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Biogeography is an implicit and fundamental component of almost every dimension 
of modern biology, from natural selection and speciation to invasive species and bio-
diversity management. However, biogeography has rarely been integrated into human 
or veterinary medicine nor routinely leveraged for global health management. Here we 
review the theory and application of biogeography to the research and management of 
human infectious diseases, an integration we refer to as ‘pathogeography’. Pathogeog-
raphy represents a promising framework for understanding and decomposing the spa-
tial distributions, diversity patterns and emergence risks of human infectious diseases 
into interpretable components of dynamic socio-ecological systems. Analytical tools 
from biogeography are already helping to improve our understanding of individual 
infectious disease distributions and the processes that shape them in space and time. At 
higher levels of organization, biogeographical studies of diseases are rarer but increas-
ing, improving our ability to describe and explain patterns that emerge at the level 
of disease communities (e.g. co-occurrence, diversity patterns, biogeographic region-
alisation). Even in a highly globalized world most human infectious diseases remain 
constrained in their geographic distributions by ecological barriers to the dispersal or 
establishment of their causal pathogens, reservoir hosts and/or vectors. These same 
processes underpin the spatial arrangement of other taxa, such as mammalian biodi-
versity, providing a strong empirical ‘prior’ with which to assess the potential distribu-
tions of infectious diseases when data on their occurrence is unavailable or limited. 
In the absence of quality data, generalized biogeographic patterns could provide the 
earliest (and in some cases the only) insights into the potential distributions of many 
poorly known or emerging, or as-yet-unknown, infectious disease risks. Encourag-
ing more community ecologists and biogeographers to collaborate with health profes-
sionals (and vice versa) has the potential to improve our understanding of infectious 
disease systems and identify novel management strategies to improve local, global and 
planetary health.
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Introduction

In a globalized world where the spread of infectious diseases 
appears to ignore all boundaries and the risk of emerging 
pathogens is on the rise (Jones et al. 2008, Fisher et al. 2012), 
there has been a resurgence in interest by academics, the gen-
eral public and both national and international government 
authorities in the geography of human infectious diseases at 
all spatial scales. Since most endemic and emerging human 
pathogens utilise non-human animal species at some stage 
in their transmission cycles (e.g. reservoir and intermediate 
hosts and vector species) (Taylor et al. 2001, Woolhouse and 
Gowtage-Sequeria 2005), biogeographers and community 
ecologists are increasingly involved in this pursuit. Their con-
tributions have yielded a range of novel and complementary 
insights on the spatial and temporal patterns of infectious 
disease occurrence, emergence and burden, their underlying 
ecological processes, and their surveillance and management 
(Guernier  et  al. 2004, Smith  et  al. 2007, Peterson 2008, 
2014, Reperant 2010, Johnson  et  al. 2015, Murray  et  al. 
2015, Stephens et al. 2016b). 

Medical geography has a long and rich history (Barrett 
2000, Cliff et al. 2000, Rogers et al. 2002, Cliff and Haggett 
2004) and its methods and objectives have numerous paral-
lels to those of modern biogeography, with its broad aim of 
determining how multiple processes (e.g. speciation, adapta-
tion, extinction, ecology, geology, climate) interact with one 
another to produce distributional patterns in the world’s biota 
(Myers and Giller 1988). For infectious diseases, this history 
stretches as far back as to the time of the debate between 
contagionists and anticontagionists, when experts disagreed 
about the very existence of infectious disease-causing agents; 
for example, several ‘spot maps’ in the context of yellow fever 
in the US were developed in the late 18th and early 19th cen-
turies to identify patterns and attempt to infer environmental 
causes for the disease, well before Pasteur and Koch’s eventual 
and definitive development of the ‘germ theory of disease’ in 
the late 1800s (Howe 1989, Jones 1990, Lederberg 2000). 

However, the largely correlative methods and findings of 
medical geography seemed to lose ground as modern medi-
cine developed in favour of a relatively narrow focus on mol-
ecules, individuals, individual diseases or sub-components 
thereof, and small and homogenous populations and areas 
(e.g. cohort studies, randomized- and case-control trials, 
small area health statistics), in which causality is presumed 
easier to stalk (Schwartz 1994, McLaren and Hawe 2005). 
As a consequence, and despite the availability of theory and 
methods in other disciplines to overcome, negate or manage 
key issues related to correlation and scale complexity (Ches-
son 2012), modern epidemiology has been arguably caught 
off-guard in a rapidly changing world. 

So called ‘prisoners of the proximate’, in reference to a lim-
iting preoccupation with direct individual-level disease risk 
factors, McMichael (1999) suggested that modern epidemi-
ologists and public health managers have been sluggish and 
ill-equipped to recognise, prepare for and proactively respond 

to some of the most pressing and emerging health challenges 
of the 21st century, such as climate change, habitat alteration 
and degradation, biodiversity loss, invasive species including 
vectors, demographic shifts, migration and epidemiological 
transitions. Although many global health metrics, such as life 
expectancy and childhood mortality, have nevertheless con-
tinued to improve, researchers from a range of disciplines are 
increasingly forecasting a collision between ongoing improve-
ments in human health and a range of large-scale and accel-
erating global change processes, particularly those relating to 
environmental factors and declining environmental quality 
(Foley et al. 2005, MEA 2005, Raudsepp-Hearne et al. 2010, 
Suk and Semenza 2011, Costanza  et  al. 2014, Watts  et  al. 
2015, Whitmee et al. 2015). 

Health funders are also beginning to recognise these com-
plex risks to human health (e.g. Wellcome Trust  https://
wellcome.ac.uk/what-we-do/our-work/our-planet-our-
health , Rockefeller Foundation  www.rockefellerfoun-
dation.org/our-work/initiatives/planetary-health/ ). Given 
that this type of multi-scale, multi-disciplinary complexity is 
commonplace in biogeography, and much precedence exists 
from the study of parasitism, plant and animal diseases and 
global change ecology, there has never been a better time for 
biogeographers and ecologists to contribute their knowledge, 
theory and methods to public and global health. Critically, 
where strong links between human health and the environ-
ment are identified and quantified, such collaborations could 
stimulate novel streams of funding and yield cost-effective 
co-benefits for health and the environment (Myers  et  al. 
2013, Waldron et al. 2017). 

This is particularly salient for research on human infec-
tious diseases, most of which involve animal hosts and vectors 
in shaping their distributions and are therefore influenced 
by many of the same ecological processes that govern biodi-
versity patterns more generally (Guernier et al. 2004, Mur-
ray  et  al. 2015). Analogous to its utility for understanding 
wildlife distributions, biodiversity patterns and improving 
conservation management, biogeography has the potential 
to improve our understanding of infectious disease distribu-
tions, describe and explain patterns and processes underlying 
pathogen diversity (‘pathodiversity’) and contribute to infec-
tious disease forecasting, risk management and threat abate-
ment. Through the analysis of historical disease, host and/or 
vector occurrence and co-occurrence patterns, biogeographic 
approaches could even yield some of the earliest, and in some 
cases the only, insights into poorly known, burgeoning and 
future infectious disease risks (Murray et al. 2015). 

