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Development of a tunable method 
to generate various three-
dimensional microstructures by 
replenishing macromolecules such 
as extracellular matrix components 
and polysaccharides
Fumiya Tao1, Kanae Sayo1, Kazuyuki Sugimoto2, Shigehisa Aoki   3 & Nobuhiko Kojima1*

Multicellular spheroids (spheroids) are expected to be a promising approach to mimic in vivo organ 
functions and cell microenvironments. However, conventional spheroids do not fully consider 
the existence of extracellular matrices (ECMs). In this study, we developed a tunable method for 
replenishing macromolecules, including ECM components and polysaccharides, into spheroids 
without compromising cell viability by injecting a microvolume cell suspension into a high density 
of methylcellulose dissolved in the culture medium. Adjusting the ECM concentration in the cell 
suspension enabled the generation of different three-dimensional microstructures, such as “ECM 
gel capsules”, which contained individually separated cells, and “ECM-loaded spheroids”, which had 
thin ECM layers between cells. ECM-loaded spheroids with a 30-fold dilution of Matrigel (0.3 mg/ml) 
showed significantly higher albumin secretion than control spheroids composed of Hep G2 or HuH-7 
cells. Additionally, the expression levels of major CYP genes were decreased in ECM gel capsules with 
undiluted Matrigel (9 mg/ml) compared to those in control spheroids. However, 0.3 mg/ml Matrigel 
did not disrupt gene expression. Furthermore, cell polarity associated with tight junction proteins 
(ZO-1 and Claudin-1) and the transporter protein MRP2 was markedly induced by using 0.3 mg/ml 
Matrigel. Thus, high-performance three-dimensional tissues fabricated by this method are applicable to 
increasing the efficiency of drug screening and to regenerative medicine.

Spheroid culture is one of the three-dimensional (3D) cell culture methods bridging gaps between in vitro mon-
olayer cultures and in vivo tissue functions that are modulated by cell-cell and cell-extracellular matrix (ECM) 
interactions. For example, spheroids composed of hepatocytes produce more tissue-specific molecules, albumin 
and urea and exhibit higher levels of metabolic functions, including drug metabolism, than cells in monolayer 
culture1–4. Laschke et al.5 reviewed various methods to assemble spheroids and discussed their advantages. For 
example, spheroids of the hepatoma cell lines Hep G2 and HuH-7 were successfully generated in hanging drops or 
on low adhesion surfaces6–10. However, these culture systems do not fully consider the influence of the ECM. The 
composition and distribution of the ECM differs among organs and tissues in vivo, thereby affecting cell survival, 
morphology, polarity, and differentiation11–13. In addition, the ECM is pathologically altered either as a cause or 
as a result of multiple disease processes14. Therefore, the ECM is one of the key factors to be considered for tissue 
engineering applications.

A 3D culture method that allows modulation of the ECM amount (thickness) between cells is critical for 
the fabrication of normal and diseased tissues in order to reflect the structure and function of tissues in vivo. 
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Several techniques have been proposed to control the ECM thickness between cells in spheroids. For exam-
ple, a layer-by-layer cell coating technique has been developed that enables coating of the cell surface with 
ECM-derived components, namely, fibronectin and gelatin15. A method of generating micrometre-sized ECM 
scaffolds on cell surfaces via the formation of type I collagen fibres has also been reported16. Although these tech-
niques can precisely control the thickness of the ECM between cells, multi-step manipulation is required to fabri-
cate a thick ECM layer. Furthermore, the available types of ECMs are restricted, because this technique depends 
on the interaction between two types of ECM components or between integrin receptors and ECM components. 
Another approach is encapsulating cells into an ECM gel by water-in-oil emulsion methods17,18. This approach 
allows the fabrication of 3D tissues with a thick ECM layer between cells in one step and can also replenish thin 
ECM layers between cells by increasing the initial cell density per capsule. However, the usage of oil could sig-
nificantly decrease the viability of cells encapsulated in ECM gels, especially in capsules with a high cell density, 
because the mineral oil may also have adverse effects due to the possibility that cell toxic contaminations such as 
aromatic and unsaturated hydrocarbons that accumulate in the oil during production, transport or storage19,20. 
Thus, it is necessary to develop a novel 3D culture method that allows (1) single-step, (2) successive regulation 
of the ECM amount between cells, (3) utilization of various ECM components, and (4) prevention of cell death.

