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Twenty-four hours after administration, ketamine exerts rapid and robust antidepressant effects that are thought to be mediated by
activation of the mechanistic target of rapamycin complex 1 (mTORC1). To test this hypothesis, depressed patients were pretreated
with rapamycin, an mTORCT1 inhibitor, prior to receiving ketamine. Twenty patients suffering a major depressive episode were
randomized to pretreatment with oral rapamycin (6 mg) or placebo 2 h prior to the intravenous administration of ketamine 0.5 mg/kg
in a double-blind cross-over design with treatment days separated by at least 2 weeks. Depression severity was assessed using
Montgomery-Asberg Depression Rating Scale (MADRS). Rapamycin pretreatment did not alter the antidepressant effects of ketamine
at the 24-h timepoint. Over the subsequent 2-weeks, we found a significant treatment by time interaction (Fg 45 = 2.02, p = 0.04),
suggesting a prolongation of the antidepressant effects of ketamine by rapamycin. Two weeks following ketamine administration, we
found higher response (41%) and remission rates (29%) following rapamycin + ketamine compared to placebo + ketamine (13%, p =
0.04, and 7%, p = 0.003, respectively). In summary, single dose rapamycin pretreatment failed to block the antidepressant effects of
ketamine, but it prolonged ketamine’s antidepressant effects. This observation raises questions about the role of systemic vs. local
blockade of mTORCT1 in the antidepressant effects of ketamine, provides preliminary evidence that rapamycin may extend the benefits
of ketamine, and thereby potentially sheds light on mechanisms that contribute to depression relapse after ketamine administration.

Neuropsychopharmacology (2020) 45:990-997; https://doi.org/10.1038/s41386-020-0644-9

INTRODUCTION

Ketamine is an N-methyl-p-aspartate receptor (NMDAR) antagonist
that exerts rapid and robust antidepressant effects [1, 2]. The
antidepressant effects may emerge within hours of a single dose,
but without additional ketamine doses, relapse typically occurs in
3-14 days [3-5]. Ketamine and its metabolites are believed to
exert antidepressant effects primarily by inducing a prefrontal
glutamate neurotransmission surge leading to activation of
synaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
glutamate receptors (AMPARs), which increases brain-derived
neurotrophic factor (BDNF) levels, enhances stimulation of TrkB
receptors, activates the mechanistic target of rapamycin complex
1 (mTORC1), and produces synaptogenesis [6-9]. Several pre-
clinical studies have shown that ketamine administration increases
mTORCT1 signaling [10-13], but there are non-replications of this
finding [14, 15]. Most importantly, a single infusion of rapamycin
into the medial prefrontal cortex (PFC) prior to ketamine injection
in rodents was reported to block the neuroplasticity and
antidepressant-like effects of ketamine [10, 16].

The current study was designed to test the hypothesis that the
antidepressant effects of ketamine are mediated by activation of
mTORC1 by evaluating whether the antidepressant effects of
ketamine, observed in depressed patients 24 h after administra-
tion, are blocked by pretreatment with the mTORC1 inhibitor,

rapamycin. Following an experimental paradigm derived from
animal research [10, 16], we aimed to demonstrate in patients
the observation that rapamycin blocks the antidepressant-like
effects of ketamine [10, 16].

In initial test of the mTORC1 hypothesis of ketamine effects in
humans, we were aware of two important concerns. First, we
wished to test a rapamycin dose that would be tolerable
to research subjects, raising the possibility that underdosing of
rapamycin might affect findings. Second, rapamycin has power-
ful anti-inflammatory effects that might directly produce anti-
depressant effects [17-21] that might confound interpretation of
the study findings. Because the anti-inflammatory effects of
rapamycin might augment those of ketamine [22] and enhance
treatment efficacy, we followed patients for 2 weeks after each
ketamine dose.