Here, we review the building blocks of biogeography and 
illustrate how it has and could continue to provide novel 
insights for the study and management of human infectious 
diseases, an integration we refer to as ‘pathogeography’ (res-
urrecting a term coined by plant pathologist Israel Reichert; 
Reichert and Palti 1967). Better understanding of patho-
geography among ecologists and improved biogeographic 
knowledge among veterinary and medical scientists and pub-
lic health managers should help improve disease surveillance, 
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combat the global burden of human infectious diseases, and 
improve environmental management. It may even help re-
bridge a divide that has opened between the medical and eco-
logical sciences, two powerful, explanatory and potentially 
predictive disciplines that ultimately share common roots in 
basic scientific inquiry. 

Pathogeography – a framework for the 
biogeographic study of infectious diseases

The overarching objectives of pathogeography, following 
biogeography (Myers and Giller 1988), are to determine 
how the interactions among varying biotic (e.g. speciation, 
adaptation, extinction) and abiotic (e.g. topography, geol-
ogy, climate) factors and processes combine to produce 
distributional patterns in infectious diseases through time. 
Johnson et al. (2015) and Stephens et al. (2016b) recently 
reviewed the community ecology and macroecology of 
infectious diseases, respectively, and a natural intersection 
between these disciplines and the biogeography of infectious 
diseases occurs where these fields become spatially explicit. 
Macroecology deals with ecological questions that demand 
large-scale analysis (Brown 1995, Brown and Lomolino 
1998, Cox  et  al. 2016). The limits between biogeography 
and macroecology are fuzzy. They converge when biogeog-
raphy is focused on the study of how population- or com-
munity-level parameters vary along geographic dimensions 
(Lomolino  et  al. 2006), or when macroecology deals with 
spatial patterns (e.g. the geographic distribution of a cer-
tain pathogen species or diversity patterns). The divergence 
occurs when spatially explicit components are not crucial 
to answering questions being addressed by macroecology 
(Blackburn and Gaston 2006), and when biogeography does 
not invoke structural and functional patterns of ecological 
systems (e.g. areography and some evolutionary biogeog-
raphy approaches) (Morrone 2009). By contrast, commu-
nity ecology offers further insights on the mechanisms and 
processes that bridge fine scale processes of individuals and 
populations with the ecology and evolutionary processes 
of species and disease distributions at larger spatial scales 
(Johnson et al. 2015). 

Whereas biogeography is concerned with the analysis 
of spatial patterns of biological diversity, pathogeography 
(i.e. the biogeography of pathogens) is concerned with the 
analysis of spatial patterns of pathogen (or disease) diver-
sity (‘pathodiversity’ being the obvious analogue, but also 
referred to as the ‘pathogen pool’, ‘pathogen community’, 
‘pathosphere’ or ‘pathobiome’). Taylor  et  al. (2001) con-
structed the first list of distinct species at a global scale known 
to be infectious to and capable of causing disease in humans 
under natural conditions, tallying 1415 species (217 viruses 
and prions, 538 bacteria and rickettsia, 307 fungi, 66 proto-
zoa and 287 helminths). Discovery and recognition of new 
human pathogens occurs regularly (Woolhouse et al. 2008), 
with the most recent comprehensive inventory that we are 

aware of listing 2107 pathogens in humans (274 viruses, 
1003 bacteria, 447 fungi, 82 protozoa and 301 helminths) 
(Wardeh et al. 2015). 

A comprehensive global database of clinically relevant 
human infectious diseases, GIDEON ( www.gideononline.
com/ ), tracks more than 350 of these pathogens (Berger 
2005, Victor and Edberg 2005). Surprisingly, the distribu-
tions of most of these are very poorly known. As recently 
as 2013, only 7 infectious diseases were considered ‘com-
prehensively mapped’ (including Old World coltiviruses, 
Plasmodium falciparum and P. vivax, monkey pox, dengue, 
Lassa fever and Mayaro) (Hay  et  al. 2013), fundamentally 
limiting the ability of public and global health resources to 
be systematically and efficiently directed towards precise 
geographic areas and populations at highest risk from other 
impactful diseases. Indeed, distributional patterns of human 
infectious diseases are generally far more poorly compiled 
and characterized (e.g. often at only country or regional level 
and as coarse presence vs absence data) than many plant and 
animal species, for which numerous global stock takes, sta-
tus assessments, occurrence databases and detailed distribu-
tion maps exist following a long tradition of biogeographic 
study (Wallace 1876, Murray et al. 2015) (see also Supple-
mentary material Appendix 1 Table A1). However, with the 
development of big data approaches and curated databases, 
resources are slowly improving for human infectious dis-
eases (Wardeh et al. 2015, Stensgaard et al. 2017). Data may 
even on occasion be far richer or more geographically precise 
than for many plant and animal species (especially invasive 
species) owing, for example, to notifiable disease reporting 
requirements, such as those in place in EU member states 
for reporting human cases of certain diseases to ECDC and 
zoonotic and food-borne diseases to other EU registries (e.g. 
haemorrhagic cases of dengue and Rift Valley fever, Crimean 
Congo haemorrhagic fever, West Nile fever, cholera, campy-
lobacteriosis) (Lindgren et al. 2012). In addition, databases 
for specific groups of diseases (e.g. helminths, neglected trop-
ical diseases) and host-pathogen (including human) associa-
tions are increasing (e.g.  www.thiswormyworld.org/ ). 

In global studies that have classified pathogens accord-
ing to their epidemiological traits, the majority of known 
human pathogens (58–61%) are classed as zoonotic, defined 
as diseases and/or pathogens that are naturally transmissible 
from vertebrate animals to humans, and 14% are arthro-
pod vector-borne (WHO 1959, Palmer  et  al. 1998, Taylor  
et  al. 2001, Woolhouse and Gowtage-Sequeria 2005). The 
close association between animals and human pathogens 
means that the diversity of potentially pathogenic microor-
ganisms that occur in animals including wildlife is also of 
major interest for human health (Morse 1995, Murray and 
Daszak 2013). However, at present, the full dimensions of 
this broader ‘pathogen pool’ are almost entirely unknown. 
For example, estimates of the total number of viruses within 
just nine target viral families from the first intensively sam-
pled wildlife species (the natural host of Nipah virus, fruit bat 
Pteropus giganteus) suggest that the number of known human 
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pathogens is just a tiny fraction of the total viral diversity that 
occurs in wildlife (Anthony et al. 2013).

Units of analysis 

The ‘operational taxonomic unit’ (OTU) of pathogeography 
may differ somewhat from conventional OTUs in biogeog-
raphy (e.g. genes, species). While infectious diseases are all 
caused by specific pathogenic microbial species (which could, 
or perhaps should, themselves be the relevant OTU), it is 
their infection/presence in human and in some cases live-
stock or wild animal hosts or vectors that is of primary inter-
est to health stakeholders and the usual target of surveillance 
programs. 