Previously, we established a method to generate spheroids using a high molecular weight material medium: 
methylcellulose (MC) medium21. It has been reported that ECMs are incorporated into spheroids using MC as 
catalysis22,23. These methods utilize MC as a catalyst for generating spheroids. However, the aggregation efficiency 
of cells is different depending on the cell type. In contrast, our method to assemble spheroids utilizes the absorb-
ing and swelling property of a solution containing a high concentration of MC from liquid in an injected cell sus-
pension. The method can generate a 3D aggregate state regardless of the adhesive properties of the cells (e.g., bone 
marrow cells)24. In particular, the aggregation method using MC medium allowed us to accumulate living cells 
and polystyrene particles of 0.1 µm to 100 µm in diameter21,25. The ECM molecules type I collagen-conjugated 
FITC and type IV collagen are 0.3 µm and 0.4 µm in length, respectively26,27. Laminin, one of the components of 
the ECM basement membrane, forms complexes with type IV collagen and has a cruciform structure with two 
short arms (0.034 and 0.042 µm in length) and a single long arm (average length of 0.097 µm)28. Therefore, we 
hypothesized that the MC medium method can aggregate cells and ECM molecules simultaneously.

In this study, we present a 3D culture method that can successively tune the amount of several ECMs between 
cells in spheroids without compromising the cell viability. Furthermore, the effect of these ECMs on cellular func-
tions and cell polarity was demonstrated in hepatic spheroids.

Results
Co-aggregation and the resulting distribution of cells and macromolecular proteins in MC 
medium.  As we previously reported, 3% MC medium is suitable for the rapid aggregation of mammalian cell 
suspensions mixed with non-adhesive artificial particles21,25. To examine whether biological ECM components 
can co-aggregate with cells, cells labelled with PKH26 were re-suspended with FITC-collagen and injected into 
MC medium, and the progression of aggregation was observed over time (Fig. 1a). The red-labelled cells co-ag-
gregated with green-labelled collagen over time, forming a 3D tissue containing ECM and a uniform distribution 
of cells (Fig. 1b). The high concentration of ECM was expected to form a gel capsule as individual cells were sur-
rounded by ECM. To investigate whether cell capsulation and the resulting inhibition of cell-cell interaction was 
ECM concentration-dependent, 3D tissues were prepared by using various concentrations of Matrigel and were 
subjected to paraffin sectioning and haematoxylin-eosin staining (Fig. 1h–l). Compared with the ECM gel capsule 
(undiluted Matrigel) (Fig. 1i), in which cells were distributed separately without forming large masses, the cells in 
spheroids with a 15-fold dilution of Matrigel (0.6 mg/ml) (Fig. 1j) aggregated, although the cells were not in full 
contact, unlike the no-ECM control spheroids (Fig. 1h). Under 30- and 100-fold dilution conditions (0.3 mg/ml 
and 0.09 mg/ml, respectively; Fig. 1k,l), the structures of spheroids were similar to those of no-ECM control sphe-
roids, without thick ECM layers. We also observed the ECM distribution in the spheroids after one day of culture, 
as visualized by collagen-conjugated FITC. As the concentration of FITC-collagen was decreased, the thickness of 
the ECM gel in the gaps between cells decreased, and the cell-cell interaction increased in spheroids (Fig. 1n–q). 
At a FITC-collagen concentration of 0.1 mg/ml, a thin film-like layer formed between cells (Fig. 1p,t), although 
it was not identified by haematoxylin and eosin staining. That structure was barely observed in spheroids with a 
lower FITC-collagen concentration (0.03 mg/ml, Fig. 1q,u). However, a higher ECM concentration (0.2 mg/ml, 
Fig. 1o,s) resulted in the formation of cell masses dispersed in spheroids. When we used 0.2 mg/ml, 0.1 mg/ml or 
0.03 mg/ml FITC-collagen, the thickness of ECM gel between cells in spheroid were quantified as approximately 
1.264 µm, 0.857 µm and 0.741 µm respectively (see Supplementary Fig. S1). The amount of ECM per spheroid 
was also quantified by using various concentrations of FITC-labelled ECM. When we used 3 mg/ml, 0.2 mg/
ml, 0.1 mg/ml or 0.03 mg/ml FITC-collagen, the percentages of ECM amounts per spheroid were quantified as 
approximately 95%, 26%, 13% and 2%, respectively (see Supplementary Fig. S1). In addition, the amounts of 
FITC-labelled fibronectin per spheroid using 0.5 mg/ml, 0.1 mg/ml or 0.01 mg/ml were 7%, 3% and 0.6%, respec-
tively (see Supplementary Fig. S1). We defined such spheroids with diluted ECM as “ECM-loaded spheroids” to 
distinguish them from the “ECM gel capsules”. These results indicate that the structures of 3D spheroid tissue at 
the endpoint of aggregation vary depending on the concentrations of ECM.