Using a randomized placebo-controlled cross-over design,
rapamycin was administered as a single 6 mg dose prior to
ketamine infusion. In several species, preclinical studies have shown
that rapamycin crosses the blood brain barrier, as measured by
rapamycin levels in the cerebrospinal fluid and brain tissues, or by
the inhibition of brain mTORC1 signaling [23-26]. Moreover, within
2h following peripheral rapamycin administration, one study
reported decreased phosphorylation of S6 ribosomal protein in
brain tissues—a pharmacodynamic readout of mTORC1 inhibition
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[15]. Furthermore, the immunosuppressive effect of rapamycin is an
mTORC1-dependent process [27] and rapamycin was shown at
therapeutic doses in humans to cross the brain blood barrier and to
reduce the phosphorylation of S6 ribosomal protein in brain tissue
[28, 29]. Therefore, the rapamycin dose and timing were selected
based on the drug pharmacokinetics to ensure, at the time of
ketamine administration, blood concentration of 5-20ng/mL,
a level that exhibits potent immunosuppression [29]. Consistent
with the hypothesized mechanism of action of ketamine, we
predicted that rapamycin would reduce the antidepressant effects
of ketamine.

MATERIALS AND METHODS

Study design

All study procedures were approved by institution review
boards at Yale and Connecticut Veteran Affairs Hospital, and
all participants completed an informed consent process prior to
enrollment (ClinicalTrials.gov: NCT02487485). A Data and Safety
Monitoring Board (DSMB) oversaw the study protocol and
monitored the study progress. The clinical trial included two
study phases (I and II).

In phase | (September-December 2015), three participants
received open-label oral rapamycin (a.k.a. sirolimus) followed 2 h
later by open-label intravenous ketamine. Participants remained
on the research unit for at least 10 h following the administration
of rapamycin and were discharged upon clearance by the
covering physician. The aim of phase | was to qualitatively assess
the safety and feasibility of the co-administration of rapamycin
and ketamine. The three participants tolerated the rapamycin +
ketamine combination well, without any residual symptoms or
unexpected adverse events. Therefore, the study proceeded to
phase II.

In phase Il (June 2016-February 2018), 23 participants
were randomized to first receive either rapamycin or placebo,
followed 2 h later by open-label ketamine (see CONSORT Diagram
in Supplementary material). Phase Il was a double-blind, placebo-
controlled, cross-over design with at least 2 weeks between
Infusion 1 (i.e, 1st treatment day) and Infusion 2 (i.e, 2nd
treatment day). Randomization assignments were generated
and assigned by the research pharmacist according to a block
randomization with block size of six. Individuals, clinicians,
investigators, and research staff were blinded to randomization
assignments. Depression severity no less than 80% of baseline was
required prior to proceeding with Infusion 2. If the participant did
not meet this severity criteria, the infusion 2 was rescheduled until
the following week. Participants who received placebo on Infusion
1 received rapamycin on Infusion 2, and vice-versa. Both study
phases used an oral single-dose of 6 mg rapamycin in liquid form,
diluted in orange juice to maintain the blinding, and ketamine
0.5 mg/kg intravenously infused over 40 min. Ketamine adminis-
tration and monitoring was comparable to previous studies
[1, 2, 30]. Preplanned interim analysis of the first six subjects
confirmed that the rapamycin level is reaching therapeutic levels.
Hence, the study continued randomization without rapamycin
dose adjustments. Participants were assessed up to 2 weeks
following each Infusion.

Study criteria

The study enrolled subjects between the age of 21 and 65 years,
recruited through advertisement and referrals from outpatient
clinics. Participants were (1) diagnosed with current major
depressive episode, (2) had a history of non-response to at least
one adequate antidepressant trial, (3) were unmedicated or on a
stable antidepressant or psychotherapy for at least 4 weeks prior
to randomization, then during the study, (4) had a MADRS =18
prior to randomization, (5) females were not pregnant or
breastfeeding and were on a medically acceptable contraceptive
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method, (6) were able to read, write, and provide written informed
consent, (7) did not have psychotic disorder or features, or current
manic or mixed episodes, (8) did not have an unstable medical
condition, (9) did not require prohibited medications (see Table S1
in Supplementary material), (10) did not have urine drug screen
positive for cannabis, phencyclidine, cocaine, or barbiturates, (11)
had no substance dependence within 3 months, (12) had no
known sensitivity to rapamycin, ketamine, or heparin as reported
by the subjects, and (13) had resting blood pressure higher than
85/55 and lower than 150/95 mmHg, and heart rate higher than
45/min and lower than 100/min.

