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ABSTRACT

Objectives: To complement bedside learning of point-of-care ultrasound (POCUS), we developed an online
learning assessment platform for the visual interpretation component of this skill. This study examined the
amount and rate of skill acquisition in POCUS image interpretation in a cohort of pediatric emergency medicine
(PEM) physician learners.

Methods: This was a multicenter prospective cohort study. PEM physicians learned POCUS using a computer-
based image repository and learning assessment system that allowed participants to deliberately practice image
interpretation of 400 images from four pediatric POCUS applications (soft tissue, lung, cardiac, and focused
assessment sonography for trauma [FAST]). Participants completed at least one application (100 cases) over a 4-
week period.

Results: We enrolled 172 PEM physicians (114 attendings, 65 fellows). The increase in accuracy from the initial
to final 25 cases was 11.6%, 9.8%, 7.4%, and 8.6% for soft tissue, lung, cardiac, and FAST, respectively. For all
applications, the average learners (50th percentile) required 0 to 45, 25 to 97, 66 to 175, and 141 to 290 cases to
reach 80, 85, 90, and 95% accuracy, respectively. The least efficient (95th percentile) learners required 60 to 288,
109 to 456, 160 to 666, and 243 to 1040 cases to reach these same accuracy benchmarks. Generally, the soft
tissue application required participants to complete the least number of cases to reach a given proficiency level,
while the cardiac application required the most.

Conclusions: Deliberate practice of pediatric POCUS image cases using an online learning and assessment
platform may lead to skill improvement in POCUS image interpretation. Importantly, there was a highly variable
rate of achievement across learners and applications. These data inform our understanding of POCUS image
interpretation skill development and could complement bedside learning and performance assessments.
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The use of emergency point-of-care ultrasound
(POCUS) in pediatric emergency medicine (PEM)

can improve patient outcomes and expedite patient
disposition.1 As such, learning POCUS has become
an increasing priority in PEM, with the learning expe-
rience typically including introductory courses and skill
acquisition that relies on case-by-case clinical expo-
sure.2–5 However, this approach may lead to chal-
lenges in achieving POCUS proficiency across a wide
range of learners.6 Opportunities for bedside feedback
may be limited by the number of POCUS-trained
attendings available at a given site.2 This deprives the
learner of immediate feedback, one of the most power-
ful methods of skill acquisition.7 Further, since the
baseline pathology rate in pediatrics is relatively low,
relying on case-by-case exposure to achieve sufficient
skill may take years with clinical practice alone.
Gaining POCUS expertise is multifaceted and com-

plex since the technique includes image acquisition,
image interpretation, and integration of interpretation
into clinical decision making. To facilitate learning of
complex tasks, instructional design models recom-
mend intentionally alternating part-task with whole-
task training.8 In this light, e-learning provides an
opportunity to expose learners to an image interpreta-
tion learning experience (i.e., part-task) that could com-
plement the resource intensive face-to-face teaching
and learning at the bedside that addresses all facets of
POCUS (i.e., whole-task).2 However, to date, most
POCUS simulation and online education focuses on
image acquisition,3,5 specific conditions (e.g., cardiac
tamponade),9 or adult applications.10–12 As such, exist-
ing teaching tools are limited in being able to signifi-
cantly improve learner exposure to the part-task of
pediatric POCUS image interpretation. However,
Web-based learning and assessment image banks that
provide intentional sequencing and targeted analytic
feedback on hundreds of cases have had demonstrated
success for increasing electrocardiogram and muscu-
loskeletal radiograph image interpretation skill.13–15

Using these types of learning platforms, the presenta-
tion of images is simulated to mirror how clinicians
interpret them at the bedside. Specifically, cases are
presented with a brief clinical stem, standard images
and views, and juxtaposition of normal and abnormal
cases.16,17 The cases are also presented in large num-
bers so that learners can learn similarities and differ-
ences between diagnoses, identify weaknesses, and
build up a global representation of possible diag-
noses.15,16,18 After each case the system provides visual

and text feedback, which allows for deliberate prac-
tice19 and an ongoing measure of performance as part
of the instructional strategy.20,21 This type of learning
assessment platform could be applied to the image
interpretation component of POCUS and potentially
improve our understanding of POCUS image interpre-
tation skill development.
We developed a POCUS image interpretation learn-

ing and assessment system that included four common
pediatric POCUS applications (100 cases/application):
soft tissue, lung, cardiac, and focused assessment
sonography for trauma (FAST).3 We sought to deter-
mine PEM physician performance metrics and the
number of cases and time within which most partici-
pants could achieve specific performance benchmarks.