3D structures corresponding to ECM concentration and temperature.  The role of ECM in the 
progression of spheroid aggregation was examined by using various concentrations of Matrigel, followed by cal-
culation of the average area of the spheroid cross sections one day after injection. The samples formed from ECM 
gel capsules with undiluted Matrigel (9 mg/ml) had a greater expanded area than control spheroids (8.6 × 105 µm2 
vs. 1.1 × 105 μm2) (Fig. 2). The area of spheroids decreased significantly in response to Matrigel dilution, quanti-
fied as 2.1× 105 μm2 with 0.6 mg/ml Matrigel and 1.1 × 105 μm2 with 0.3 mg/ml Matrigel. The area of spheroids 
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with 0.3 mg/ml Matrigel was almost the same as the area of control spheroids. Although those spheroids were 
produced at room temperature and incubated at 37 °C, temperature is another factor influencing ECM gelation. 
Matrigel is a liquid below 8 °C and initiates gelation between 22 °C and 37 °C29. To investigate the influence of 
ECM gelation, which can be prevented at low temperatures, all the procedures—mixing the cell suspension and 

Figure 1.  Co-aggregation of cells and macromolecules with high and low concentrations in MC medium. (a) 
Schematic overview of aggregation with macromolecules such as ECM components and polysaccharides in MC 
medium. (b) Injected suspension mixture of PKH26-stained Hep G2 cells (red) with FITC-collagen (green) 
at the indicated time points after injection. Bar = 200 µm. (c–g) Schematic overview of 3D tissues composed 
of cells and different concentrations of ECM. (h–l) Haematoxylin and eosin staining of 3D tissues loaded with 
the indicated concentrations of Matrigel. Bar = 100 µm. (m–q) ECM in the spheroids was visualized by using 
different dilutions of FITC-collagen (green) together with Hep G2 cells (red) as in (b). Bar = 100 µm. (r–u) are 
the insets in (n–q) surrounded by dashed line rectangles. Bar = 20 µm.
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Matrigel, injecting the suspension into MC medium, and incubating for 60 minutes—were performed at 4 °C. 
After spheroids were cultured for one day at 37 °C, we measured the cross-sectional area of the spheroids (Fig. 2 
and see Supplementary Fig. S3). When we used undiluted (9 mg/ml) or a 15-fold diluted (0.6 mg/ml) Matrigel, 
the areas of the spheroids were significantly smaller than the areas of spheroids fabricated at room temperature. In 
addition, the areas of control spheroids and ECM-loaded spheroids using a 30-fold dilution of Matrigel (0.3 mg/
ml) were found to be the same between 4 °C and room temperature conditions (Fig. 2 and see Supplementary 
Fig. S4). These results imply that a high concentration of ECM suppresses the progression of aggregation to form 
spheroids at higher temperatures, which inhibits ECM condensation during aggregation by gelation.

Molecular weight-dependent aggregation and diffusion of polysaccharides after injection into 
MC medium.  To investigate the molecular size that can be retained in MC medium after condensation, 
FITC-dextran solution with average molecular weights of 10,000, 40,000, and 250,000 was injected. Whereas 
FITC-dextran with molecular weights of 10,000 and 40,000 diffused in MC medium until 60 minutes after injec-
tion, FITC-dextran with molecular weight of 250,000 did not diffuse in MC medium (Fig. 3a). When the dis-
tribution (diffusion) areas of FITC-dextran were quantified, the areas of FITC-dextran with molecular weights 
of 10,000 and 40,000 were significantly larger than those of FITC-dextran with molecular weight of 250,000 at 
two minutes and six minutes after injection, respectively (Fig. 3b). Then, the differences were increased at later 
time points by progressive diffusion of FITC-dextran with smaller molecular weights. These results indicate that 
MC medium has the potential to prevent the diffusion of macromolecules such as molecular weight of 250,000. 
When a cell suspension mixed with 1.25 mg/ml molecular weight of 250,000 FITC-dextran was injected into 
MC medium, FITC-dextran filled the gaps between the cells in spheroids and the ECM without diffusion, as well 
as within the ECM (Fig. 3c). The molecular weights of type I collagen, fibronectin, and laminin comprising the 
ECMs in the tissues were 300,000, 450,000–500,000, and 800,000, respectively30–32. Hence, any water-soluble mac-
romolecules may exhibit similar behaviours of aggregation and replenishment between cells without diffusion in 
MC medium.

Reduced cytotoxicity during encapsulation by using MC medium compared with conventional 
methods.  One of the typical 3D culture methods to replenish the ECM is to embed cells in the capsule of an 
ECM gel, which is formed in an emulsion containing aqueous drops consisting of cells and ECM in oil. In this 
method, some cells are damaged due to contact with oil. Accordingly, cytotoxicity was investigated when Hep G2 
cells were encapsulated in ECM gel formed in conventional oil emulsion and formed in MC medium, which does 
not use oil. Cell viability was examined by using LIVE/DEAD reagent, which demonstrated a marked red-stained 
dead cell population in ECM gel capsules formed in mineral oil, whereas few dead cells were observed in ECM 
gel capsules formed in MC medium (Fig. 4a). As a result of quantitative evaluation, the population of dead cells 
was significantly higher in the samples using oil (17%) than in those in MC medium (1.8%) (Fig. 4b). Mineral 
oil, as used for mouse embryo culture, does not contain any cytotoxic compounds33. However, cytotoxicity was 
observed specifically with mineral oil, suggesting that cell viability is decreased by any operation that brings cells 
into contact with oil.