Outcomes

Assessment measures included: (1) the Mini International Neu-
ropsychiatric Interview (MINI) to determine the diagnosis, (2)
Montgomery Asberg Depression Rating Scale (MADRS) as primary
outcome of depression severity, (3) Quick Inventory of Depressive
Symptoms Self-Report (QIDS-SR) and Hamilton Anxiety Rating
Scale (HAMA) as secondary measures of depression and anxiety
severity, respectively, (4) Clinician Administered Dissociative States
Scale (CADSS) and Positive and Negative Symptom Scale (PANSS),
as safety measures of the psychotomimetic effects of ketamine, (5)
rapamycin level immediately before starting ketamine and ~4 h
later, (6) ketamine level before the end of each infusion and (7)
high-sensitivity C-reactive protein (CRP) and erythrocyte sedimen-
tation rate (ESR) prior to randomization to examine whether
baseline inflammatory markers affect the antidepressant response
to ketamine.

The study a priori primary outcome was MADRS. Response was
defined as 50% improvement, and remission was defined as
MADRS < 10 [31]. MADRS scores were measured immediately prior
to rapamycin and placebo administration, and after starting
ketamine infusion at 1, 2, 4 h, 3 days, 5 days, 1 week, and 2 weeks.

Statistics

Descriptive statistics (means, standard deviations, and frequen-
cies) were calculated prior to statistical analysis. Data distribu-
tions were checked using normal probability plots. Outcome
variables were analyzed using mixed models with fixed effects of
treatment (rapamycin vs. placebo), time (appropriate time points
during Infusions 1 and 2), the interaction between treatment and
time, and order (placebo first vs. rapamycin first). The best-fitting
variance—-covariance structure for each model was selected
based on the Schwartz’ Bayesian Information criterion. Interac-
tions between order and the other factors were checked
for significance but not included in the final models for
parsimony. Similarly, the effects of the variables CRP and ESR
(log-transformed) were checked for significance, but since these
were non-significant, they were removed from the final models.
Post-hoc tests were used to interpret significant effects in the
models: comparisons of treatment conditions by time-point for
significant rapamycin by time interactions, and pairwise compar-
isons of time points for significant main effects of time. Least-
square means and standard errors by treatment and by time
were used for visualization of results. The response and remission
rates were compared between treatments using McNemar test.
Effect size (Cohen’s d’) was calculated as the mean of the within-
subject difference over its standard deviation. Correlation
analyses explored the relationship between rapamycin level
and improvement in depression severity. All tests are two-tailed
with significance set at p < 0.05.

The sample size was targeted based on feasibility within the
3-year funding available for this discovery phase project. Initially, we
aimed to randomize 30 subjects in 3 years. The targeted sample
provides 80% power for detecting ketamine-rapamycin differences
of moderate size (Cohen’s d’ = 0.55), assuming a two-tailed alpha =
0.05. However, we had a 1-year delay in starting randomization due
to the addition of Phase 1 and the need for an investigational new
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drug exemption, both of which were requested by the institution
review board. Thus, we were able to randomize a total of 23
patients in 2 years, 20 of them were included in the analysis. With
20 individuals, under the same assumptions, the detectable effect
size is d'=0.68. Following randomization, one participant was
excluded from the primary analysis due to receiving high dose
hydrocortisone the night before randomization and the DSMB was
informed accordingly. The decision to exclude the participant was
made prior to compiling and unblinding the study data. However,
for full transparency, a secondary analysis including this participant
was conducted and reported in the Supplementary material.
The results were found to be comparable to those of the primary
analysis.

RESULTS

Participants

As detailed in the CONSORT Flow Diagram (see Supplementary
material), 23 of the 57 assessed for eligibility were randomized
and 20 participants were included in the analysis (2 subjects did
not meet study criteria the morning of the first treatment day, and
1 subject received high dose hydrocortisone the night of the
treatment day). As detailed in Table 1, the 20 participants were 8
men and 12 women, with mean (£SEM) age = 42.8 (+£2.8) years,
BMI = 27.2 (+1.3) kg/m? CRP =24 (+0.8) mg/L, ESR=11.5 (¥2.3)
mm/h, pre-infusion rapamycin = 26.5 (+2.4) ng/mL, and 4 h post-
infusion rapamycin = 9.9 (+1.0) ng/mL. There was no difference in
ketamine level between study arms (mean + SEM placebo =125 +
13ng/mL vs. rapamycin=115+16ng/mL, df=17, p=0.63).
Recruitment and follow-up were conducted between September
2015 and February 2018.