‘Occurrence’ is the presence of a disease or its causative 
agent in a particular place at a particular time. This can in 
turn be represented as a presence (i.e. in a human host or a 
specific geographic unit) or some measure of relative abun-
dance either within single hosts (e.g. the infection load, 
particularly for macroparasites, such as helminths), within 
a defined geographic area (e.g. density), time period (inci-
dence) or within the host population (e.g. prevalence). It 
might also be represented to reflect the process of transmis-
sion itself (e.g. ‘force of infection’). With some information 
on the average impact of infections in humans, public health 
practitioners often also describe spatial and temporal pat-
terns of disease in terms of ‘burden’, with various available 
measures that broadly seek to capture the loss of healthy life 
(e.g. death and disability) attributable to the presence of cer-
tain diseases within a population (e.g. disability adjusted life 
years, DALYs) (Murray et al. 2013). Conversely, the absence 
of disease is of equal interest for pattern and process analy-
sis, but harder to obtain given the sampling difficulties of 
asserting freedom from disease (Cameron 2012). Further-
more, occurrence records (and its derivatives) will gener-
ally be a subset of actual occurrences, because in most cases 
they will be heavily influenced by observation effort. Given 
the diversity of health studies, all of these epidemiological 
metrics could be potentially relevant for pathogeographic 
analysis.

The same units of measure (occurrence, abundance, den-
sity) for known or potential hosts and vector species are also 
relevant and will already be familiar to ecologists. Some esti-
mates of disease ‘risk’ (or, perhaps more accurately, ‘hazards’) 
are based on these (e.g. tick nymphal abundance as a mea-
sure of Lyme disease risk) and their ecologies may contrib-
ute directly or indirectly to disease patterns (Civitello et al. 
2015), such that data on their potential occurrence can 
improve biogeographically-informed risk mapping of disease 
outcomes in humans (Messina et al. 2015, Pigott et al. 2016, 
Olivero et al. 2017a). One major challenge for biogeographic 
analyses of human infectious diseases, however, is the avail-
ability and utility of appropriate data, which we discuss fur-
ther in Box 1. Supplementary material Appendix 1 Table A1 
provides some example data types, and some useful databases 
and sources relevant to biogeographic analyses of human 
infectious diseases.

Single diseases

The study of infectious disease spatial distributions is not new 
(Barrett 2000), nor are integrated approaches to studying infec-
tious disease distributions, whether they are labeled biogeo-
graphic (Peterson 2008) or not (Lambin et al. 2010). Indeed, 
the emergence of informatics, geographic information systems 
(GIS) and satellite technology has increased the availability of 
tools and high quality spatial datasets relevant to both ecolo-
gists and medical geographers, driving a recent convergence in 
the data and in some cases the methods used to examine the 
distributions of wild species and infectious diseases alike and 
for developing or evaluating causal hypotheses underpinning 
them (Hay et al. 2006, 2013, Kraemer et al. 2016). 

Such developments have facilitated the study of the spatial 
structure of some infectious diseases in unprecedented detail 
(Fig. 1). In some cases, there has been innovation in the inte-
gration of these approaches with mechanistic models tradi-
tionally used to explore the population dynamics of infectious 
diseases (Redding et al. 2016), and some analyses have been 
developed and updated in close to real time (e.g. during the 
west African Ebola outbreak) (Pigott et al. 2014, 2016). These 
advances complement an already strong suite of tools already 
used in epidemiological studies, which might equally flow the 
other way into the toolboxes of ecologists (Magalhães  et  al. 
2011, Caprarelli and Fletcher 2014, Bhatt et al. 2017).

Peterson (2008) defined the first explicit ‘biogeographic 
framework’ for human infectious diseases. Drawing on 
the work of Soberón (2007) on the Grinnellian niche and 
geographic distributions of species, the framework is char-
acterized by considerations of a pathogen’s dispersal ability 
combined with the abiotic and biotic factors that interact 
to determine whether a disease is able to fulfill its full geo-
graphic potential. Although not explicitly demonstrated, 
Peterson (2008) emphasizes that a key difference between 
pathogens and diseases in comparison to free ranging wild 
species (with the exception of invasive species) is the relative 
unpredictability of dispersal events (e.g. rapid, long distance 
introductions), and the relatively lower importance of abiotic 
and relatively higher importance of biotic factors. This applies 
particularly to the high degree of inter-specific interactions, 
from the infection of a pathogen in a host, to the numer-
ous other species that may be involved in pathogen transmis-
sion cycles. The distribution of an infectious disease is thus 
defined by the joint distributions of all species involved in 
its transmission cycle as dictated by the suitable ecological 
conditions and dispersal limitations for each. 

In contrast, Lambin  et  al. (2010) present an alternative 
framework for understanding generalized disease risks across 
landscapes, drawing on principals from ‘spatial epidemiology’ 
(Ostfeld et al. 2005) and ‘landscape epidemiology’ (Pavlov-
sky 1966). Pavlovsky (1966) proposed that infectious disease 
occurrence is determined by ‘a continuous interaction’ of five 
landscape factors: 1) animal ‘donors’ (e.g. reservoir hosts), 
2) vectors, 3) animal ‘recipients’ (including humans), 4) an 
infective pathogen, and 5) environmental factors that are 
conducive to transmission. Lambin  et  al. (2010) emphasise 
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Box 1. Data requirements for pathogeographic studies

The use of biogeographical methods for examining the distributions of human infectious diseases will be dependent on the degree of 
existing knowledge (e.g. about the epidemiology of a particular pathogen or pathogen assemblage in a particular geographic context), 
data availability (e.g. from publicly accessible databases, surveillance data) and the potential for new data collection (e.g. targeted field 
collections). These elements could range from no knowledge, no data and large barriers to the collection of new data (e.g. for many 
emerging infections in developing country contexts, such as at the beginning of the 2014 Ebola outbreak in west Africa), to high 
degree of knowledge from existing scientific studies, well developed and accessible databases on relevant geographic/environmental, 
reservoir host, vector, pathogen, human and disease data, and existing structures to streamline the collection of new data (e.g. high 
impact diseases in developed country contexts, such as malaria in the EU). 

Data on human infectious diseases are normally collected for the needs of a particular discipline or research focus, which may typi-
cally limit the extent to which it can be used laterally or opportunistically for answering non-target questions. This may be particularly 
the case for macroecological and biogeographical studies, which are often data intensive and conducted at scales that may be difficult 
or impractical to undertake new data collection. There is thus a clear need to expand the scope of research programmes on infectious 
diseases to encompass the geographic, biological and temporal scales relevant to biogeographical analysis. This involves informing 
monitoring and surveillance activities on what types of data would be most useful and urgent. Improving data capture and quality 
with standardized sampling methodologies could help lead to analyses and discoveries that transcend the specific epidemiological 
details of a single site, geographical context or disease. To this end, the following information would be helpful to allow coherent data 
collection and analysis of infectious disease occurrence and transmission in space and time: 

•• Operational taxonomic units: potential complications for biogeographic pattern and process analysis may arise when the ‘presence’ 
of a specific disease type is in fact confounded. This could occur, for example, if multiple causal agents result in disease complexes 
(e.g. Leishmaniasis) or if the causal agent is unknown and diseases are instead classified by their symptoms (e.g. syndromes). 
Distributional data and databases on infectious diseases should thus strive for the highest ‘taxonomic resolution’ possible 
(Murray et al. 2015, Stensgaard et al. 2017).

