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ABSTRACT Animal models of viral pathogenesis are essential tools in human
disease research. Human papillomaviruses (HPVs) are a significant public health
issue due to their widespread sexual transmission and oncogenic potential.
Infection-based models of papillomavirus pathogenesis have been complicated by
their strict species and tissue specificity. In this Gem, we discuss the discovery of a
murine papillomavirus, Mus musculus papillomavirus 1 (MmuPV1), and how its ex-
perimental use represents a major advancement in models of papillomavirus-
induced pathogenesis/carcinogenesis, and their transmission.
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Viruses significantly affect human health, and the prevention, control, and treatment
of viral infections require a fundamental understanding of their pathogenesis. Such

knowledge demands investigation not only at the molecular and cellular levels but also
in the organisms they infect. Animal viruses are vital to our understanding of human
viruses, including infection, transmission, host responses, and pathogenesis. Moreover,
they provide critical preclinical models in which to identify preventative and therapeu-
tic approaches to human viral infections and disease. Such models have provided
pivotal insight into viruses such as influenza virus, herpesviruses, Zika virus, and
emerging viruses (1–5). Studying human viruses using genetically tractable and cost-
effective animal models is often complicated by their strict species tropism. This is true
for human papillomaviruses (HPVs), thus limiting the use of infection models to study
these common and important human pathogens.

Papillomaviridae is a large and diverse family of nonenveloped, double-stranded
circular DNA viruses that by and large exhibit rigid species and tissue tropism. There are
more than 220 formally accepted types that infect humans (6–8). Human papillomavi-
ruses infect stratified squamous epithelia in the oral cavity and upper respiratory tract,
the anogenital tract, and the skin and cause a range of pathologies, from warts
(papillomas) to dysplasia and cancer. HPV genotypes are classified by their oncogenic
potential. Low-risk HPV types cause benign skin, oral/respiratory, and genital papillo-
mas, whereas high-risk HPVs cause cancer (9). High-risk mucosal HPVs are the etiolog-
ical factors of nearly all cervical cancers, a large number of vaginal, penile, and anal
cancers, and a subset of head and neck cancers, particularly of the oropharynx (10).
Certain high-risk HPVs, such as HPV16 and HPV18, cause the majority of HPV-associated
cancers (11–13). Cutaneous HPVs are also linked to certain types of skin malignancies
(14). Given their broad diversity, prevalence, and oncogenic potential, HPVs are one
of the top infectious causes of human cancer, causing approximately 5% of cancers
worldwide (10, 15).

The public health threat of mucosotropic HPVs is exacerbated by their being the
most common sexually transmitted infection in the United States (16). While most
infections are cleared (17), persistent HPV infections can be established and are a major
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risk factor for progression to cancer (18, 19). Particular high-risk HPVs such as HPV16 are
more likely to establish persistent infections, contributing to their oncogenic potential
(20). HPV persistence is often accompanied by viral genome integration into host DNA,
which occurs at random sites but with a preference for chromosomal fragile sites,
genes, and enhancers (21–24). Integration is thought to potentiate HPV-mediated
oncogenic progression by increasing the amount and stability of transcripts of the viral
oncogenes E6 and E7 (25, 26), providing a selective growth advantage to cells (27).
High-risk HPV E6 and E7 are well-validated, potent oncogenes. The highly multifunc-
tional proteins they encode contribute to carcinogenesis at least in part by inactivating
the major tumor suppressors p53 and pRb, both common targets of DNA tumor viruses
(28, 29).

Prophylactic HPV vaccines are a significant milestone in the effort to control
HPV-mediated cancers (30). In Australia, where HPV vaccination is mandatory for young
girls and boys, cervical cancer is predicted to be eliminated as a public health problem
within the next 20 years (31). However, inadequate vaccine availability and vaccination
coverage have allowed HPV to remain a significant public health issue elsewhere (32,
33). Vaccination is also ineffective against preexisting HPV infections. For these reasons,
there remains a pressing need to study HPV infection and persistence and the contri-
bution of host and environmental factors to HPV transmission and subsequent disease.
Many of the underlying mechanisms that govern these aspects of HPV pathogenesis
have not been fully elucidated. Tractable animal models of papillomaviral pathogenesis
are essential to advance our understanding of these viruses. In this Gem, we discuss
existing comparative models of HPV pathogenesis and disease and focus on new and
emerging models utilizing a murine papillomavirus, Mus musculus papillomavirus 1
(MmuPV1). These MmuPV1-based models have the potential to transform our ability to
study the molecular basis of PV infection and pathogenesis and provide an opportunity
to identify therapeutic interventions to control HPV transmission and disease.