METHODS

Education Intervention
We used previously established methods to develop the
education intervention.15–17,22 Deidentified images in
the four POCUS applications acquired using the depart-
mental ultrasound machine (Zonare Medical Systems)
were exported from the local POCUS archive (Q-Path,
Telexy Healthcare) in JPEG (still images) or MPEG-4
(cine-clips) formats. From this pool, two PEM POCUS
fellowship-trained physicians selected a consecutive sam-
ple of 100 cases per application (400 total) that demon-
strated acceptable image quality and a spectrum of
pathology and normal anatomy. Any images with embed-
ded technical clues that pointed to a diagnosis were
excluded. Further, each application contained 50 cases
with and 50 cases without pathology.17 For lung and car-
diac applications, both video and still images were used
because recognition of movement is key to interpretation.
For soft tissue and FAST (except cardiac view) still images
alone were used since these were more likely to ade-
quately capture the subtleties distinguishing abnormal
and normal cases and were more cognitively efficient for
learners.23

As the skill of assigning clinical significance and a
specific diagnosis to POCUS findings (e.g., pneumonia)
is best assessed at the bedside, the main goal of this edu-
cation intervention was to develop the skill of distin-
guishing normal from any abnormal POCUS findings
on video/still images, alongside forcing the learner to
visually locate any abnormality for cases allocated as “ab-
normal.” The key initial educational outcome of accu-
rately distinguishing normal from abnormal cases (vs.
confirming a specific diagnosis) is also in keeping with
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the user goals pediatric POCUS at the bedside since
identifying an abnormal POCUS image should then
prompt the physician to consider additional tests or con-
sultations as needed to confirm or refine the diagno-
sis.24 Nevertheless, learning the possible specific
diagnoses from POCUS imaging findings is also impor-
tant. As a result, this information is presented with
every case for the participant to consider in the text feed-
back. This approach satisfies the essential learning goals
for pediatric POCUS, while providing additional infor-
mation to participants to also learn specific diagnostic
interpretations for each case.
All images were reviewed jointly by two POCUS

experts and classified as POCUS images as normal
versus abnormal, where abnormal images had changes
that could be considered pathological (Table 1). A
third POCUS expert then independently provided
normal/abnormal classifications, and discrepancies
between the classifications were resolved by consensus
(j = 0.86, 95% confidence interval [CI] 0.81 to 0.91).
Two POCUS experts then subsequently marked up
the abnormal images using graphics to highlight
pathology, creating clickable areas over the pathology
with 2 to 3 mm of allowance just outside the abnor-
mal area. These images were then embedded into a
template generated using a Flash-integrated develop-
ment environment.

A website was developed using HTML, PHP, and a
mySQL database.15 In brief, once a participant was pro-
vided unique access, they were taken to the online system
and presented with 100 cases per application. For each
case, they considered a brief clinical description stem
and an unmarked POCUS image (still � video). Cases
were presented in random order unique to each partici-
pant. After review of the case, the user declared the case
as definitely normal, probably normal, probably abnor-
mal, or definitely abnormal. The definitely/probably
assignments permitted the user to express the certainty of
their response. If their answer was in the “abnormal” cat-
egory, the user was then required to designate one area of
abnormality using an interactive system. When ready,
the participant submitted their response, after which they
received immediate visual and written feedback on the
correctness of their response, diagnosis of the case, and
normal anatomy (demonstration at https://imagesim.c
om/demo/ or Figure 1). Prior to launch, the system was
pilot tested on five participants (one POCUS nonexpert,
four POCUS experts) for technical and content issues
and revised in consequence.

Study Design and Setting
The education tool was developed in collaboration with
two tertiary care pediatric centers and an industry part-
ner. This research was undertaken using a multicenter
prospective cohort design. We recruited a convenience
sample of PEM physicians in the United States and
Canada from September to November 2018.

Selection of Participants
An e-mail was sent to PEM division heads, PEM fel-
lowship program directors, and P2 Network (an inter-
national collaborative of pediatric POCUS physicians,
https://p2network.com/) site leads asking them to for-
ward the e-mail to their respective fellows and attend-
ing physicians. Interested participants contacted the
study coordinator. We also recruited five “expert”
PEM POCUS physicians (separate from study team)
who had each completed a PEM POCUS fellowship
and performed at least 1,500 bedside scans.25 This
study was approved by the institutional review boards
at the study institutions.

