Skip to main content
. 2020 Apr 15;6(4):e03727. doi: 10.1016/j.heliyon.2020.e03727

Table 3.

Comparison of the solutions to the space-time fractional (2 + 1)-dimensional breaking soliton equation.

Guner [61] solutions The obtained solutions
ForA=3k22 and c=4awk2, then the non-topological solution of Eq. (42) takes into the form
u(x,y,t)=3k22sech2(kxαΓ(1+α)+wyαΓ(1+α)4ak2wtαΓ(1+α)), and v(x,y,t)=3kw2sech2(kxαΓ(1+α)+wyαΓ(1+α)4ak2wtαΓ(1+α)),
Especially, ifA2=0, μ=0 and A10, then the soliton solutions (4.3.14) and (4.3.15) become
u(x,y,t)=k2λ2(32coth((kxαΓ(1+α)+wyαΓ(1+α)ak2wλtαΓ(1+α))λ)csch((kxαΓ(1+α)+wyαΓ(1+α)ak2wλtαΓ(1+α))λ)32(coth((kxαΓ(1+α)+wyαΓ(1+α)ak2wλtαΓ(1+α))λ))2+1), and v(x,y,t)=kwλ2(32coth((kxαΓ(1+α)+wyαΓ(1+α)ak2wλtαΓ(1+α))λ)csch((kxαΓ(1+α)+wyαΓ(1+α)ak2wλtαΓ(1+α))λ)32(coth((kxαΓ(1+α)+wyαΓ(1+α)ak2wλtαΓ(1+α))λ))2+1).

From the above comparison, it is observed that all of the obtained solutions are completely fresh and general than the solutions existing in the literature.