EXISTING ANIMAL MODELS OF PAPILLOMAVIRUS PATHOGENESIS

As a result of the stringent host species specificity of PVs, animals do not support
productive HPV infections. Researchers therefore rely on the use of animal PVs to
establish infection models in their respective hosts or use genetically engineered
mouse models, such as transgenic mice, to study the role of specific HPV genes in
neoplastic disease.

Animal models of papillomavirus pathogenesis. Modern sequencing techniques
and increased sampling have started to reveal the broad diversity of animal papillo-
maviruses (8, 34–36). Animal models have contributed significantly to our understand-
ing of papillomaviral pathogenesis, tissue tropism, and disease (for reviews, see
references 37 to 40). The first animal papillomavirus studied was cottontail rabbit
papillomavirus (CRPV), described in the 1930s as causing papillomas in rabbits (41).
CRPV was subsequently found to promote cutaneous malignancies (42) and provided
insights into a variety of virus-host interactions for PVs with cutaneous tropism (43). A
mucosotropic PV, rabbit oral papillomavirus (ROPV), was later isolated from domestic
rabbits and paved the way for studies in the oral mucosa as well as male and female
genital tissues (44, 45). Given their divergent tropisms, CRPV and ROPV were useful
models to study the underlying molecular mechanisms of PV tissue tropism. These
models, along with canine oral PV (COPV) (46), were heavily utilized in testing vaccines,
leading to the current HPV prophylactic vaccines (for reviews, see references 39, 47, and
48). Papillomaviruses that infect the multimammate rat species Mastomys natalensis
(Mastomys natalensis papillomavirus 1 [MnPV1]) and Mastomys coucha (Mastomys
coucha papillomavirus 2 [McPV2]) can establish persistent infections and promote
tumorigenesis in the skin and anogenital tissues, respectively (49, 50). The Rosl group
has extensively studied various aspects of PV biology using these Mastomys models (for
a review, see reference 51), contributing novel observations related to viral mRNA
splicing patterns in vivo (52) and the role of environmental factors such as UV radiation
in cutaneous PV-associated carcinogenesis (53).
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Comparative models of PV pathogenesis have also been established in cattle and
nonhuman primates. Bovine papillomaviruses (BPVs) cause various pathologies in cattle
(54) and horses (55). BPV-1 was the first fully sequenced PV genome (56) and was the
subject of many in vitro transformation studies and the first papillomavirus transgenic
mouse model (57). BPV-1 studies facilitated the discovery of the viral E5 oncoprotein
(58, 59), which is also expressed by high-risk mucosal HPVs (for a review, see reference
60). The evolutionary proximity of nonhuman primates to humans made these species
attractive models for studying HPV pathogenesis. Papillomaviruses have been associ-
ated with cutaneous and mucosal disease in colobus monkeys, rhesus macaques, and
chimpanzees (35, 61–66). Some of these PVs show close sequence similarity to high-risk
HPVs and are associated with neoplastic disease, including precancerous lesions and
carcinomas (65, 67, 68). The first preclinical models of PV sexual transmission also were
in nonhuman primates (67, 69). While the contribution of these animal models to our
understanding of PV infection and pathogenesis cannot be overstated, they present
challenges related to cost, availability of technical reagents, and genetic tractability.