Effect of loading a thin ECM layer into spheroids on albumin secretion.  Albumin secretion is 
one of the major indicators of hepatocyte function. To investigate the effect of the ECM and its concentration 
dependency on albumin secretion, Hep G2 or HuH-7 spheroids fabricated with a series of Matrigel dilutions 
were cultured for 24 hours, and conditioned medium was then collected to measure the level of secreted albu-
min. Spheroids with a high concentration of Matrigel (9 and 0.6 mg/ml) had the lowest albumin secretion rates. 
However, ECM-loaded spheroids with a lower concentration of Matrigel (0.3 mg/ml) secreted more albumin 
than no-ECM control spheroids (Fig. 5). However, further Matrigel dilution (0.09 mg/ml) did not show such an 

Figure 2.  Sizes of Hep G2 spheroids in MC medium corresponding to the Matrigel concentration. Injection of 
Matrigel and cells was performed at room temperature and cultured for one day (a). Images used to measure 
spheroid areas (b). The data are the means ± SEMs, n = 7–10. *p  <  0.05, **p  <  0.01, ***p  <  0.001 by two-way 
ANOVA.
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increase in albumin secretion. This finding implies an optimal Matrigel concentration to achieve an ECM-loaded 
microenvironment in spheroids for albumin secretion. This finding also implies that too much ECM will sup-
press hepatic function, probably because the excess ECM inhibits cell-cell interactions, as shown in Fig. 1. To 
investigate long-term stability of hepatic function, smaller spheroids composed of 1,000 cells were generated and 
cultured until 7 days. All culture conditions (with a series of Matrigel or without) were shown similar amount of 
albumin secretion at day 7 of culture(see Supplementary Fig. S4).

Figure 3.  Aggregation with different molecular weights of polysaccharides in MC medium. (a) Three different 
molecular weights of FITC-dextran with average sizes of 10,000, 40,000 and 250,000 were injected into MC 
medium. The time-dependent dextran distribution was observed (a), and fluorescent areas were quantified 
(b). Bar = 200 µm. The data are the means ± SEMs, n = 3. *p  <  0.05, **p  <  0.01, ***p  <  0.001 by two-way 
ANOVA vs. the 10,000 group at each time point. (c) Hep G2 cells labelled with PKH26 (red) and molecular 
weight of 250 FITC-dextran (green) were mixed and injected into MC medium. After one day of culture, 
aggregation was observed. Bar = 200 µm.

Figure 4.  Viability of encapsulated Hep G2 cells aggregated by conventional oil and MC medium methods. 
(a) ECM gel capsules were stained with propidium iodide (red) to identify dead cells and calcein-AM (green) 
to identify living cells. (b) The percentage of dead cells in ECM capsules was calculated. ECM capsules treated 
with 4% paraformaldehyde were used as 100% dead spheroid controls. Bar = 500 µm. The data are the means ± 
SEMs, n = 3. *p  <  0.05 by Student’s t-test.
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Liver-specific gene expression in spheroids in response to the ECM concentration.  One of the 
major functions of the liver is the metabolism of drugs and toxins, and occasional drug-drug interactions medi-
ated especially by cytochrome P450 (CYP) enzymes may occur34. Thus, the effect of various Matrigel concentra-
tions on CYP gene expression was examined by real-time PCR. The expression levels of several CYPs by cells in 
ECM gel capsules with undiluted Matrigel (9 mg/ml) were decreased compared to those in control spheroids, 
although the response of CYP species was largely different between Hep G2 and HuH-7 cells. In Hep G2 cells, the 
expression levels of CYP3A4, 2E1 and 2C8 were lower in ECM gel capsules than in no-ECM control spheroids 
(by 17%, 51%, and 35%, respectively) (Fig. 6a). In HuH-7, the expression levels of CYP3A4, 1A2, and 2C19 were 
significantly decreased (by 49%, 38%, and 44%, respectively) in ECM gel capsules compared to those in control 
spheroids (Fig. 6b). As the concentration of Matrigel was decreased, the expression levels of CYPs gradually 
increased. Under 30-fold dilution conditions (0.3 mg/ml Matrigel), gene expression became similar to that in con-
trol spheroids in both Hep G2 and HuH-7 cells. Subsequently, the gene expression of albumin was also assessed. 
In contrast to the result of the albumin secretion assay, albumin gene expression remained almost unchanged 
under all conditions (Fig. 6a,b). The expression of these genes was also studied to evaluate long-term stability as 
with the albumin secretion assay. Spheroids with a series of Matrigel dilutions were shown similar level of gene 
expression except for CYP1A2 as no-ECM control spheroids at day 7 of culture (see Supplementary Fig. S4). 
These results indicate that it is possible to replenish the ECM in spheroids without inhibiting liver-specific gene 
expression by diluting the ECM.