Table 1. Demographics and clinical characteristics.

Patients (n = 20)

Age (mean = SEM)

Women

Race (white)

Education (mean + SEM)

BMI (mean + SEM)

CRP (mean + SEM)

ESR (mean + SEM)

T-0 h Rapamycin (mean + SEM)
T-4 h Rapamycin (mean + SEM)
Concomitant medications

Family psychiatric history

Psychiatric hospitalization history

Treatment failures (mean + SEM)

42.8 +2.8 years

12

15

8.4+ 0.3 years

27.2 £ 1.3 kg/m?
24+08mg/L
11.5+£23mm/h

26.5 (+2.4) ng/mL

9.9 (£1.0) ng/mL

None (N=1)

SRI (N=14)

Mood stabilizer or SGA (N = 3)
Other antidepressants (N =5)
Stimulants (N=2)

Sedatives (N=7)

Other psychotropics (N = 3)
Non-psychotropics (N = 10)?
8

12

5.1 (x0.9)

hypothyroidism.

SEM standard error of means, BMI body mass index, CRP C reactive protein,
ESR erythrocyte sedimentation rate, T-0 h immediately prior to ketamine
infusion, T-4 h four hours post infusion, SR/ serotonin reuptake inhibitor,
SGA second generation antipsychotics.

®Non-psychotropics were primarily for diabetes, hypertension, GERD, or
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Treatment effects on MADRS

MADRS was selected a priori as the primary outcome. There was a
statistically significant interaction between treatment and time
(Fig245)= 2.0, p = 0.04, Fig. 1a), with significant differences between
rapamycin and placebo at day 3 (p =0.04), and at day 5 (p = 0.02).
There was also a significant main effect of time (Fg45)=43.5, p <
0.0001), demonstrating significant decrease in MADRS scores from
baseline, with the highest numerical mean difference achieved at
24 h (175 £ 1.4) and then gradually reduced until 2 weeks (8.5 + 1.7).
However, the mean MADRS scores at 2 weeks remained significantly
lower than baseline following both placebo (Cohen’s d’= 0.5; mean
difference (£SEM)=>5.7 (+2.5), t(45)=2.3, p=0.02) and rapamycin
treatments (Cohen’s d’= 1.0; mean difference (+SEM) =114 (+2.4),
tpasy =47, p <0.0001; Fig. 1a). There was no significant main effect
of treatment (Fg 45y = 14, p = 0.24) and the effects of the variables
CRP and ESR were non-significant (p > 0.1). At 24 h, the response
(72%; N=13) and remission (50%; N =9) rates following placebo
were comparable to post rapamycin treatment (76%; N =13 and
65%; N=11, p>0.05). In contrast, at 2 weeks, the response (13%;
N = 2) and remission (7%; N = 1) rates following placebo were lower
than response (41%; N = 7; Figs. 1b and 2) and remission (29%; N =
5) rates following rapamycin treatment (p=0.04 and p =0.003,
respectively).

Treatment effects on QIDS-SR and HAMA

There was a significant main effect of time on QIDS-SR (F(g236) = 7.1,
p <0.0001; Fig. S1), demonstrating significant decrease in QIDS-SR
scores from baseline, with the highest numerical mean difference
achieved at day 3 (5.2+1.2) and then gradually reduced until
2 weeks (2.1£1.1). The mean QIDS-SR scores at 2 weeks remained
significantly lower than baseline following rapamycin treatment
(Cohen’s d’=0.5; mean difference (+SEM)=3.5 (+1.5), t3s =24,
p=0.02), but not following placebo (Cohen’s d'=0.1; mean
difference (+SEM)=0.7 (£1.5), t36)= 0.5, p=0.64; Fig. S1). There
was no significant main effect of treatment (Fg236 = 0.3, p=0.57)
or interaction between treatment and time (Fg3 = 0.5, p = 0.87).
At 24 h, there were no significant differences (p > 0.9) in the rate of
patients who showed 50% improvement on QIDS-SR (placebo +
ketamine: 44% vs. rapamycin + ketamine: 47%). However, there was
a significantly higher rate of patients (p <0.05) who showed 50%
improvement on QIDS-SR at 2 weeks following rapamycin +
ketamine (38%), compared to placebo + ketamine (8%).