HPV transgenic mouse models. The most widely used, well-characterized, and
technically well-supported animal used as a model system remains the laboratory
mouse, Mus musculus (70). Until the discovery of a murine papillomavirus, the PV field
lacked an infection-based system to model HPV-mediated carcinogenesis in laboratory
mice. Instead, researchers employed genetically engineered, transgenic mice (for a
review, see reference 71). The first such model involved insertion of 1.69 tandem copies
of the BPV-1 genome into the mouse genome (57). These transgenic mice developed
cutaneous fibropapillomas and fibrosarcomas, both of which contained replicating
extrachromosomal BPV-1; however, the virus remained transcriptionally inactive in
asymptomatic skin (72). This model established the feasibility of using transgenic mice
to study PV-associated diseases. The high-risk mucosotropic HPV16 E6 and E7 onco-
genes were then studied using transgenic mice (73–76), providing key insights into
their contributions to tumorigenesis, including the abilities of E6 to inhibit apoptosis
through p53-dependent and -independent means (74, 77, 78) and E7 to induce
hyperplasia through its inactivation of the tumor suppressor pRb and dysregulation of
E2F-dependent gene expression (77, 79). Epidermis-specific expression of E6 and E7
also induced skin tumors (76). A subsequent generation of transgenic mice directed
HPV16 protein expression to the natural site of infection, the basal cells of the stratified
squamous epithelia, using the keratin 14 (K14) promoter. These models expressed
either the entire early region of the HPV16 genome (80) or the individual HPV16 viral
oncogene E5 (81), E6 (82), or E7 (83). These transgenic mice have been instrumental in
modeling HPV-induced progressive neoplastic disease and cancer development in the
cervix (84–88), head and neck (89, 90), and anus (91). HPV-transgenic mice have allowed
researchers to establish the relative potencies of individual HPV oncogenes in neoplas-
tic disease (88, 89, 92–95), the role of host factors in HPV-associated disease (84–86, 90,
96–100), and therapeutic treatment efficacy (99, 101–103). Transgenic mice have also
been developed to study cutaneotropic HPVs, such as HPV8 (104) and HPV38 (105), and
their role together with UV radiation in promoting cutaneous disease and carcinogen-
esis (106–109). Clearly, HPV-transgenic models have provided a vital platform to study
various aspects of papillomavirus-induced disease in vivo. However, their ability to
model other key events during PV infection and pathogenesis is limited (Fig. 1A).

MmuPV1 DISCOVERY AND MOLECULAR VIROLOGY

Researchers have long sought an infection-based model of papillomaviral patho-
genesis in laboratory mice to study aspects of viral pathogenesis not possible in
transgenic mice, such as virus replication, persistence, transmission, and infection-
mediated carcinogenesis (Fig. 1A). Until recently, no murine papillomavirus had been
discovered. In 2011, Ingle and colleagues reported the isolation of a murine papillo-
mavirus (MmuPV1) from cutaneous papillomas present on the skin of immunodeficient
NMR1-FoxN1nu/nu mice (110). A highly similar MmuPV1 variant and a novel PV were
subsequently isolated from normal skin of a house mouse (Mus musculus) and a wood
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mouse (Apodemus sylvaticus), respectively (111). Phylogenetically, MmuPV1 is classified
in the genus Pipapillomavirus and is most closely related to other rodent papillomavi-
ruses (40, 112). The genomic organization of MmuPV1 is comparable to that of other PV
genomes, including common HPV genotypes (Fig. 1B). The MmuPV1 double-stranded
DNA circular genome is composed of a noncoding upstream regulatory region (also
known as the long control region) and early and late regions containing 7 translational
open reading frames (ORFs). The early region ORFs encode the early (E) proteins E1, E2,
E4, E6, and E7. Two late (L)-region ORFs encode the major and minor capsid proteins
L1 and L2, respectively. MmuPV1 also expresses two spliced gene products, E1^E4 and
E8^E2. There is no E5 ORF in the MmuPV1 genome, a trait that is shared with
cutaneotropic beta HPVs and that differs from mucotropic alpha HPVs (Fig. 1B).

Despite their similarities, there are molecular and biochemical differences between
MmuPV1 and HPVs. MmuPV1 shares little nucleotide sequence similarity (�70%) with
other PVs (112), with MmuPV1 and HPV16, a prototypic oncogenic alpha PV, being
49.8% identical in sequence. In high-risk alpha HPVs, the major viral oncogenes E6 and
E7 are transcribed from a single early promoter. In MmuPV1, E6 and E7 are transcribed