Localization of cell polarity-related proteins in spheroids in the presence or absence of 
ECM.  Matrigel is a mixture of ECM components, including basement membrane components such as laminin, 
type IV collagen and fibronectin, which are related to cell polarity acquisition. To study the effect of Matrigel load-
ing (0.3 mg/ml) into spheroids on cell polarity formation, ZO-1 and Claudin-1, which are associated with tight 
junctions, were identified by immunostaining in Hep G2 and HuH-7 spheroids. In Hep G2 spheroids, a marked 
increase in ZO-1 and Claudin-1 signals was observed in Matrigel-loaded spheroids. However, HuH-7 sphe-
roids exhibited no difference in the localization of ZO-1 and Claudin-1 regardless of the presence or absence of 
Matrigel. The expression of Ezrin, an apical protein in liver tissue in vivo, was clearly induced in Matrigel-loaded 
spheroids of both Hep G2 cells and HuH-7 cells. These results suggest that Matrigel-loaded spheroids develop 
tight junctions and cell polarization. MRP2 is a transporter that secretes bile from the apical side of hepatocytes; 
therefore, its localization was also examined by immunostaining. Both Hep G2 cells and HuH-7 cells exhib-
ited induction of MRP2 expression in Matrigel-loaded spheroids. Areas positive for ZO-1, Claudin-1, Ezrin and 
MRP2 signals were quantified and normalized to the nuclear area in each section. ECM-loaded spheroids with 
0.3 mg/ml Matrigel formed from both Hep G2 and HuH-7 cells exhibited significantly increases in the relative 
amounts of ZO-1, Ezrin and MRP2 compared to those in control spheroids, except for ZO-1 in HuH-7 spheroids 
(Fig. 7b,c). MRP2 is a transporter localized on the bile canalicular membrane of the apical side of hepatocytes and 
functions to export bile acid from the cell to the bile canaliculi. We investigated whether bile canaliculi-like struc-
tures were formed in ECM-loaded spheroids containing Matrigel. Compared to control spheroids, ECM-loaded 
spheroids of both Hep G2 and HuH-7 cells with 0.3 mg/ml Matrigel exhibited an easily observable bile canaliculus 
with microvilli (see Supplementary Fig. S5).

Figure 5.  Albumin secretion from Hep G2 and HuH-7 spheroids in response to various Matrigel 
concentrations. Secreted albumin levels in culture medium were measured by ELISA. In addition, spheroids 
incubated for albumin secretion assessment were extracted, and the amount of genomic DNA was measured 
to normalize albumin secretion by the number of Hep G2 (a) and HuH-7 (b) cells. The data are the means ± 
SEMs, n = 3. *p  <  0.05 by one-way ANOVA vs. data obtained with 0.3 mg/ml Matrigel.
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Discussion
In this study, we developed a novel 3D culture method that fulfilled the requirements mentioned above: (1) 
single-step; (2) successive regulation of the ECM amount between cells; (3) utilization of various ECM compo-
nents; and (4) maintenance of cell viability.

We found that the rapid cell aggregation method using MC medium could agglutinate not only insoluble 
particulate matter but also fibre-like macromolecular proteins such as ECM components dispersed in the normal 

Figure 6.  Gene expression analyses for CYPs and albumin in spheroids using Hep G2 cells and HuH-7 cells 
two days after injection. Data are shown as the fold change against expression level in no-ECM control spheroid 
consisting of Hep G2 (a) and HuH-7 (b). The data represent the mean ± SEM, n = 3. *p  <  0.05. **p  <  0.01. 
***p  <  0.001 by one-way ANOVA vs. no-ECM control.
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culture medium. Furthermore, by changing the ECM concentration, we could modulate the amount (thickness) 
of the ECM gel between cells (Fig. 1c–u). Subsequently, it is possible to vary the structure of fabricated spheroids 
in which cells are dispersed inside the ECM gel or are fully aggregated with a thin ECM layer between cells. 
Briefly, the aggregation method using MC medium allows the fabrication of various 3D microenvironments that 
are not limited by the type of ECM components.

