied estimates are shown (p 
< 0.05)
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Table 4

The p values for the comparison between the identified MIF values and the 50% able-bodied values using a 

two-tailed t test for each muscle group. If the muscle group is not active for a subject, the corresponding cell is 

a left blank. The cells are shaded in if p < 0.05

p values for identified MIF vs. 50% able-bodied

Muscle groups S-1 S-2 S-3 S-4 S-5

Left Trunk Benders 0.0220 0.2137 0.0001 0.0124 0.0014

Left Trunk Extensors 0.0096 0.0072 0.0003 0.0128 0.0001

Left Hip Adductors 0.1921 0.1386 0.0711 0.4729

Left Hip Flexors 0.0559 0.0000

Left Hip Extensors 0.0057 0.0014 0.0711 0.0430 0.0045

Left Hamstrings 0.0180

Right Trunk Benders 0.0097 0.0461 0.1179 0.6438 0.0046

Right Trunk Extensors 0.0019 0.0055 0.0014 0.2147 0.0002

Right Hip Adductors 0.0264 0.0344 0.0078 0.0220

Right Hip Flexors 0.0043 0.0011

Right Hip Extensors 0.0059 0.0228 0.0279 0.0549 0.0040

Right Hamstrings 0.0046
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