FIG 1 Comparison of HPV transgenic models and MmuPV1 infection-based models. (A) Strengths and limitations of HPV transgenic mouse models and MmuPV1
infection-based models. (B) MmuPV1 genomic organization, classification, and tissue tropism compared to an Alphapapillomavirus, HPV16, and a Betapapillo-
mavirus, HPV5. All viral genomes were generated and images adapted from the PAVE database (36; http://pave.niaid.nih.gov).
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from two separate early viral promoters (113). HPV16 E6 and E7 proteins share approx-
imately 45% and 40% sequence identity with their MmuPV1 counterparts, respectively
(112). At first glance, these differences call into question the use of MmuPV1 as a model
for HPV-associated carcinogenesis, but experimental studies demonstrate that activities
associated with transformation by high-risk alpha HPV oncoproteins are retained in
MmuPV1 E6 and E7. High-risk alpha HPV E7 proteins contain an LXCXE motif, which
binds pocket proteins, including the RB1 tumor suppressor. In MmuPV1, the LXCXE
motif is present in E6 but not E7 (111, 112). However, MmuPV1 E7 is similar to the
gamma PV HPV197 E7 protein in that it binds RB1 through LXCXE-independent
mechanisms (114). Another possibility is that MmuPV1 E7 has RB1-independent onco-
genic potential. White and colleagues recently reported that MmuPV1 E7 binds to the
cellular nonreceptor protein tyrosine phosphatase PTPN14 (115), a protein targeted for
HPV16 E7-mediated degradation to impair keratinocyte differentiation in a process
independent of RB1 binding (116). The MmuPV1 E6 protein inhibits Notch and trans-
forming growth factor � (TGF-�) signaling, both tumor suppressor pathways, to delay
differentiation and promote proliferation, functions shared with high-risk beta HPV E6
proteins (117, 118). Like high-risk beta HPV E6 proteins, MmuPV1 E6 does not bind
directly to p53. Schulz et al. noted that the C terminus of the MmuPV1 E7 protein
contains a putative PDZ-binding motif, a feature present in alpha HPV E6 that interacts
with cell polarity and motility proteins (111). Therefore, MmuPV1 E6 and E7 appear to
retain multiple, potentially tumorigenic properties. Most importantly, MmuPV1 clearly
exhibits oncogenic potential, as discussed below. Additional studies are required to
further characterize binding partners of the MmuPV1 E6 and E7 proteins and to
determine whether and to what extent these interactions contribute to pathogenesis.

MmuPV1 EXHIBITS EXPANDED TROPISM IN MICE

Given its isolation from cutaneous papillomas and its genomic similarities with
cutaneous beta HPVs, MmuPV1 was initially considered a cutaneotropic virus (110).
MmuPV1 infects and causes disease at cutaneous sites, including the tail, muzzle, back,
and ears (110, 119–125). There are conflicting reports on whether dorsal skin supports
MmuPV1 infection, suggesting strain- and skin-specific variability in susceptibility to
MmuPV1 infection (120, 123, 126, 127). Importantly, mucosal epithelia also support
experimental MmuPV1 infection in immunodeficient mice (119, 123, 127–130), and
studies in our laboratory have verified this expanded tissue tropism in immunocom-
petent FVB/N mice (Fig. 2A) (131–133). Lateral transmission in FoxN1nu/nu immunode-
ficient mice between experimentally infected cutaneous sites and oral and vaginal
mucosae (134) provides further evidence for dual tropism. Like MmuPV1, certain beta
HPVs also exhibit dual tropism (135, 136). The expanded tissue tropism of MmuPV1 has
facilitated the development of novel models of PV pathogenesis in both cutaneous and
mucosal epithelia, described below.

CURRENT MmuPV1 MODELS OF PAPILLOMAVIRUS INFECTION AND
PATHOGENESIS

Virus entry and species and tissue tropism. MmuPV1 provides an opportunity to
explore mechanisms that govern PV species and tissue tropism. Much of the research
comparing MmuPV1 and HPV entry and tropism has been performed using in vivo
cervicovaginal and/or cutaneous infections with pseudoviruses (PsV), which do not
contain the viral genome but rather a reporter gene (e.g., that encoding luciferase or
green fluorescent protein) encapsidated into virus-like particles composed of papillo-
maviral capsid proteins L1 and L2. Initial studies using MmuPV1 and HPV PsVs revealed
similar mechanisms for virus entry (137); however, some differences have emerged. Day
and colleagues found that, while MmuPV1 PsV initiates infection at the basement
membrane, it does so, at least initially, in a heparan sulfate proteoglycan (HSPG)-
independent manner (138), unlike HPV16 and other mucosotropic alpha PVs, which
associate with the basement membrane using HSPG-dependent mechanisms. Interest-
ingly, cutaneotropic beta PVs, like HPV5, interact with heparin moieties in a manner that
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is also distinct from that of alpha PVs (139). Nevertheless, postentry intracellular
trafficking of MmuPV1 PsV is similar to that of HPV PsV (138). These findings illuminate
key differences and similarities in papillomavirus entry processes that are consistent
with a previous report finding variations in how accurately animal PV replication
models the HPV life cycle (140). Such limitations are inherent to animal models and
warrant caution in extrapolating findings made in the use of MmuPV1 as a model for
HPVs.