In addition, our study demonstrated that temperature is another parameter modulating ECM gelation and 
the progression of aggregation. For example, the Matrigel used in this study gelates at 37 °C33. In fact, when 
cells and Matrigel were injected into MC medium under low-temperature conditions, the Matrigel was further 
condensed in spheroids because the gelation rate of ECM was slowed (Fig. 2 and see Supplementary Fig. S4). 
Taken together, our results indicate that it will be necessary to consider the ECM gelation parameters, such as 
the ECM concentration and temperature. Furthermore, MC medium has the potential to prevent the diffusion 
of water-dispersible macromolecular proteins and polysaccharides with a molecular weight of approximately 
250,000 or higher (Fig. 3). However, the results also indicated that relatively small nutrients/proteins might be 
able to diffuse through the MC medium. For example, MC medium will not be able to prevent the diffusion of 

Figure 7.  Immunostaining of cell polarity-related proteins. (a) Control spheroids and ECM-loaded spheroids 
with 0.3 mg/ml Matrigel were fixed two days after injection into MC medium, followed by sectioning and 
staining for the tight junction-associated proteins ZO-1 (DAB staining) and Claudin-1, the apical marker Ezrin, 
the bile acid transporter MRP2 (red fluorescence) and staining with Hoechst 33342 for nuclei (blue). Bar = 
50 µm. Positive areas for ZO-1, Claudin-1, Ezrin, and MRP2 were quantified and normalized to the nuclear area 
of Hep G2 (b) and HuH-7 (c) spheroids. The data are shown as the fold of expression in control spheroids. The 
data are the means ± SEMs, n = 3–4. *p  <  0.05. **p  <  0.01 by Student t-test.
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albumin (MW (molecular weight) = 66,000)35 as insulin (MW = 6,000)36 and cytokines (MW = 5,000–20,000)37. 
Efficient loading of protein molecules with molecular weights of approximately 40,000 into spheroids may be 
accomplished by binding them to macromolecules with molecular weights greater than 250,000. Specifically, 
macromolecular crowding occurs in MC medium22. For example, ECM components secreted from aggregated 
cells will remain nearby without diffusion in MC medium. Normally, the hepatic ECM comprises less than 3% 
of the relative area on a liver tissue section38. During chronic liver diseases, however, it is reported that amount 
of ECM is increased a 4 to 7 fold compared with that in normal liver39. When the amount of FITC-collagen in 
spheroids was quantified, the amount of 0.1 mg/ml FITC-collagen was increased approximately 7-folds compared 
with that of 0.2 mg/ml FITC-collagen (see Supplementary Fig. S1). Consequently, the aggregation method using 
MC medium will allow the fabrication of 3D tissues composed of cells and ECMs as a more physiological or a 
disease-mimicking model, which will be beneficial for tissue engineering, regenerative medicine, and pharma-
ceutical applications.

Cell encapsulation in biopolymer gels was initially investigated for immunoisolation of cells producing ther-
apeutic proteins40. More recently, encapsulation of mammalian cells was expected to be applied for the regen-
eration of various tissues41. A popular method of generating ECM gel capsules is to prepare emulsions to form 
interfaces between water and oil. With the emulsion method, many capsules can be produced simultaneously, but 
some cells are damaged due to contact with oil. The encapsulation process resulted in cell death rates of approx-
imately 20% and 30% in human fibroblasts and human umbilical vein endothelial cells, respectively42. Because 
encapsulation using MC medium was able to significantly prevent cytotoxicity (Fig. 4), it is considered to have 
great advantages compared to conventional methods.

In the tissue microenvironment, cell-cell and cell-ECM interactions affect cell physiology and function43. 
The difference in the amount of ECM mixed into the spheroids changed not only the cell aggregation state inside 
the spheroids but also hepatic function. Cells were separated from each other to inhibit cell-cell interactions in 
Matrigel capsules (Fig. 1i,n), and the albumin secretion activity was lower than that of non-ECM control sphe-
roids (Fig. 5). Interestingly, when Matrigel was diluted, the cell-cell interaction was improved (Fig. 1p), and the 
albumin secretion activity at a Matrigel dilution of 30-fold relative to the original concentration was higher than 
that of the control spheroids (Fig. 5). Matrigel is isolated from Engelbreth-Holm-Swarm tumours developed in 
mice and consists of a mixture of laminin, type IV collagen, fibronectin, heparan sulfate, and many other compo-
nents33,44. The composition of the ECM differs among organs and tissues in vivo, thereby affecting cell survival, 
morphology, shape, polarity, and differentiation11. The ECM thus allows cells to exhibit optimal functions for each 
organ and tissue. Therefore, the selection and combination of components and gelation control of the ECM are 
essential depending on the cell type.

Hepatocytes are polarized epithelial cells with distinct apical and basolateral domains45,46. The current in vitro 
gold standard, the ECM sandwich culture system proposed by Dunn et al.47, has been shown to be capable of 
developing and maintaining polarity in human and rat primary hepatocyte cultures47–50. Furthermore, it has also 
been reported that spheroid culture allows better development of hepatocyte polarity than sandwich culture51. In 
Hep G2 and HuH-7 spheroids, cell polarity formation was also observed in hanging drop culture and in ultra-low 
attachment plates52–55. However, these cell culture systems require at least six days to induce the formation of cell 
polarity in human hepatoma cells. In contrast, our method of culturing ECM-loaded spheroids with 0.3 mg/ml 
Matrigel facilitated the appearance of these features, such as localization of apical and basolateral markers, after 
culture for only two days (Fig. 7). Thus, these results indicate that Matrigel-loaded spheroids provide a better cell 
microenvironment for inducing hepatic polarity than conventional culture methods (spheroid culture by the 
hanging drop method, the ultra-low attachment plate method, and the 2D sandwich method).