There was a significant main effect of time on HAMA (F4,141) =
31.2, p<0.0001), demonstrating significant decrease in HAMA
scores from baseline, with the highest numerical mean difference
achieved at 4h (9.9+1.0) and then gradually reduced until
2 weeks (3.0+1.2). The mean HAMA scores at 2 weeks was not
significantly different compared to baseline following both
placebo (Cohen’s d’=0.4; mean difference (+SEM)=3.0 (+1.8),
taan = 1.6, p=0.11) and rapamycin treatments (Cohen’s d'=0.4;
mean difference (+SEM) =3.1 (x1.7), ty41)=1.9, p=0.07). There
was no significant main effect of treatment (F; 147y = 0.2, p = 0.68)
or interaction between treatment and time (Fi4,141) = 0.7, p = 0.63).

Adverse effects

There was a significant main effect of time on CADSS (F,95 =
18.9, p<0.0001), demonstrating significant increase in CADSS
scores during infusion, which returned to baseline 2h post
infusion (Fig. 3a). There was no significant main effect of treatment
(Fi2,05y= 0.2, p=0.67) or interaction between treatment and time
(F(2'95) = 05, p= 060, Flg 3b)

There was a significant main effect of time on PANSS-positive
(F,82y=11.3, p<0.0001), demonstrating significant increase in
PANSS-positive scores during infusion, with significant reduction
2 h post infusion (Fig. 3a). There was no significant main effect of
treatment (F,,82 = 0.3, p = 0.57) or interaction between treatment
and time (F82 = 1.9, p=0.15; Fig. 3c). There was a significant
main effect of time on PANSS-negative (Fi252 = 11.9, p <0.0001),
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demonstrating significant reduction 2h post infusion (Fig. 3a).
There was no significant main effect of treatment (Fp 2 = 0.2, p =
0.68) or interaction between treatment and time (F g5 =0.3, p=
0.73; Fig. 3d).

Participants in Phase 1 tolerated the combination treatment
with no serious or unexpected adverse events. The study drug
effects were clinically comparable to previous ketamine studies
and there was no need for the extended monitoring of 10h.
Therefore, we proceeded with the second phase double-blind
randomization and participants were discharged with transporta-
tion to home after medical clearance and completion of the last
assessment on each treatment day. The adverse events during
Phase 2 are reported in Table S2. There were no serious adverse
events. New onset adverse events were mostly mild and transient.
There were no reports of persistent adverse events. The most
frequent adverse events were fatigue, headaches, nausea, and
pain. A total of 37 events were reported, 21 of which were
reported by four participants.

DISCUSSION

This study yielded two surprising, but potentially important, clinical
observations. First, this study failed to validate the prediction from
preclinical studies [10, 16], in that rapamycin pretreatment did not
reduce the acute antidepressant effects of ketamine at 24h
following treatment. At 24 h, the depression scores and response
rates were highly comparable between study arms. Second,

Neuropsychopharmacology (2020) 45:990 - 997

rapamycin pretreatment increased the response and remission rates
at 2 weeks (Fig. 1b), suggesting that this treatment approach may
prolong the antidepressant effects of ketamine. This conclusion is
supported by the statistically significant drug by treatment
interaction effect on the primary outcome MADRS, showing overall
larger reduction in depression scores following rapamycin pretreat-
ment (Fig. 1a). Additionally, the Cohen’s d’ effect size at 2 weeks post
rapamycin was 1.0, compared to 0.5 following placebo pretreatment
(Fig. 1a). Moreover, the reduction in QIDS-SR scores (secondary
outcome) at 2 weeks were significant following rapamycin, but not
placebo pretreatment. As well as the response rate using QIDS-SR
which was significantly higher at 2 weeks following rapamycin
treatment. However, it is important to note the lack of significant
difference at 1 week which may indicate a fluctuating course, or it
may be related to the relatively small sample size.