Studies of host immune response. A major strength of infection-based models is
the opportunity they provide to study the host immune response during a natural
infection. Initially, several laboratories reported that MmuPV1 fails to infect and/or
efficiently promote disease in common strains of immunocompetent mice (110, 120,
121, 123–125, 141). However, subsequent studies have revealed a more nuanced
relationship. Immunocompetent SENCAR and S/RV/Cri-ba/ba bare mice are susceptible
to MmuPV1 infection and disease when high virus titers are used (110, 121, 123), an
observation confirmed in FVB/N mice in our laboratory (133, 142). Outbred immuno-
competent SKH1 mice are also susceptible (122, 125). Mice of the common C57BL/6
strain seem particularly resistant to MmuPV1-induced disease (121, 123–125, 132),
while they develop antibody responses and biomarkers for MmuPV1 infection in
asymptomatically infected skin (121, 123, 125, 141), demonstrating that the genetic
background of mice affects susceptibility to MmuPV1 infection.

FIG 2 MmuPV1 exhibits expanded tissue tropism in mice and is a sexually transmitted virus. (A) MmuPV1
infects cutaneous and mucosal epithelia in immunocompetent mice, causing papillomas in skin (top row)
and neoplastic disease in the female cervicovaginal mucosal epithelium (bottom row). Representative
images of H&E (hematoxylin and eosin)-stained tissue show pathology. Productive MmuPV1 infection is
indicated by immunofluorescence for MmuPV1 L1 protein (green), and keratin staining (red) highlights
the epithelium. Bars � 100 �M. (B) MmuPV1 is a sexually transmitted virus. Shown are male (penile
epithelium; top row) and female (vaginal canal; bottom row) reproductive organs of FVB/N mice that
acquired MmuPV1 through sexual transmission. Representative images of H&E-stained tissue are shown,
and RNA in situ hybridization for the E4 transcript (brown) indicates infected regions of epithelia (the red
box highlights the region in male penile epithelium). Bars � 100 �M.
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The different sensitivities of various murine strains to MmuPV1 have helped define
a role for the immune system, and more specifically, adaptive immunity, in regulating
MmuPV1 infection. MmuPV1 was originally isolated from FoxN1nu/nu mice, which are
homozygously null for the FoxN1 gene, resulting in athymic mice that are T-cell
deficient (143). Using a combination of approaches, researchers discovered that T-cell
deficiency renders mice susceptible to MmuPV1 infection and disease (110, 120, 121,
123–125, 127, 129, 134, 141). For instance, several other strains of mice carrying the
FoxN1 genetic mutation are also susceptible to MmuPV1 infection (for a review, see
reference 40). Various regimens of T-cell depletion revealed that complete T-cell
deficiency correlates with susceptibility to MmuPV1 infection (121, 125). Systemic
immunosuppression, induced with continuous cyclosporine treatment (121) or UV
radiation (124), also can make resistant strains of mice more susceptible to MmuPV1
infection.

Several labs are using MmuPV1-based models to explore PV immunity. Pretreatment
with an MmuPV1 L1 rabbit antiserum prevented MmuPV1-induced papillomas (120).
Likewise, hyperimmune serum from mice immunized with MmuPV1 virus-like particles
(VLPs) prevented MmuPV1 infection in highly susceptible T-cell-deficient strains of mice
(127). Many studies continue to define the role of T-cell antitumor immunity to
MmuPV1-based disease. The Roden lab revealed that MmuPV1 E6- and E7-specific
CD8� T-cell responses promote papilloma clearance and regression and that adoptively
transferred E6-specific CD8� T cells alone prevent MmuPV1-dependent tumor growth
in nude mice (122, 125). In another study, MmuPV1-induced cutaneous tumors in
T-cell-deficient mice regressed following adoptive transfer of hyperimmune spleno-
cytes from congenic mice (144). Our laboratory discovered that a host stress keratin,
keratin 17, is upregulated following MmuPV1 infection and prevents T cell recruitment
to confer protection against cutaneous disease (142), highlighting a critical virus-host
interaction involved in PV pathogenesis. Recently, a provocative study used an
MmuPV1 cutaneous infection model to argue that immunity to cutaneous PVs protects
against UV- and chemical-induced skin cancer (145). However, data from our laboratory
contradict these findings, in that UV B radiation (UVB) treatment and MmuPV1 infection
led to the development of cutaneous squamous cell carcinomas (SCCs) (124). Ongoing
studies continue to evaluate other aspects of immunity, including the role of interferon
signaling and neutrophil infiltration in MmuPV1 infection and disease (125, 126). More
comprehensive reviews on MmuPV1 models and host immune response have been
written (40, 146).

