Table 3:
Evaluation of correlation matrix estimates from simulation study. “LPoC” refers to our estimator, which uses Laplace priors on correlations. MAE is mean absolute error. MSE is mean squared error. Averages over “all elements” exclude diagonal elements, which are fixed at zero by all methods. The lowest (best) values are shown in bold.
Values of εt estimated with MCMC | |||
---|---|---|---|
Estimator | MAE | MSE | |
All elements | Pearson Ledoit-Wolf LPoC |
0.253 0.193 0.090 |
0.098 0.055 0.028 |
True correlation = 0 | Pearson Ledoit-Wolf LPoC |
0.270 0.190 0.049 |
0.109 0.053 0.012 |
True correlation = 0.5 | Pearson Ledoit-Wolf LPoC |
0.201 0.200 0.214 |
0.066 0.060 0.074 |
True values of εt used | |||
Estimator | MAE | MSE | |
All elements | Pearson Ledoit-Wolf LPoC |
0.227 0.182 0.078 |
0.079 0.047 0.022 |
True correlation = 0 | Pearson Ledoit-Wolf LPoC |
0.244 0.162 0.041 |
0.089 0.039 0.010 |
True correlation = 0.5 | Pearson Ledoit-Wolf LPoC |
0.176 0.243 0.190 |
0.051 0.073 0.058 |