While preliminary in nature, the unanticipated finding of
prolonged response is highly important considering the urgent
need for treatment approaches to prolong the antidepressant
effects of ketamine and other rapid-acting antidepressants. While
infusions of ketamine 2-3 times per week have been shown to
afford clinical benefit during an induction period, less frequent
administration is preferable to reduce the patient burden,
adverse events, and drug abuse liability. Additionally, rapamycin
pretreatment appears to have no effects on the blood level,
the anxiolytic or the psychotomimetic effects of ketamine.
This suggests that the prolongation of the antidepressant effects
was not a consequence of increased blood levels of ketamine
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or changes in the subjective response to ketamine. Overall,
rapamycin and ketamine were well tolerated with no serious
adverse events.

Why did peripherally administered rapamycin fail to block the
antidepressant effects of ketamine?

In humans, we are not able to administer rapamycin intracortically
to fully parallel the preclinical reports. Further, we limited
exposure to rapamycin to a loading immunosuppressant dose,
which was selected on the basis of being the highest dose one
could administer without exposing subjects to a risk of side effects
associated with higher doses [32]. However, we believed that it
was important to test whether systemic mTORC1 inhibition blocks
the antidepressant effects of ketamine in humans because: (1) The
immunosuppressant effects of rapamycin are mTORC1-dependent
[27]1. (2) There are preclinical and clinical reports providing
evidence that peripherally administered rapamycin crosses the
blood brain barrier and actively inhibit brain mTORC1 signaling
[23-26, 28, 29]. (3) Acute single dose of rapamycin administered
peripherally was shown to inhibit mTORC1 in the brain within 2 h
of administration in rodents [15]. This body of information justified
testing whether an immunosuppressant dose of rapamycin would
be sufficient to block the antidepressant effects of ketamine in
depressed patients. The current study findings rejected this
hypothesis. However, it remains plausible that higher oral doses
of rapamycin or intracortical local administration of rapamycin is
required to inhibit the antidepressant effects of ketamine. Indeed,
there are preclinical studies demonstrating inhibition of the
ketamine effects following intracortical, but not peripheral
administration of rapamycin (e.g., refs. [10, 15]). Moreover, rodent
and human evidence show region-specific neuroplasticity effects
of ketamine consistent with increased synaptic connectivity in the
PFC and hippocampus, but decreased synaptic connectivity in the
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nucleus accumbens (NAc) [33, 34]. The opposing changes in
neuroplasticity were independently related to successful ketamine
treatment [33]. Therefore, the failure of systemic rapamycin may
be due to comparable reduction in synaptic formation in both the
PFC and NAc. This hypothesis is particularly relevant considering
recent evidence showing plasticity-independent acute antidepres-
sant effects of ketamine [35].

While the rapamycin dose and route of administration provides
a putative explanation for the discrepancy between human and
animal data, other alternative possibilities should be considered. In
particular, the validity of the preclinical model of depression that
gave rise to the mTORC1 hypothesis. Unfortunately, results from
preclinical models do not always translate into evidence in human
clinical trials. At least partially, this may be due to the complexity
of depression, which is an episodic illness with some genetic
component, compared to the rodent models which are mostly
stress related. In light of the current results, the route of
administration and the validity of related basic models should
be carefully considered in the ongoing effort to target mTORC1 for
novel treatment development, especially considering that anti-
depressant medications are often administered peripherally.
Finally, recent studies have shown plasticity-independent acute
antidepressant effects [35] and other studies suggested that some
of the clinical benefit of ketamine can be attributed to non-
specific effects of the treatment [36]. Thus, rapamycin would not
necessarily inhibit these plasticity-independent and off-target
effects.

Why are the antidepressant effects of ketamine transient and why
are these effects prolonged by rapamycin?

One possibility suggested by this study is that ketamine treats
depression without resolving underlying processes, such as
inflammation, that produce synaptic elimination and undermine
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the antidepressant effects of ketamine. This hypothesis pre-
sumes that the expression of the antidepressant effects of
ketamine depends upon sustaining the newly made synapses
[6, 37]. The anti-inflammatory effects of rapamycin may protect
these synapses and thereby extend the antidepressant effects of
ketamine.

A second possibility is that rapamycin prolongs the anti-
depressant effects of ketamine by enhancing autophagy.
Neuronal plasticity is thought to be critical in the pathology
and treatment of depression, particularly in the mechanisms of
rapid acting antidepressants [7]. Autophagy, which is regulated
by mTORC1, plays an essential role in normal cellular plasticity,
by degrading and recycling toxic or dysfunctional cellular
components. Recent evidence implicates autophagy in the
mechanisms of antidepressants [38]. Moreover, rapamycin and
other autophagy enhancers were previously shown to exert
antidepressant-like effects in preclinical studies [39, 40]; although
the effects of rapamycin were evident following repeated, but
not acute administration [15, 39, 40].