•• Observation effort: a persistent issue in robustly quantifying occurrence, in any form, is its relationship to observation effort 
(Allen et al. 2017). Observation effort could vary spatially, temporally or taxonomically. Presence, prevalence, burden and diversity 
patterns of infectious diseases, hosts and vectors may all increase proportionally to observation effort, and confidence surround-
ing reported absences also increases with observation effort. Failing to account for this has the potential to introduce biases in 
biogeographic studies. Numerous studies have taken steps to incorporate measures of observation effort to limit the potential 
effects of observation bias in biogeographic studies of infectious diseases, typically by including factors hypothesised to be related 
to observation effort, such as sampling intensity, GDP, health expenditure or publication output, in statistical models (Jones et al. 
2008, Hopkins and Nunn 2010, Yang et al. 2012, Murray et al. 2015) (see also O in Box 2). 

•• Sampling protocols: a lack of communication between biostatisticians and field workers in both ecological and health fields before 
collecting samples can lead to a breakdown in robustness of subsequent analyses. For example, sampling too many host individu-
als of one species could be as problematic as not sampling enough from a target host (e.g. humans), particularly when research 
resources are constrained. Best practices involving probability sampling should be pursued where possible (Nusser et al. 2008).

•• Geographic coverage and resolution: sampling should cover a sufficiently large area(s) to reproduce in space what really exists in the 
field; for example, metapopulation or metacommunity geographic distributions with sources and sinks of pathogen transmission. 
The effects of uneven sampling across space and one-shot sampling should be avoided (Peterson 2014). At the other extreme, 
improving precision on available data points is a high priority for developing robust geo-referenced databases of disease (or 
pathogen, host, vector) occurrence. All data should be collected and stored for subsequent access at the highest spatial resolution 
possible (i.e. GPS coordinate locations).

•• Temporal coverage: infected hosts including humans may travel long distances during disease incubation periods, introducing 
uncertainty in the attribution of the geographic location of infection (Peterson 2014). Surveillance and sampling strategies should 
thus allow the capture of appropriate temporal scales (i.e. matching scale of disease-relevant processes) so that data can be better 
aligned with covariate information such as environmental variables and human activities. 

•• Phenology: animal and plant phenology should be monitored; the behavior and biology of most species, including humans, are 
influenced by often relatively predictable annual changes in climate that determine when they start or finish natural events, such 
as flowering and fruiting, breeding and mass gatherings. Many of these activities and departures from norms due to, for example, 
unusual weather events have implications for disease risks and spatio-temporal distributions, and could have large implications 
when considering the influences of large scale change (e.g. climate change). 

•• Humans as hosts and dispersers: humans will often serve not only as hosts but also as effective dispersal mechanisms for infectious 
agents. Although this can lead to unpredictability and extreme long distance invasion events (Peterson 2008), data on human popula-
tions and their movement are being increasingly well resolved at both fine and coarse spatial scales and this is proving invaluable in 
decomposing biogeographical components of many infectious disease systems including emergence risks (e.g. use of flight or road 
traffic data, mobile phone use data, social media) (Colizza et al. 2007, Balcan et al. 2009, Wesolowski et al. 2012, Jurdak et al. 2015). 

•• Concurrent covariate sampling and time-lagging: ideally, assessment of environmental and social variables should be conducted at 
the same time as human or wildlife disease sampling (if it is not available at the appropriate scale retrospectively i.e. from remote 
sensing data). Peterson (2014) discusses a range of issues relevant to modeling the distribution of infectious diseases, including 
quality control of input occurrence data, sampling design with the reduction of oversampling in certain areas, and design of 
analysis (see also Hosseini et al. 2017). 
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the dynamic nature of the spatial and temporal interactions 
between these ‘prerequisites’ at multiple scales when assess-
ing the impact of landscape changes on vector-borne and 
zoonotic diseases. Although they did not identify their study 
explicitly as ‘biogeographic’, there are clear parallels with 
Peterson’s (2008) framework (as well as many others, such as 
Plowright et al.’s (2017) recent treatment of spillover ecology). 

We develop these ideas further in Box 2, focussing on the 
interactions between a number of inter-dependent elements, 
including: physical geography (G), environment (E), reservoir 
host(s) (R), vector(s) (V), pathogen(s) (P), human factors (H), 
and the management (M) and observation (O) landscapes, the 
latter serving as the lens through which all other elements and 
disease distributions (D) are ultimately observed. From this 
framework, we can envisage how these elements may act and 
interact to influence both the real and observed distributions 
of specific diseases in space and through time, as well as multi-
disease patterns that may emerge at higher levels of organiza-
tion (see ‘Emergent patterns and multiple diseases’ below).

Depending on epidemiological characteristics, not all of 
the elements illustrated in Box 2 will be relevant for all human 
infectious diseases, resulting in a range of ‘biogeographic 
complexity’ among human infectious diseases. Whereas G 
and E will almost always have some kind of modifying influ-
ences, single-element transmission source systems (i.e. dis-
eases only involving human-human, environmental, single 

reservoir species or single vector species transmission) rep-
resent the least biogeographically complex examples in this 
framework. Examples include tetanus (E), measles (H), and 
Lassa fever (R). The more biogeographically complex diseases 
involve multiple elements; for example, multiple reservoir 
host or vector species (Rn and Vn, respectively) in addition to 
human-human or environmental transmission (e.g. dengue 
(HVnRn); infection with Mycobacterium ulcerans (EVnRn)). 
We describe the potential utility and demonstrate an applica-
tion of this general framework further in Box 3, by under-
taking a ‘disease trait profiling’ exercise whereby we classify 
a large number of clinically relevant human infectious dis-
eases according to their transmission sources (i.e. the E, H, V 
and R elements described in Box 2). The trends that emerge 
illustrate how certain disease characteristics are far more com-
mon than others (e.g. transmission from animal reservoirs vs 
arthropod vectors) and the extent to which mapping efforts 
are already underway. However, the analysis also highlights 
some important gaps. For instance, 31.9% of diseases with 
a strong rationale for mapping (as rated by Hay et al. 2013) 
have not been mapped in any study (Box 3, Fig. panel F), 
and declining overall quality of mapping efforts correlates 
with increasing biogeographic complexity (Box 3, Fig. panel 
G), highlighting a need to expand the breadth of ecologi-
cal interactions considered within disease systems to improve 
mapping quality in future studies.

Temporal effects
An additional consideration not explicitly included in Box 2 
is that changes in interactions through time can influence the 
occurrence, transmission and emergence of many diseases. 
For example, short or longer term changes in land-use and 
climate (both components of E) can influence D directly or 
through their influences on V, R and/or H (Epstein 2001, 
Patz  et  al. 2004, Nakazawa  et  al. 2007, Jones  et  al. 2013, 
Hoberg and Brooks 2015, Mackenstedt et al. 2015). Ebola 
virus disease (EVD) outbreaks, for example, have been closely 
associated with inter-annual anomalies in meteorological 
seasonality, whereby sharply drier conditions at the end of 
the rainy season seem to favour the occurrence of outbreaks 
(Pinzon  et  al. 2004). More recently, Ebola outbreaks have 
been linked to fragmentation (Rulli et al. 2017) and recent 
( 2 yr) deforestation (Olivero et al. 2017b). 