Cell polarity and ECM signalling have been shown to promote liver-specific functions such as albumin secre-
tion56. Matrigel-loaded spheroids induced higher albumin secretion activity than control spheroids (Fig. 5). This 
result suggests that the improvement in albumin secretion activity is caused by the development of cell polarity 
in spheroids. In our method, it was shown that Matrigel-loaded spheroids exhibited induction of cell polarity 
but minimal expression of metabolic enzymes, such as CYPs (Fig. 6). Another 3D culture system using a peptide 
nanofibre matrix was also shown to induce polarity in Hep G2 cells, although these spheroids did not exhibit 
upregulation of metabolic enzymes57, similar to our results.

Recently, the in-depth exploration of ECM composition, organization, and biological functions associated 
with the development of novel biocompatible materials has provided applications for various types of ECMs: 
tissue-derived ECMs, chemically synthesized polymers, and biomaterials derived from insects, such as silk from 
silkworms58,59. The aggregation method using MC medium to replenish those materials will be useful for in vitro 
generation of tissues that exhibit novel functions achieved by the interaction between cells and the replenished 
materials.

In conclusion, we present an aggregation method using MC medium that allows cell co-aggregation with 
water-soluble ECM components and macromolecular polysaccharides. Furthermore, by changing the ECM con-
centration, we could sequentially tune the amount of ECM gel between cells in spheroids in one step. Compared 
to conventional methods, the generation of ECM gel capsules in MC medium exerts a negligible influence on cell 
viability, in contrast to other capsulation methods such as oil emulsion. In addition, our method will be useful to 
establish microenvironments suitable for inducing liver-specific functions, such as albumin secretion activity and 
cell polarity, in 3D hepatic spheroid cultures.

Methods
Cell culture.  Hep G2 cells, HuH-7cells, human liver vascular endothelial (TMNK-1) cells and human 
bile duct epithelial (MMNK-1) cells were obtained from the Japanese Center Research Bank and cultured in 
Dulbecco’s modified Eagle’s medium (DMEM; Wako) supplemented with 10% foetal bovine serum (Corning) 
and 100 units/ml of penicillin-streptomycin (Wako). Cells were grown in an incubator at 37 °C and supplied 
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with 5% CO2. Mouse bone marrow cells were isolated from the femurs and tibias of 8-week-old C57BL/6NcrSlc 
male mice (Japan SLC) using previously described method24. Isolated cells were cultured in DMEM (containing 
10% fetal bovine serum and 100 units/ml of penicillin-streptomycin) at 37 °C in a 5% CO2 incubator. All animal 
experiments conformed to the Guide for the Care and Use of Laboratory Animals and were approved by the 
Institutional Committees of Laboratory Animal Experimentation (Animal Research Center of Yokohama City 
University, Yokohama, Japan).

Generation of spheroids containing cells and ECM components/macromolecular polysaccha-
rides.  We previously established a rapid aggregation system that allows cell aggregation cells by using 3% 
methylcellulose (MC; Sigma) medium60. MC medium was poured into a dish with a positive-displacement pipette 
(Gilson), because 3% MC medium is highly viscous. To visualize cell distribution by fluorescence in spheroids, 
Hep G2 cells were labelled with PKH26 (Sigma). Briefly, cells were suspended in 0.02 mM PKH26 solution in 
diluent C and incubated for five minutes at room temperature. The staining reactions were stopped by the addi-
tion of an equal volume of DMEM supplemented with 10% FBS, and cells were washed with phosphate-buffered 
saline (PBS). ECM components and macromolecular polysaccharides were mixed into the cell suspension, 
which included growth factor-reduced Matrigel (BD Biosciences), fluorescein isothiocyanate (FITC)-collagen 
(Chondrex), FITC-dextran (average molecular weights of 10,000, 40,000, and 250,000) (Sigma) and fibronectin 
(BD Biosciences)-labelled FITC by using a Fluorescein Labelling Kit–NH2 (Dojindo) according to the manufac-
turer’s instructions. ECM components were diluted at various ratios in normal culture medium. The cell density 
in suspension in the presence or absence of ECM components or macromolecular polysaccharides in normal 
culture medium (without MC) was adjusted to 2 × 106 cells/ml or 1 × 106 cells/ml. Spheroids composed of 2,000 
cells or 1,000 cells were fabricated by injecting 1 μl of the abovementioned cell suspension into MC medium. 
Unless otherwise specified, injection of cell suspension to generate spheroids was carried out at room tempera-
ture. ImageJ (NIH) was used to quantify the amount of ECM per spheroid. It was calculated by dividing the area 
FITC signal of The ECM with the spheroid area. The aggregated spheroid or polysaccharide size was also evalu-
ated by quantifying the spheroid area in each image by ImageJ. To quantify ECM thickness, spheroid images were 
obtained by using CQ1 confocal quantitative image cytometer (Yokogawa Electric).The images were analyzed by 
Cell pathfinder software (Yokogawa Electric).