Measurements
Secure entry was ensured via unique participant login
credentials and access to the system was available 24
hours per day, 7 days per week. We collected informa-
tion on type of learner (fellow vs. attending), geographic

Table 1
Pathology Presented by the Learning and Assessment System for
Each POCUS Application

Pathology (n = 50)† n (%)

Soft tissue

Cellulitis and abscess 29 (58)

Cellulitis 19 (38)

Foreign body 2 (4)

Lung

Pneumonia, with and without pleural effusion 25 (50)

Inflammation/bronchiolitis 20 (40)

Pneumothorax 3 (6)

Pulmonary edema 2 (4)

Cardiac

Pericardial effusion 32 (64)

Poor function 18 (36)

FAST

Multiple areas of free fluid 25 (50)

Pelvic free fluid 8 (16)

Right or left upper quadrant free fluid 12 (24)

Pericardial effusion 5 (10)

FAST = focused assessment sonography in trauma.
†50 cases with pathology per application; 50 cases without
pathology to make up 100 total.
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location, and self-reported POCUS scans completed
(none, <50, 51–100, 101–500, 501–1,000). Partici-
pants were asked to complete an introductory tutorial
and at least one of the four 100-case POCUS applica-
tions. The system automatically time stamped the time a
case was started to the time a case response was submit-
ted. Participants were given a time limit of 4 weeks to
minimize decay of learning that may confound results.26

At 2 weeks, participants who had not completed at least
one application were sent an e-mail reminder.

Outcomes
By surveying 150 members of the P2 network, we
determined that the performance benchmarks of 80,
85, 90, and 95% accuracy could be considered educa-
tionally meaningful for a variety of contexts. Thus, we
provided data that demonstrated learning curves of the
participants and the median number of cases that par-
ticipants need to complete to achieve the latter perfor-
mance benchmarks (primary outcome). Since we
anticipated that there would be a variation between
participants to achieve these performance benchmarks,
we provided this data separately for the average (50th
percentile) and least efficient learner (95th percentile)
of nonexpert participants.

We also examined the change in accuracy per appli-
cation between the first and last 25 cases.26 Further,
we measured the effect size of learning gains, changes
in sensitivity and specificity per application, and differ-
ences in learning gains between fellows versus attend-
ings and made comparisons between applications. We
examined if there was any association between demo-
graphic variables and the odds of achieving expert-level
performance. Expert-level data were also used to exam-
ine relations-to-other variables validity (construct),27

where we would expect that expert performance would
be significantly higher than those that are relative non-
experts. Finally, to examine feasibility, we calculated
average amount of time spent by participants per case
and per 100-case module.

Data Analyses
Sample Size. From our previous work, the educa-
tionally important difference between initial and final
scores was approximately 10% and the proportion of
discordant pairs is about 12%.26 We also assumed
that a = 0.05 and b = 0.80. Using a McNemar test
power analysis (PASS 11), we calculated a minimal
sample size of 95 of PEM POCUS nonexpert partici-
pants per application.

Figure 1. Visual feedback includes labeling of normal anatomy as well as any abnormalities (if present), and the red circle is the token
placed by the user within the mask designating the abnormal region. Text feedback details if the case is normal or abnormal and the speci-
fic abnormalities where present. LA = left atrium; LV = left ventricle; RA = right atrium; RV = right ventricle.
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Scoring. Participants were scored only on the
broad category selections of “normal” or “abnormal”
and not the subassignments of “probably or definitely”
normal/abnormal. Specifically, normal items were
scored dichotomously, while abnormal items were
scored correct if the participant classified the case as
abnormal and indicated one correct region of abnor-
mality.

Number of Cases to a Performance Bench-
mark. We modeled the learning curves of each indi-
vidual participant with a random coefficients
hierarchical logistic regression model.28 Using these
learning curves, we predicted the median number of
cases required for a participant to attain a performance
benchmark by solving the individual regression equa-
tion for the number of cases required to achieve the
log odds (logit) that would correspond to the selected
performance benchmark. From these data, we also
plotted the proportion of participants that would reach
95% accuracy for a given number of cases to deter-
mine if these histograms were normally distributed by
testing for both skewness and kurtosis of the distribu-
tions.29

Learning Outcomes. Using the initial (pre) and
final (post) 25 cases, we calculated change in accuracy,
sensitivity, specificity, and Cohen’s d-effect sizes for
each application, with respective 95% CI. We analyzed
for the association of achieving POCUS expert accu-
racy performance (dependent variable) and a priori
selected independent variables using a logistic regres-
sion model. The independent variables included years
in practice (≤5 years vs. >5 years), academic setting
(university affiliated children’s hospital vs. other),

POCUS training during fellowship (yes vs. no), num-
ber of any type of scan completed prior to participa-
tion (≥100 vs. <100), and accuracy score on initial 20
cases (≥80% vs. <80%).