Species distribution modeling (SDM) for infectious diseases
A promising approach emerging from ecology warranting 
additional attention here is the increasingly widespread use of 
species distribution modelling (SDM) (also called ecological 
niche modelling (ENM)). When applied to pathogens, hosts 
and/or reservoirs and vectors, SDM is useful for understand-
ing risk factors conditioning the distributions, emergence 
or the accumulation of new outbreaks of disease. In SDMs, 
the available information on the presence or the incidence of 
disease is linked to a diverse set of environmental variables 
and allows the evaluation of the degree to which certain envi-
ronments are favourable for the occurrence of disease, even 
in areas where it has not been detected before. In the absence 
of, or in combination with, local-scale data suitable for 

Figure 1. Ebola risk map (Pigott et al. 2016). Illustrating the detail 
of modern cartographic projections of disease risk based on models 
of environmental suitability for the zoonotic transmission of Ebola 
virus (shaded colours) and the spatial variation in disease risk that 
would be masked from country-level chloropleths (thick black 
lines). Dotted lines indicate regions that have reported no index 
cases to date but are predicted to be partially at risk based on envi-
ronmental suitability models that utilize a thresholding approach 
on the model output that captures 95% of the occurrence records 
used for model fitting (see also Fig. 6). Boosted regression trees 
were used to develop the model based on georeferenced records of 
Ebola virus disease outbreaks in humans and infection records in 
bat reservoirs and a range of environmental covariates. The scale 
reflects the relative probability that zoonotic transmission of Ebola 
virus could occur at these locations; areas closer to 1 (dark red) are 
more environmentally similar to locations reporting Ebola virus 
occurrences; areas closer to 0 (light yellow) are least similar.
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mechanistic models, SDMs can take advantage of the large 
geographic scale to explore macroecological processes that are 
able to explain and predict the occurrence of disease. This can 
reveal emergent patterns and processes not perceptible at the 
local scale (Brown 1995), and can help lay a foundation for 
hypothesis testing or provide a geographic context for further 
studies on the ground (Allen et al. 2017). 

The outputs provided by SDMs can be summarized in 
three main categories: probability (e.g. logistic regression, gen-
eralized additive models, random forests, boosted regression 
trees), suitability (e.g. MaxEnt, GARP) and favourability (e.g. 

favourability function). Suitability is an idiosyncratic way of 
ranking local sites according to their capacity to hold the spe-
cies or pathogen that is not directly related to the probability 
of occurrence (Guisan and Zimmermann 2000, Royle et al. 
2012). In contrast, favourability values can be obtained from 
probability and prevalence (here defined as the proportion of 
presences in the set of observations) (Real et al. 2006). Prob-
ability and suitability are biased in their outputs when work-
ing with samples differing in prevalence, which is not the case 
with favourability (Acevedo and Real 2012). This quality of 
favourability enables direct comparison and combination 

Box 2. Pathogeography: decomposing the key elements and interactions shaping the distributions and diversity 
patterns of human infectious diseases 

We may represent the challenge of simultaneously understanding patterns and processes of infectious disease systems with respect to a series 
of interacting elements; including G, the physical geography context (e.g. topography) and E, the abiotic (e.g. climate) and biotic (e.g. 
habitat) environment; R n and V n, the single or multiple (denoted by superscript n) species of reservoir hosts or vectors; P, the pathogen 
being transmitted; H, the human population itself; O, the observation effort that may apply to each of the other elements (e.g. surveillance 
and data collation from existing sources); and M, the management landscape (e.g. interventions). The combinations of these elements ulti-
mately give rise to D, the observed disease distributions. Where these elements have consistent effects across multiple diseases, ‘higher order’ 
biogeographic patterns emerge; for example, we can observe biogeographic regionalization as a consequence of the more pervasive effects of 
components of G (e.g. ocean or mountain barriers to dispersal) or E (e.g. unsuitable climates), while the effects of components of H (e.g. 
population growth, global movement, socio-economic status, immunity heterogeneity) and M (e.g. health infrastructure, vaccination) have 
fundamentally reshaped the global diversity and burden patterns of infectious diseases. In addition, each layer potentially has additional 
modifying elements that could further shape disease distributions and diversity patterns, such as temporal fluxes (see main text), or life-
history and epidemiological traits of hosts, vectors and pathogens (Smith et al. 2007, Woolhouse et al. 2016).

For pathogeographic analyses and as a starting point for risk assessments, a series of ‘profiling’ steps could help integrate existing informa-
tion at a scale relevant to a particular research question. This could include geographic and/or environmental profiling (e.g. detailed assess-
ments of G and E for diseases/hosts/vectors in regions of interest relevant to single diseases or disease assemblages) (Eisenberg et al. 2007), 
disease trait profiling (classifying epidemiological features of diseases, such as the presence or absence of the E, V, R and H elements as sources 
of pathogen transmission (see Box 3), and the species known to be implicated in each), and human profiling (assessments of the human 
population distribution, density and movement patterns and the existing management and observation landscapes). Intersection of these geo-
graphic, disease trait or human profiles will ultimately yield yet deeper understanding or management relevant insights (Semenza et al. 2016). 
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when several species are involved in the analytical design; 
for example, when using models for deriving indices based 
on multiple species (Estrada et al. 2008), and for the study 
of biogeographical relationships between species (Real et al. 
2009, Acevedo et al. 2010), including relationships between 
pathogen and host complexes (Olivero et al. 2017a). 

SDM approaches represent one of the major recent 
advances in infectious disease cartography (Hay et al. 2013, 
Peterson 2014, Kraemer  et  al. 2016), producing a diverse 
range of predictions on the presence or risk of human infec-
tious diseases or their causative organisms (Peterson  et  al. 
2004, Peterson 2006, Neerinckx  et  al. 2008, Reed  et  al. 
2008, Samy  et  al. 2014, Zhu and Peterson 2014), and 

their animal hosts and vectors (Sweeney  et  al. 2006, de 
Oliveira et al. 2013, Giles et al. 2014). Modelling the dis-
tribution of biotic interactions is a relatively recent advance 
in macroecology and biogeography (Kissling  et  al. 2012, 
Wisz et al. 2013, Ovaskainen et al. 2016) and could simi-
larly provide a further way forward for the analysis of patho-
gens with zoonotic cycles based on joint distributions and 
multispecies assemblages. Other methods of representing 
potential interactions at a community level (e.g. network 
modeling) or inferring potential hosts/vectors and host/
vector ranges from geographic co-occurrence are similarly 
being developed alongside (or in some cases integrated 
with) niche modeling approaches to yield novel insights 

Box 3. Disease trait profiling: disease diversity, biogeographic complexity and mapping 

(A) (B) (C) (D) (E) (F) (G)

Disease trait profiling could help synthesize and summarize the range of potential ecological interactions of diseases and highlight 
important priorities or gaps for biogeographic analyses. To illustrate, we classified all clinically relevant diseases within the GIDEON 
database with single causative pathogens (n  186 diseases) into each of the combinations possible considering whether disease 
transmission sources included the E, H, V and R elements outlined in Box 2 (note, although H is by definition always involved 
for human infectious diseases, here it is treated more specifically as a transmission source i.e. human–human transmission). We 
then examined how variations in the complexity of diseases, as indicated by the number of elements involved in their transmission 
(complexity score, CS), was related to geographic range size (as broadly indicated by the number of countries in which the disease is 
present), the rationale for mapping, whether mapping efforts had already taken place, and the quality of existing mapping as rated 
by Hay et al. (2013).