Haematoxylin and eosin staining.  To isolate spheroids from MC medium, 0.5 volume of cellulose solu-
tion (Yakult Pharmaceutical Industry, adjusted to 5 U/ml with normal culture medium) relative to the volume of 
MC medium was added and incubated for 30 minutes at 37 °C to reduce the viscosity of the MC medium. Isolated 
spheroids were fixed with 4% paraformaldehyde (PFA, Wako) for 15 minutes at room temperature. Spheroids 
embedded in paraffin were sectioned at a thickness of 8 µm by a microtome. Sections were stained with haema-
toxylin (Wako) and eosin Y (Wako).

Analysis of the dead cell rate.  Aggregates consisting of Hep G2 cells and undiluted Matrigel were fabri-
cated in 3% MC medium as described above or in mineral oil (Sigma) and were then incubated for 30 minutes. 
When mineral oil was used, cells suspended in undiluted Matrigel were injected into mineral oil by the same 
method as injection into 3% MC. ECM gel capsules treated with 4% PFA were prepared as the positive (100% 
dead) control. Next, ECM gel capsules were labelled with calcein-AM (Dojindo) and propidium iodide (Dojindo) 
according to the manufacturer’s instructions and were then evaluated by a Leica SP6 confocal laser microscope. 
The ratio of dead cell nuclear area was obtained by dividing the area of dead cell nuclei (red fluorescence) by the 
total area of those ECM gel capsules, as quantified by ImageJ. The resulting values were normalized to the mean 
value obtained from the positive controls to calculate the percentage of dead cells.

Albumin secretion assay.  After two days of culture in MC medium, Hep G2 and HuH-7 spheroids 
were isolated from MC medium as described above, transferred into 6-well plates and incubated for 24 hours. 
Conditioned medium was assayed for albumin concentration by using an albumin ELISA quantitation kit 
(Bethyl). In addition, the amount of genomic DNA in the spheroids was measured by a QuantiFluor dsDNA 
system (Promega) to normalize albumin secretion by cell number.

Real-time PCR analysis.  Spheroids composed of Hep G2 cells and HuH-7 cells were cultured in MC 
medium for two days. Total RNA was extracted using Trizol reagent (Invitrogen) and reverse transcribed into 
cDNA by using ReverTra Ace qPCR RT Master Mix (TOYOBO). Real-time PCR was performed with TaqMan 
gene expression master mix (Thermo Fisher) or SYBR green master mix (Bio-Rad). The target gene expression 
level was normalized to the GAPDH level. The primer and prove sequences are listed in Supplementary Table S1.

Spheroid immunostaining.  Paraffin sections of spheroids were deparaffinized and immersed in 10 mM 
citrate buffer (pH 6.0) (Wako) followed by autoclaving at 121 °C for 10 minutes. Sections were reacted with 
Primary antibody against zonula occludens-1 (ZO-1; Thermo Fisher) and stained with a Dako ENVISION 
Kit/HRP (DAB). Primary antibodies against Claudin-1 (Thermo Fisher), Ezrin (Santa Cruz), and Multidrug 
resistance-associated protein 2 (MRP2) (M2 III-6; Abcam) were incubated and stained with Alexa 488- or Alexa 
568-conjugated goat anti-mouse or anti-rabbit IgG secondary antibodies and counterstained with Hoechst 33342 
(Dojindo).

Ultrastructural assessment.  Spheroids composed of Hep G2 cells and HuH-7 cells were fixed with 3% 
glutaraldehyde and post-fixed with 1% osmium tetroxide. Fixed specimens were dehydrated and embedded in 
epoxy resin. Ultra-thin sections were observed under a transmission electron microscope (JEM-1400; JEOL).
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Statistical analysis.  All values are expressed as the mean ± SEMs based on more than three samples per 
condition, and experiments were independently repeated at least twice. Statistical analyses were performed using 
Student’s t-test, one-way ANOVA with post hoc multiple comparisons by Tukey’s test procedure, or two-way 
ANOVA with post hoc multiple comparison by Sidak’s test procedure as specified in the figure legends, which 
were calculated by GraphPad Prism software. p  <  0.05 was considered as statistically significant.
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