Studies of MmuPV1 viral gene products and host factors. The alpha HPV E6 and
E7 proteins, in addition to their oncogenic properties (28), function during the main-
tenance and productive phases of the HPV life cycle (147, 148). We found that
MmuPV1-induced papilloma formation requires the E6 protein, as an E6-null (E6STOP)
mutant MmuPV1 mutant failed to induce papillomas in nude mice (118). Likewise, an
MmuPV1 E6 mutant that cannot bind MAML1 (E6R130A) also failed to induce papillomas.
These findings suggest that E6 protein functions, including its inhibition of Notch
signaling, are critical to MmuPV1-induced pathogenesis. Using antisera against
MmuPV1 L1 and L2, Handisurya and colleagues found that during MmuPV1 cuta-
neous infections, L1 is expressed throughout all epithelial layers in papillomas
instead of just suprabasal layers and is localized to the cytoplasm in the absence of
L2, suggesting that a unique pattern of late gene expression and virion assembly
may occur during the MmuPV1 life cycle (120). Additional studies are necessary to
characterize the role of other MmuPV1 proteins in the viral life cycle, pathogenesis,
and carcinogenesis.

The lack of an E5 protein is a key difference between MmuPV1 and high-risk alpha
HPV genomes (Fig. 1B). We infected the skin and female reproductive tracts of K14E5
HPV16 transgenic mice with MmuPV1 to determine the effect of epithelial E5 expres-
sion on MmuPV1-associated pathogenesis (133). In MmuPV1-infected K14E5 mice, skin
lesions exhibited earlier onset, higher incidence, and reduced frequency of spontane-
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ous regression compared to nontransgenic mice. Moreover, estrogen-treated K14E5
mice were more likely to develop cervicovaginal cancers than their nontransgenic
counterparts. Therefore, HPV16 E5 potentiates MmuPV1 pathogenesis. Further studies
are necessary to determine mechanisms of E5 function in this context, which could
involve the role of HPV16 E5 in suppressing immune responses (149). Complementation
studies combining HPV16 transgenic mice and MmuPV1 infection provide a unique
platform to study the role of high-risk alpha HPV proteins in pathogenesis.

New MmuPV1-based infection models provide important opportunities to study
host factors that promote PV persistence, a key risk factor for subsequent malignant
progression (18, 19). In the MmuPV1 cervicovaginal model, persistent infections are
established in the mucosal epithelia of immunocompetent FVB/N mice that persist for
at least 10 months (131, 132). Estrogen increases the severity of disease, and this
correlates with the establishment of persistent infections (132). Notably, MmuPV1 viral
copy numbers are highest during the estrus phase in immunodeficient mice (130). That
estrogen is being revealed as a potential persistence factor is just one example of how
MmuPV1 has the potential to illuminate roles of host factors in PV pathogenesis and
disease.

MmuPV1 cancer models. MmuPV1 E6 delays differentiation and promotes prolif-
eration in keratinocytes in vitro and is necessary for papilloma development in vivo
(118). However, there is relatively little published biochemical evidence for the trans-
forming activity of the MmuPV1 viral proteins. That being said, there are now multiple
studies demonstrating that MmuPV1 displays oncogenic potential in vivo. In cutaneous
sites, immunodeficient nude mice experimentally infected with MmuPV1 developed
poorly differentiated, locally invasive tumors that histologically resembled human
trichoblastomas (123). Squamous cell carcinomas were also observed at cutaneous sites
of secondary MmuPV1 infections in nude mice at 9.5 months postinfection (134).
FVB/NJ mice infected with MmuPV1 and treated with UVB were found to develop SCC
of the skin, demonstrating that MmuPV1 can cause cancer in immunocompetent mice
(124).