Consistent with other studies, 71.0% of diseases in our dataset involved (but do not necessarily require) transmission to humans 
from animal reservoirs (zoonotic) (Fig. A). Human–human transmission was also common (40.3%), while diseases including potential 
transmission from vectors (31.7%) or environmental sources (21.5%) were less common. For diseases involving vectors or reservoirs, 
the great majority involved multiple vector (95%) or reservoir (85%) species rather than single species (Fig. A). Diseases ranged 
considerably in their degree of ‘biogeographic complexity’, but only 15 of 35 possible combinations were represented in our dataset  
(Fig. B). The least complex examples involved transmission from the environment (E) only, a single reservoir (R) only, or human–
human (H) only (CS  1), while the most biogeographically complex diseases involved multiple vectors, reservoirs and could include 
either environmental (EVnRn) or human–human (HVnRn) transmission as well (CS  8). On average, diseases including human–
human transmission were the least biogeographically complex (‘H’ mean CS  3.0), followed by diseases including transmission from 
reservoirs (‘R’ CS  4.0), while diseases involving transmission from the environment (‘E’ mean CS  4.3) and vectors (‘V’ mean 
CS  5.2) were more complex. On average, complexity was not obviously related to commonness (Fig. C), but more complex dis-
eases tended to be more geographically restricted (Fig. D), and had both a stronger rationale for mapping (Fig. E) as well as a higher 
proportion of diseases that had already been mapped (Fig. F), particularly when human–human or environmental transmission were 
never involved (traits that can radically increase their distributions to the point of making them essentially ubiquitous). However, the 
quality ratings of existing mapping efforts for more complex diseases were considerably lower on average than for simpler diseases  
(Fig. G). These trends illustrate the extent to which mapping efforts are already underway for clinically relevant infectious diseases but 
also highlight some important gaps. For instance, as of Hay et al.’s (2013) study, 31.9% of diseases with a strong rationale for mapping 
had not been mapped in any study (Fig. F), and declining overall quality of mapping efforts for more restricted and biogeographically 
complex diseases highlights a clear need to address the breadth of ecological interactions within disease systems in future studies. 
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on the spatial distribution of some infectious diseases 
(Stephens et al. 2009, 2016a).

Emergent patterns and multiple diseases

Returning to the framework in Box 2, G, E together with 
time (t) could each have more pervasive effects through their 
simultaneous influences on the other elements, giving rise to 
higher-order biogeographic patterns that are defined by mul-
tiple diseases, such as co-occurrences (including co-infection 
patterns), chorotypes, diversity gradients, or biogeographic 
regionalisation. While biogeography has already made signif-
icant contributions to providing a generalized framework for 
disease mapping (Peterson 2014, Escobar and Craft 2016), 
we emphasise that it is the comparative power of biogeog-
raphy that could help take pathogeography a step further, 
diverging more radically from medical geography, to address 
the factors that govern the structure, assembly, dynamics and 
spatial patterns of multiple or entire assemblages of human 
infectious diseases over a more diverse range of spatial and 
temporal scales. Below we provide some illustrative examples 
relevant to what has or potentially could be applied to human 
infectious diseases.

Chorotypes
A chorotype is a type of distribution pattern that is fol-
lowed by one or several species (Baroni Urbani et al. 1978, 
Real et al. 2008, Passalacqua 2015). As chorotypes represent 
the shared geographical, ecological and evolutionary context 
of several species (Real  et  al. 2008, Fattorini 2015), these 
patterns could be useful for generating hypotheses about 
the causes and origins of host, reservoir and pathogen dis-
tributions. Although not yet widely explored for infectious 
diseases, chorotype analysis could significantly contribute to 
the study of the complex interactions characteristic of human 
infectious disease systems (Peterson 2008, Roche et al. 2013). 

In the analysis of disease distributions, the relative impor-
tance of these interactions, compared to the relevance of 
other environmental factors, is variable. Some studies have 
raised this issue through the comparative analysis of pathogen 
models and host models based on their respective responses 
to environmental conditions (Maher et al. 2010, Costa and 
Peterson 2012). However, with the exception of using host 
distributions as a simple proxy for the potential distributions 
of pathogens (Daszak et al. 2012), the distribution of reser-
voir species has only recently been used as an explanatory 
variable, together with other environmental descriptors, to 
define a pathogen distribution model (e.g. compare Peter-
son et al. Walsh and Haseeb, and Pigott et al.’s models for 
Ebola virus) (Peterson et al. 2004, Walsh and Haseeb 2015, 
Pigott et al. 2016). 

Although we are aware of no studies examining choro-
types of human infectious diseases, mammalian chorotypes 
have been recently incorporated into an infectious disease 
distribution model (Olivero et al. 2017a). When the ecology 
of a pathogen is complex and unresolved (e.g. Ebola virus, 
Leroy et al. 2004, Groseth et al. 2007, Olival and Hayman 

2014), imposing restrictions to the selection of host or vector 
species considered in a model might under-represent the zoo-
logical substrate conditioning a pathogen’s transmission and 
distribution (Roche et al. 2012). Olivero et al. (2017a) thus 
addressed the mapping of favourable areas for the Ebola virus 
in the wild by combining two biogeographical approaches: 
SDM and chorotype analysis. Mammalian chorotypes in 
Africa were employed as surrogates of the types of distribu-
tions shown by reservoirs and any wildlife species implicated 
in the virus spillover cycle. Olivero et al. (2017a) found that 
a model based on a number of diversity patterns, each one 
associated with a different mammalian chorotype, defined 
favourable areas for the presence of Ebola virus with higher 
accuracy than did a model based on environmental variables 
alone (i.e. climate, forest type), concluding that mammalian 
biogeography contributes significantly to explaining the dis-
tribution of Ebola virus in Africa. In addition, vegetation was 
identified as a factor placing clear limits to the presence of the 
virus. Favourable areas for Ebola virus were thus determined 
from information provided by both models (Fig. 2). 