Comparisons Between Applications. Inde-
pendent and dependent normally distributed paramet-
ric data were compared with a Student’s t-test and
paired Student’s t-test, respectively. Analysis of vari-
ance (ANOVA) testing was used to compare three or
more means from independent proportions, and the
Bonferonni test was used to perform post hoc analy-
ses.

Time Commitment. We determined the median
time it took to complete each 100-case application with
respective interquartile range. We compared the time
commitment between applications using the Kruskal-
Wallis test.
Significance was set at p < 0.01 to account for mul-

tiple testing. All analyses except the regression analyses
were carried out using SPSS (Version 23, IBM 2015).
The regression models were performed using Stata
(Version 14, StataCorp LLC).

RESULTS

Study Participants
We enrolled 177 PEM physicians. Of these, 172 were
PEM POCUS learner physicians (fellows [n = 65] and
attendings [n = 107]) and five were PEM POCUS
experts (Figure 2). Participants represented 28 (56%)
of the 50 US states and five (50%) of the 10 Cana-
dian provinces. There were significantly more fellows
than attendings that received POCUS training as part

ENROLLED
172 POCUS-novice PEM physician participants

65 fellows      107 attendings

Soft Tissue
119 participants

39 fellows     
81 attendings

Lung
99 participants

34 fellows      
65 attendings

Cardiac
102 participants

35 fellows      
67 attendings

FAST**
99 participants

36 fellows      
63 attendings

COMPLETED AT LEAST ONE APPLICATION
128* participants

47 fellows      81 attendings

DID NOT COMPLETE 
ONE APPLICATION 

44 participants 
23 fellows 21 attendings

Figure 2. POCUS PEM physician participation. *Sum total of all specific application participants was greater than 128 since most partici-
pants completed more than one application. FAST = focused assessment sonography for trauma; PEM = pediatric emergency medicine;
POCUS = point-of-care ultrasound.
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of their fellowship experience (82.0% vs. 30.8%; dif-
ference = 51.2% [95% CI = 36.2–61.7]; Table 2).
At least one application was completed by 128

(74.4%) participants (Figure 2), 88 (68.8%) of whom
completed all four applications, while 11 (8.6%) com-
pleted three, seven (5.5%) completed two, and 22
(17.2%) completed one application.

Number of Cases to Performance
Benchmarks
A qualitative review of the modeled learning curves
demonstrates significant variation between participants
in rates of achieving higher performance (Figure 3).
For the average (50th percentile) learners, the pre-
dicted median number of cases needed across our four
applications was 0 to 45 for 80% accuracy, 25 to 97
for 85% accuracy, 66 to 175 for 90% accuracy, and
141 to 290 for 95% accuracy (Figure 4A). The least

efficient (95th percentile) of learners would have to
complete 60 to 288 cases to achieve 80% accuracy,
109 to 456 cases for 85% accuracy, 160 to 666 cases
for 90% accuracy, and 243 to 1,040 cases for 95%
accuracy. Participants required the highest number of
cases for the cardiac application and the lowest num-
ber for the soft tissue application to reach a specified
benchmark (Figure 4B).
The distribution of the number of participants that

would achieve the expert benchmark for a given num-
ber of cases was skewed for all applications
(p < 0.0001). The lung and cardiac distributions also
demonstrated kurtosis (p < 0.0001; Figure 5).