MmuPV1 also displays oncogenic potential in mucosal tissues. Cladel et al. first
reported that heterozygous nude mice (FoxN1nu/�) infected for 7.5 months with
MmuPV1 develop carcinoma in situ in the female reproductive tract (126). Later, it was
found that high-grade precancerous lesions and SCC developed in the female repro-
ductive tract of immunocompetent FVB/N mice at 6 months postinfection (132). Similar
to its role as a cocarcinogen in HPV16 transgenic mice (84–86, 88), estrogen signifi-
cantly increased the incidence and severity of high-grade disease and cancer in
MmuPV1-infected FVB/N mice (132). Further exploration of the role of estrogen and of
whether anti-estrogen drugs are efficacious in preventing and treating disease, as is the
case in HPV16-transgenic mice (101, 102), is warranted in MmuPV1-based infection
models of cervicovaginal disease. These established and emerging MmuPV1 models
show great potential for studying all stages of papillomavirus-mediated carcinogenesis,
the role of host cofactors, and therapeutic treatments.

Models of PV transmission. MmuPV1 models have the potential to identify unex-
plored facets of PV transmission relevant to public health. Mucosal HPV transmission
occurs most frequently through sexual contact, and HPV infections are the most
common sexually transmitted infections in the United States (16). Epidemiological data
are used to understand HPV sexual transmission in humans (150); however, laboratory
models to study the underlying molecular mechanisms involved in papillomavirus
sexual transmission are lacking. While rhesus macaque PV 1 (RhPV-1) is sexually
transmitted (67, 69), the cost, scalability and ethical considerations in the use of
nonhuman primates limit its application to the study of sexual transmission of papil-
lomaviruses. MmuPV1 was recently described as being sexually transmitted (131).
Female FVB/N donor mice, experimentally infected in their cervicovaginal tracts with
MmuPV1, transmitted MmuPV1 to untreated FVB/N male breeders through sexual
transmission, indicating that the penile epithelium supports MmuPV1 infection
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(Fig. 2B). The infected male breeders subsequently transmitted MmuPV1 to untreated
naive FVB/N recipient female mice (Fig. 2B). Approximately one-third of these recipient
female mice acquired MmuPV1 infections, some transient and some prolonged,
through natural sexual transmission. Therefore, MmuPV1 can be sexually transmitted in
wild-type laboratory mice in the absence of any environmental or genetic manipula-
tion. This powerful new animal model of natural PV sexual transmission promises to
provide new insights into the molecular dynamics of PV sexual transmission in both
male and female reproductive organs.

An MmuPV1 model has also provided potential evidence for blood-borne PV
transmission (151). MmuPV1 was introduced into immunodeficient FoxN1nu/nu mice via
tail vein injection; infections developed at prewounded cutaneous and mucosal sites,
and virus was detected in the stomach. Furthermore, naive mice receiving blood from
MmuPV1-infected animals developed disease in both cutaneous and mucosal epithelia.
While these results are intriguing, they should be carefully interpreted. Experimentally
wounded immunodeficient mice used in this study are highly susceptible to lateral
transmission and infection by MmuPV1, which could be inadvertently introduced
through a variety of environmental routes (animal bedding, handling, etc.). Therefore,
the incorporation of appropriate mock-infected and unwounded controls into such
experiments is critical for conclusive interpretation. Nevertheless, MmuPV1 promises to
uncover new molecular insights into PV transmission.

CONCLUSIONS AND FUTURE PERSPECTIVES

The discovery of MmuPV1 has ultimately provided a practical and genetically
tractable infection-based system to model HPV infection, transmission, and pathogen-
esis. Preclinical animal models of viral pathogenesis are inherently limited in their ability
to unequivocally recapitulate every aspect of human infection and disease. However, as
discussed in this Gem, MmuPV1-based infection models hold incredible promise for
providing insight into facets of HPV pathogenesis that were difficult to study before
their development. For these reasons, established and emerging MmuPV1 infection
models represent a new frontier in animal models of PV pathogenesis and promise to
transform our understanding of HPV-associated human disease.
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