Diversity patterns 
It is now widely recognized that multiple pathogens may 
act independently or interact through a variety of differ-
ent mechanisms to influence disease outcomes in human 
populations (Pederson and Fenton 2006, Jolles et al. 2008, 
Scholthof 2011), and yet studies of human infectious disease, 
host and vector diversity or community assembly patterns are 
rare in comparison to distributional studies of single infec-
tious diseases (see ‘Single diseases’ above). Characterizing 
diversity patterns can thus provide a range of insights on the 
distributions and processes underlying multiple species of 
pathogens or diseases. 

Based on components first proposed by Whittaker (1960), 
inventory diversity quantifies diversity within an environ-
ment, where alpha (α) diversity is used to refer to diversity at 
the local scale (i.e. smallest scale being measured). α-diversity 
of human infectious diseases has been analysed in a num-
ber of studies, typically by comparing the number of diseases 
occurring in different countries at a global or continental 
scale due to limited comparative data availability at higher 
spatial resolutions. Although strongly heterogeneous (Fig. 3) 
(see also Stensgaard et al. 2017), some striking patterns sug-
gest that human infectious disease communities are shaped 
by the same ecological processes that shape the diversity of 
life more generally (Guernier et al. 2004). 

This is evident, for example, from observations of a clear 
latitudinal gradient in disease diversity and disease range sizes, 
whereby disease richness decreases and range size increases 
towards the poles (Fig. 4) (Guernier et al. 2004, Guernier and 
Guégan 2009). Other patterns are consistent with island bio-
geography theory, such as a positive relationship between land 
surface area and disease richness (Smith and Guégan 2010), 
and reduced richness on smaller islands and with distance 
to the nearest mainland (Jean  et  al. 2016). Together, these 
findings likely explain why the strongest predictor of human 

Ecography E4 aw
ard



1420

infectious disease richness known to date is wildlife richness 
(Dunn et al. 2010), while some vector groups show similar 
patterns (Foley et al. 2007). These patterns also illustrate that 
a correlation between human disease diversity and wildlife/
vector diversity may not necessarily imply direct causation. 

Nevertheless, other evidence points to the importance 
of animals, particularly mammalian and bird wildlife, as a 

key source of endemic and emerging human pathogens 
(Taylor et al. 2001, Woolhouse and Gowtage-Sequeria 2005, 
Jones et al. 2008, Allen et al. 2017). In addition to the causal 
links, such parallels in patterns of human disease and other 
taxa reinforce the importance and potential utility of con-
sidering wildlife and vector biogeography alongside or as a 
central component of studies of infectious diseases, including 
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Figure 3. Alpha diversity (richness, or total number of different diseases) of clinically relevant human infectious diseases. Data are plotted 
at country level as derived from the GIDEON global infectious disease database ( www.gideononline.com/ ). Depiction is restricted to 
human infectious diseases for which a single causative agent is known (n  187 diseases) (following Murray et al. 2015).

Figure 2. Modelling of the environmental/zoogeographic favourability for the presence of Ebola virus in wildlife. The model is based on 
serological evidence and observations of increased wildlife mortality attributed to Ebola virus disease. The environmental model is based on 
terra-firme rain forests (TFRF), natural vegetation/cropland mosaics (NVCM) and annual temperature range (ATR, with increasing values 
from yellow to red). The zoogeographic model is derived from four types of mammalian distributions or chorotypes (see main text) (follow-
ing Olivero et al. 2011): North-Western Congolian Forest (NWCF), West-African Forest (WAF), Rain Forest (RF) and the distribution of 
Mus goundae (MG). The two models are then combined according to fuzzy logic, requiring both environmentally and zoogeographically 
favourable conditions (from Olivero et al. 2017a, b).
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distributional and diversity studies of known or potential 
zoonotic hosts and vectors (Foley  et  al. 2007, Cooper and 
Nunn 2013, Han et al. 2016, Olivero et al. 2017a).

In contrast to inventory diversity, proportional diversity 
measures the difference in diversity between environments or 
across gradients of habitats, commonly expressed as beta (β) 
diversity (Whittaker 1960, Jost 2007). β-diversity patterns 
can be expressed in a number of ways, such as biogeographic 
regionalisations, which define biotic boundaries accord-
ing to between-area gaps in species composition, and biotic 
regions based on biotic similarities (Olivero et al. 2013). Such 
approaches, however, are yet to be widely applied to human 
infectious diseases. 

In one study, β-diversity patterns of human infectious 
diseases appear to parallel patterns in other taxa, consistent 
with patterns identified to date for α-diversity (richness); 
Murray  et  al. (2015) show that human infectious disease 
assemblages exhibit biogeographic regionalisation reminis-
cent of zoogeographic patterns, particularly for zoonotic 
(Fig. 5A, B), vector-borne and parasitic diseases, and that 

mammalian assemblage similarity is consistently among the 
strongest predictors of human infectious disease assemblage 
similarity among countries (Fig. 5C). Such an effect is very 
likely predictive of as-yet undescribed patterns of microbial 
diversity, such as the geographic structure recently demon-
strated among novel coronaviruses detected in wild bat hosts 
(Anthony et al. 2017). In addition to this dominant explana-
tory effect of biodiversity, other factors, including environ-
mental (climate, land area, population size), social (human 
connectivity, health expenditure, observation effort) and epi-
demiological characteristics (e.g. pathogen type, transmission 
mode) also affect infectious disease α- and β-diversity patterns 
(Fig. 5C). The strongest β-diversity patterns, for example, can 
be observed in zoonotic, vector-borne and parasitic infectious 
diseases, likely due to a more dominant role of environmental 
factors and persistence of historical dispersal barriers limit-
ing their geographic distributions, while patterns of human-
specific diseases are far more homogenous at the global scale 
(Smith et al. 2007, Dunn et al. 2010, Just et al. 2014, Mur-
ray et al. 2015, Jean et al. 2016) (see also Box 3 Fig. panel D).

Figure 4. Schematic illustrating the latitudinal variation and diversity patterns of human infectious diseases. (A) A global view of Earth 
showing latitudinal bands; (B) disease richness (grey bars): the total number of different human infectious diseases present per latitudinal 
unit (e.g. 40–45°) increases towards the tropics (adapted from Guernier et al. (2004)); (C) nestedness: a hierarchical pattern of human 
pathogen composition with the pathogen species found at higher latitudes (darker bars) constituting nested subsets of those in progressively 
richer communities at lower latitudes (lighter bars) (adapted from Guernier et al. (2004)); (D) disease range size: narrower distributional 
ranges occur in the tropics (darker circles) for human pathogens compared to higher latitudes (lighter bars) (adapted from Guernier and 
Guégan (2009)). 
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β-diversity can be further decomposed into two sepa-
rable components, nestedness and turnover, which may 
further help characterize the processes driving differences 
in the composition of assemblages between sites (Harri-
son  et  al. 1992, Baselga 2010). Nestedness occurs where 
species assemblages are subsets of the biotas at more diverse 
sites (Wright and Reeves 1992, Ulrich and Gotelli 2007), 
and indicates a non-random process arising from any fac-
tor that promotes the orderly disaggregation of assem-
blages (Gaston  et  al. 2000). The latitudinal gradient of 
human infectious diseases exhibits such a pattern, with 
disease assemblages occurring at higher latitudes being 
subsets of those occurring closer to the equator (Fig. 4C) 
(Guernier et al. 2004). In contrast, turnover indicates the 
replacement of some species by others as a consequence of 
environmental sorting or spatial and historical constraints 
(Qian et  al. 2005, Baselga 2010). In the only assessment 
of nestedness vs turnover undertaken so far for human 
infectious diseases that we are aware of, both nestedness 
and turnover appear to contribute to overall differences in 
infectious disease assemblages among countries at a global 
scale, with the relative contribution varying between major 
epidemiological classes (Murray et al. 2015). For example, 
nestedness dominates differences in human-specific dis-
eases, whereas turnover dominates differences in zoonotic 
and vector-borne diseases.