Performance Outcomes
The pre/post change in accuracy for each application
is detailed in Table 3. The Cohen’s d-effect sizes for
each application were moderate to large and ranged

Table 2
Participant Demographics

Demographic Variable PEM Fellow N=65 PEM Attending N=107 p-value

Participant from the Unites States, no. (%) 52 (80.0) 67 (62.6) 0.02

Years since completing postgraduate training, no. (%)

< 6 years NA† 44 (41.1) NA†

6-10 years 20 (18.7)

11-15 years 13 (12.1)

16-20 years 10 (9.3)

> 20 years 20 (18.7)

Female sex, no. (%) 44 (72.1) 72 (63.2) 0.23

Employment Setting, no. (%)

University affiliated general/community hospital 3 (4.6) 6 (5.6) 0.53§

University affiliated children's hospital 61 (93.8) 99 (92.5)

Non-university affiliated general/community hospital 2 (3.1) 1 (0.9)

Non-university affiliated children's hospital 0 1 (0.9)

Type of Point-of-Care Ultrasound Training, no. (%)‡

None 2 (3.1) 13 (12.1) <0.0001§

Integrated into emergency medicine residency training 3 (4.6) 9 (8.4)

Integrated into pediatric residency training 3 (4.6) 1 (0.9)

Integrated into PEM fellowship training 53 (82.0) 33 (30.8)

Workshops/ Courses 7 (10.8) 75 (70.70)

Institutional faculty training NA 61 (57.0)

Self-directed learning 8 (12.3) 27 (25.2)

Number of educational/clinical point-of-care ultrasound examinations completed, no. (%)

None 2 (3.1) 5 (4.4) 0.12

<50 30 (45.2) 43 (40.4)

51-100 17 (26.2) 20 (18.4)

101-500 15 (23.1) 28 (26.3)

501-1000 1 (0.2) 15 (14.0)

†NA - Not applicable
‡Participants could choose all that apply
§p-value comparing distributions in each learner group
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Figure 3. Predicted learning curves for soft tissue, lung, cardiac, and FAST. FAST = focused assessment sonography for trauma.

Figure 4. (A) The x-axis represents the benchmark level of proficiency as chosen by the educator. The y-axis represents the predicted num-
ber of cases required to achieve that benchmark based on the logistic regression model described in the text. The two panels represent
two different educational contexts. (A) The median learner is represented—50% of learners required fewer cases to achieve the benchmark;
50% required more. (B) A higher ambition is presented: the number of cases required of the marginal learner so that 95% of the learners will
have achieved the given benchmark (i.e., 95% of learners would need to do fewer; 5% would need to do even more). FAST = focused
assessment sonography for trauma.
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from 0.6 to 1.0.30 There were no differences in fellow
versus attending final accuracy, sensitivity, or specificity
scores for soft tissue, lung, or cardiac applications. For
FAST, however, attendings had higher final accuracy,
(+6.0% difference; 95% CI = 1.8, to 10.2) and sensi-
tivity (+7.5% difference; 95% CI = 0.6 to 14.4).
There was no association of PEM POCUS physician
learners achieving expert performance with any of the
baseline variables: >100 POCUS scans experience ver-
sus <100 (odds ratio [OR] = 1.2, 95% CI = 0.5 to
2.6), initial accuracy >80% versus <80% (OR = 2.1,
95% CI = 0.8 to 5.6), <5 versus >5 years in practice
(OR = 1.4, 95% CI = 0.5 to 3.5), children’s hospital
versus other setting (OR = 1.6, 95% CI = 0.3 to 8.8),
POCUS training in fellowship versus none (OR =
2.1, 95% CI = 0.9 to 4.5). Per application, PEM
POCUS expert mean (95% CI) accuracy scores were
soft tissue 96.0% (92.3% to 99.7%), lung 96.0%
(93.9% to 98.1%), cardiac 90.0% (81.8% to 98.2%),
and FAST 93.0% (88.0% to 98.0%). Expert final
scores were significantly higher than those of nonex-
pert participant scores, with an accuracy difference of
7.3% (4.4% to 10.4%).

Comparisons Between Applications
The final accuracy sensitivity and specificity (Table 3)
differed between applications (ANOVA p < 0.001),
with post hoc Bonferroni analyses showing that the
cardiac application had lower final accuracy
(p < 0.01), sensitivity (p < 0.01), and specificity
(p < 0.01) relative to each of the other applications.
For the soft tissue application, there were greater learn-
ing gains for normal cases (specificity = +18.9%) ver-
sus abnormal cases (sensitivity = +4.9%), with a
difference of 14.0% (95% CI = 9.8% to 18.2%).
There were no differences in learning gains for abnor-
mal versus normal cases in the other applications.