LIMITATIONS AND STRENGTHS

As a first-in-humans study, the study sample was based on feasibility
and funding availability rather than a priori knowledge of effect size.
Therefore, the lack of treatment by time interaction for QIDS-SR may
be the result of insufficient power to demonstrate a significant effect
on this self-report measure of depression severity, which tends to
have higher variability. Consistent with this possibility, the QIDS-SR
Cohen's d' effect size at 2 weeks post rapamycin was 0.5, compared
to only 0.1 following placebo treatment (Fig. S1). Moreover, the
response rate using QIDS-SR was also significantly higher at 2 weeks
following rapamycin + ketamine compared to placebo + ketamine.
Based on our observation in the first phase of the study, we did not
ask the participants to guess their treatment in Phase 2, as it was
evident that the patients were unable to identify a rapamycin taste
in the juice and the side effects were comparable to those seen in
previous ketamine studies. Future studies may consider the benefit
of adding an objective measure to determine the efficacy of the
blinding. Additionally, we did not examine whether ketamine
metabolites (e.g., hydroxynorketamine) were affected by rapamycin,
subsequently leading to the prolonged antidepressant effects.
However, both ketamine and rapamycin have been in clinical use
for a long time with no known reported or theoretical metabolic
interactions; particularly because rapamycin is metabolized by
CYP3A4, while ketamine is primarily metabolized through CYP2B6.
Finally, although rapamycin reached therapeutic levels, future
studies are encouraged to investigate cerebral spinal fluid levels of
rapamycin to determine whether its relapse prevention effects are
through central or peripheral mechanisms.

A main strength of the study is the attempt to investigate an
essential mechanistic pathway, that has been so far implicated in
the pathology and treatment of depression based primarily on
preclinical evidence. Other strengths of the study include a
double-blind randomized placebo-controlled cross-over design.
Here, it is important to underscore that, to our knowledge, the
current study is one of the largest cross-over ketamine studies in
depression [2, 30, 41, 42]. In contrast to parallel groups design
[1, 43, 44], cross-over ketamine studies required smaller samples
because of the robust effects of ketamine and the rapid relapse,
leading to increased statistical power to detect significant within
subject differences. In fact, for the first 12 years following the
discovery of the antidepressant effects of ketamine all controlled
studies were mainly cross-over and smaller in size compared to
the current study [2, 30, 41, 42]. However, similar to the ketamine
discovery, it remains critical that the current rapamycin +
ketamine findings are replicated in future independent trials.

Finally, the fact that the immune system is involved in both
depression pathology as well as in resilience and depression
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recovery [45] creates a major challenge in the field, emphasizing
the need to target a “sweet spot” that will oppose the negative
effects of inflammation while avoiding the inhibition of its
neuroregulatory function [45]. Therefore, an essential strength of
the study is the use of combined therapy, instead of monotherapy
or add-on approaches that were used in the past [19]. If
successfully developed as one drug administration every 7-14 days,
combined therapy will overcome many of the shortcomings of
anti-inflammatory monotherapy/add-on approaches, particularly
that the effect appears to be independent of pretreatment
exaggerated inflammatory state (i.e., no CRP or ESR effects), which
was suggested to be necessary for successful monotherapy/add-on
approaches [46].

CONCLUSION

The administration of a single dose of rapamycin, reaching blood
levels known to induce potent immunosuppression, does not
inhibit the rapid acting antidepressant effects of ketamine at 24 h
post treatment. Intriguingly, the immunosuppressant rapamycin
prolonged the antidepressant effects of ketamine, and increased
the response and remission rates at 2 weeks following treatment.
This preliminary evidence requires replication in future studies.
To date, preclinical and clinical studies based on the synaptic
model of depression have largely focused on the transient
alteration in synaptic density. Future studies providing greater
insight into the mechanisms of synaptic density stabilization and
approaches to target autophagy may provide novel target for
drug development and could ultimately lead to depression cure
rather than treatment.
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