Concluding remarks – leveraging 
pathogeography for health research and 
management

Biogeographic methods and outputs have already contrib-
uted and continue to show great promise for a number of 
health management or research applications on infectious 
diseases, which could help direct the allocation of scarce 
public and global health resources more efficiently and effec-
tively. As our abilities to assemble ecological datasets and con-
duct infectious disease surveillance and analyses are steadily 
improving, multidimensional ecological data can be mapped 
and relationships can be identified as data accumulate in 
close to real-time, providing decision-relevant information 
for health managers and researchers to respond to.

This has already lead to rapid advances in improving dis-
ease mapping for single infectious diseases and a closing of 
the gap between the data types and methods used to char-
acterise disease and species distributions by medical geogra-
phers and ecologists, respectively. Many other applications 
are conceivable albeit so far poorly explored. 

For example, taking inspiration from conservation and 
ecological applications, diversity analyses and biogeographic 
regionalisation could be used to test and propose hypothe-
ses about ecological factors and historical events that could 
underlie the current organization of disease assemblages or 

(A) (B)

(C)

Figure 5. Global β-diversity patterns of zoonotic diseases. (A) Hierarchical cluster analysis (UPGMA method) of a global disease-by-
country presence–absence matrix represented as a circular dendrogram showing how countries group (regionalization) on the basis of the 
similarity (as measured by Sørensen β-diversity) of their zoonotic infectious disease assemblages (following Kreft and Jetz 2010, Mur-
ray et al. 2015). Colours represent statistically supported groups (n  11 groups) of countries that share similar diseases, as derived by 
evaluating results from the Silhouette, Elbow, CH index and Gap statistic tests; (B) global pathogeographic realms for zoonotic diseases 
derived from (A) (colours for mapping match country clusters identified in (A)). Legend labels indicate the statistically supported regions 
(first column) and how these align with ‘classic’ zoogeographic realms (second column) (note although the realm label for Nearctic 
includes Greenland for illustration purposes, the ‘Islands’ group (dark blue) actually includes a large number of small islands plus a few 
other countries scattered globally (A) that may cluster on the basis of being a depauperate or data deficient group); (C) the relative 
explanatory value of a range of social and environmental covariates for explaining these global patterns in disease beta diversity, illustrat-
ing that mammalian biodiversity is the best predictor of zoonotic disease diversity at a global scale (as derived from a relative importance 
analysis following multiple regression on distance matrices controlling for the effects of spatial autocorrelation (following Murray et al. 
(2015)).
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combined disease risks (e.g. identifying processes of disease 
dispersal, establishment, and extinction and the ‘upstream’ 
risk factors or drivers of novel health threats) (following Car-
mona et  al. 2000, Báez et  al. 2005); to define contexts for 
representativeness (e.g. improved disease surveillance design) 
(following Austin and Margules 1986, Carey  et  al. 1995, 
Mackey 2008); to provide consistent units for environmen-
tal management and for sampling stratification (e.g. for the 
optimal discovery of novel pathogens) (following Bunce et al. 
1996, Wright  et  al. 1998); and as geographic contexts for 
imputation/extrapolation or forecasting when data from 
a unit within a region is missing or unavailable (e.g. where 
disease surveillance coverage is low or patchy) (Cooper and 
Nunn 2013). 

Biogeographic approaches may also be useful for exam-
ining the risks associated with emerging infectious diseases 
(EIDs), since data are often extremely limited on EIDs and 
yet the priorities for management revolve around anticipat-
ing (through forecasting) when, where and why emergence 
of pathogens in human populations occurs (Peterson 2008, 
Morse et al. 2012). Large-scale demographic and environmen-
tal factors and changes in these factors are increasingly being 
recognized as key drivers underlying disease emergence, with 
shifts in the distributions of disease hosts and vectors being 
central to this process (Jones et al. 2008, Semenza et al. 2016). 

Given that most pathogen distributions are very poorly 
characterized or completely unknown (Hay  et  al. 2013), 
and that most of the microbial diversity from which novel 

and potentially pathogenic agents could originate are as yet 
undiscovered (Anthony  et  al. 2013), biogeographic pattern 
definition and process identification based on historical 
patterns of disease occurrence, recent emergence events, or 
proxy taxa (e.g. mammalian or arthropod vector biodiversity) 
may provide some of the earliest and in some cases the only 
insights into such burgeoning or future disease risks (Fig. 6A, 
B) (Murray et al. 2015), which may give way to more refined 
models as data quality or availability increases (Fig. 6C, Fig. 1).  
Increasing pathogeographic awareness, participation and 
collaboration among ecologists, biogeographers and vet-
erinary and medical practitioners could thus contribute to 
closing the gap between environmental and health manage-
ment, increased inter-disciplinary research and management 
efficiency, and reductions in the global burden of disease. 

Data deposition

Data available from the Dryad Digital Repository:  http://
dx.doi.org/10.5061/dryad.p1n10dv  (Murray et al. 2018).
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Figure 6. Comparing approaches to country-level Ebola risk assessment for Africa. (A) Co-occurrence (β-diversity) analysis of historical 
zoonotic disease occurrence among countries in which Ebola outbreaks have occurred in humans. ‘Higher risk’ countries are defined as 
those with more similar zoonotic disease diversity to Ebola-positive countries (human index cases only) (following Murray et al. 2015). 
Countries with index cases are shown in Fig. 1 (thick black line). (B) Top 22 ranked countries from (A), for comparison with the 22 ‘at risk’ 
countries as determined by Pigott et al. (2014) (C). (C) ‘At risk’ countries (n  22, yellow colour) as determined by high resolution spatial 
modeling aggregated to country level. The underlying model is based on Ebola outbreaks (index cases) in humans and infection in wildlife 
and analysis of spatial covariates (data from Pigott et al. 2014) (see Fig. 1 for raw model output and description). Yellow indicates countries 
that contain some environmentally suitable areas for Ebola. Darker colour indicates countries that do not contain areas predicted to be 
suitable for Ebola. The overlap in top 22 priority countries between (B) and (C) is ~70%. The approach taken in (A/B) requires no specific 
information about the target disease and could provide a relevant biogeographic ‘prior’ for planning (e.g. having an emergency response 
plan in place), reacting to novel appearance of diseases (e.g. for prioritizing surveillance), in data poor settings, and for conservative risk 
assessment. The approach taken in (C) is more refined and specific but also more data intensive (see Fig. 1 for more detail).
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