Time Commitment
The initial (first 25 case) mean time per case was 31.7
seconds, which decreased to 21.2 seconds on the final
25 cases (difference = –10.5 seconds, 95% CI = –8.6
to –12.4). The median time (interquartile range) in

Figure 5. The predicted number of cases needed to achieve 95%
accuracy, based on the modeled learning curve for each individual.
The overlaid curves are smoothed kernel density plots, which
demonstrate that all four distributions are significantly skewed (i.e.,
not normally distributed). FAST = focused assessment sonography
for trauma.
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minutes it took to complete each 100-case application
was as follows: soft tissue (still image) 29.5 (20.9 to
40.7), lung (video + still image) 52.3 (39.7 to 72.7),
cardiac (video + still image) 52.0 (39.7 to 72.7), and
FAST (video + four still images) 63.6 (49.1 to 76.6)
minutes (p < 0.0001).

Missing Data
There were no differences in the demographics of the
44 of 172 (25.6%) who dropped out versus the 128
who completed at least one 100-case application. Fur-
ther, there were no differences in initial accuracy of
those participants who completed the 100-case applica-
tion versus those who did not (mean initial accuracy
difference = 0.14%, 95% CI = –4.2 to 3.9).

DISCUSSION

We demonstrated that the case numbers required to
reach the performance benchmarks ranged consider-
ably for both the average and least efficient learners.
Further, we noted that the deliberate practice of
POCUS image interpretation led to skill improvement
within a 100-case online learning experience, and
most participants needed only about 2 to 3 hours to
achieve the highest performance benchmark accuracy
of 95% for all applications except cardiac, which
required 3 to 10 hours. These data could inform edu-
cation strategies and potentially add to the skill devel-
opment of POCUS image interpretation.
Most organizations are faced with decisions about

ideal credentialing POCUS standards to allow their
physicians to safely practice at the bedside. This com-
plex discussion often includes consensus building,
stakeholder engagement, and the use of standardized
competency-setting methods.31,32 Our results can
inform these organizational discussions on the variable
journey learners take to a given performance bench-
mark, while the broader POCUS community

considers which performance benchmarks are most
appropriate. Our data also demonstrate that the num-
bers of cases required to achieve a performance bench-
mark were not normally distributed, with skewed
distribution tails, indicating that a minority of learners
required considerably more cases to attain each bench-
mark. This has policy implications for education guide-
lines based on an “average” learner. Specifically, our
data suggest that a shift away from the current stan-
dard of recommending specific numbers of cases for
POCUS proficiency (e.g., 25–50 cases2,33) in favor of
learners achieving a performance-based competency
benchmark.11 This approach is also in keeping with
evolving performance-based competency frameworks in
residency training, which promote greater accountabil-
ity and documentation of actual capability.34

Separating out the POCUS image interpretation task
and then integrating knowledge gained into whole task
activities can reduce cognitive load during face-to-face
bedside POCUS teaching.8 This may result in more effi-
cient and effective learning and greater learning satisfac-
tion as demonstrated in similar forms of blended
learning.35 Alternatively, one could argue that POCUS
image interpretation may be inherently easier to learn at
the bedside, where one can pursue visual hints, make
comparisons to unaffected areas, or better integrate the
clinical context. However, these bedside advantages are
challenged by the learner also needing to simultaneously
acquire the images and conditions that lead to subopti-
mal image acquisition may limit the learning of image
interpretation. Further, given the relatively low frequency
of pathology in pediatrics, bedside learning may not effi-
ciently offset the fact that many cases may be needed for
most learners to achieve practice-ready standards,
whereby a 50% or higher abnormal rate has previously
been shown to be optimal for achieving an acceptable
user sensitivity.17 Given the pace of case exposure, bed-
side education may also not be very effective at identify-
ing specific areas of individual participant weaknesses or

Table 3
Performance Metrics for Point-of-care Ultrasound Pediatric Emergency Medicine Physicians

Application

Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI) Cohen's effect size,
d (95% CI)

Pre Post Difference Pre Post Difference Pre Post Difference

Soft Tissue N=119 74.8 86.4 11.6 (9.6,13.6) 86.4 89.5 4.9 (2.4, 7.5) 64.8 83.7 18.9 (15.6, 22.2) 1.0 (0.9, 1.2)

Lung N=99 79.8 89.6 9.8 (7.2, 12.5) 79.4 87.2 7.8 (3.9, 11.7) 80.6 91.8 11.2 (7.6, 14.8) 0.8 (0.6, 1.0)

Cardiac N=102 74.2 81.6 7.4 (4.9, 10.0) 70.8 80.6 9.8 (5.5, 14.0) 76.3 82.5 6.3 (2.6, 9.9) 0.6 (0.4, 0.8)

FAST N=99 79.3 88.0 8.6 (6.2, 11.1) 78.3 88.0 9.7 (6.0, 13.4) 80.2 87.5 7.3 (4.0, 10.6) 0.7 (0.5, 0.9)

Pre – performance on the initial 25 cases
Post – performance on the final 25 cases
N – Number of participants
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applications that are more difficult to learn. For example,
our results provided evidence that cardiac and normal
soft tissue cases were more difficult than other POCUS
applications. Future research should explore the interac-
tion between learning the image interpretation skill via
online deliberate practice and the real-time application of
POCUS at the bedside.36,37

The education intervention demonstrated a large
effect size for the soft tissue and lung applications and a
moderate effect size for the cardiac and FAST applica-
tions.30 One possible explanation for these disparities is
that cardiac and FAST applications were more difficult
to interpret, due to increased complexity of anatomy (car-
diac, FAST), differences in number of views (FAST), or
low a priori skill due to low rates of pathology of these
applications at the bedside. Strategies that may enhance
diagnostic performance outcomes using the education
intervention in this study include scaffolding (e.g.,
embedding electronic hints or coaching),38,39more delib-
erate review of incorrect cases (including referring to sup-
plemental resources), and/or repeating cases as many
times as needed to reach a desired performance out-
come.
None of the participant baseline variables that we

tested predicted for achieving expert-level performance.
While it is not possible to be certain of the reasons for
this from our data, we can consider some possible expla-
nations. With respect to the variable of number of scans
(100 vs. >100), the number alone may not be sufficient
to predict for achieving expert level if a participant did
not routinely receive feedback on images acquired at the
bedside, which may limit a participant’s ability to learn
from each scan performed.7 POCUS training during
PEM fellowship versus no training during fellowship
may not have alone impacted participant ability to
achieve expert scores since many of our study attending-
level participants also engaged in institutional and other
POCUS workshops/courses. Further, since almost all
our participants worked at children’s hospitals, we were
likely underpowered to examine the impact of practice
setting. Finally, since scores are weighted for the 25
most recent cases and case interpretation difficulty var-
ied over the 100-case experience, initial accuracy scores
may not have predicted for subsequent and final scores.

LIMITATIONS

Image interpretations were based on the expert opin-
ion of three POCUS experts and the interobserver
agreement between these opinions was high; however,

expert opinions may be subject to error.40 Participants
were able to select the applications and about one-
quarter of our enrolled participants did not complete
the minimum study intervention; therefore, our results
may be biased by increased engagement for the
selected applications and/or toward more POCUS-mo-
tivated PEM physicians. Since this is a part-task educa-
tion intervention removed from the bedside and
utilizes a higher proportion of pathological cases than
is typically experienced at the bedside, it is uncertain
how knowledge gained via this tool will translate to
patient-level skill and outcomes. Some participants
required considerably more than the 100 cases pre-
scribed within the study design. Like other models of
educational outcome distributions, we have the most
information about persons at the mean and the
extreme predictions run the risk of spectrum bias.
Over the 4-week study period, other factors may

have contributed to the study’s reported learning out-
comes. However, our data demonstrates that most par-
ticipants completed the cases in one sitting so it is
unlikely additional POCUS exposure influenced our
study results significantly. The changes in participant
performance were reported using a pre-post designs,
which may be subject to confounders that impact the
validity of the results. Finally, this study included PEM
physician participants and thus may not be generaliz-
able to other categories of physician learners.

CONCLUSIONS

Deliberate practice of pediatric point-of-care ultrasound
image cases using an online learning and assessment
platform may lead to skill improvement in point-of-
care ultrasound image interpretation. Further, this
method allows an efficient review of a larger number
of cases than would be typically available with bedside
practice alone. Our results also demonstrated that the
rate of learning the image interpretation task of point-
of-care ultrasound can be highly variable across learn-
ers. These data could inform education strategies and
potentially add to our understanding of how the skill
of point-of-care ultrasound image interpretation is
acquired among pediatric emergency medicine physi-
cians.

We acknowledge the efforts of Ms. Kelly Sobie who facilitated par-
ticipant recruitment and providing access information to the study
participants. We also thank the pediatric emergency medicine
physicians who participated in this research.
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