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SUMMARY:

Standard sample size calculation formulas for stepped wedge cluster randomized trials (SW-CRTs) 

assume that cluster sizes are equal. When cluster sizes vary substantially, ignoring this variation 

may lead to an under-powered study. We investigate the relative efficiency of a SW-CRT with 

varying cluster sizes to equal cluster sizes, and derive variance estimators for the intervention 

effect that account for this variation under a mixed effects model; a commonly-used approach for 

analyzing data from cluster randomized trials. When cluster sizes vary, the power of a SW-CRT 

depends on the order in which clusters receive the intervention, which is determined through 

randomization. We first derive a variance formula that corresponds to any particular realization of 

the randomized sequence and propose efficient algorithms to identify upper and lower bounds of 

the power. We then obtain an “expected” power based on a first-order approximation to the 

variance formula, where the expectation is taken with respect to all possible randomization 

sequences. Finally, we provide a variance formula for more general settings where only the cluster 

size arithmetic mean and coefficient of variation, instead of exact cluster sizes, are known in the 

design stage. We evaluate our methods through simulations and illustrate that the average power of 

a SW-CRT decreases as the variation in cluster sizes increases, and the impact is largest when the 

number of clusters is small.
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1. Introduction

The popularity of stepped wedge cluster randomized trials (SW-CRTs) has increased in 

recent years (Hemming et al., 2015). As an alternative to standard cluster randomized trials 

(CRTs), clusters of individuals are randomized to cross forward from a control to an 

intervention at certain time points commonly termed as “steps” (Table 1). The design offers 

great potential to rigorously evaluate cluster-level interventions that can only practically be 

implemented in a stepwise manner. The focus of this paper is cross-sectional SW-CRTs 

where the response is evaluated on different individuals between each step. For example, in 

the Washington state study, communities were randomized to initiate an expedited partner 

therapy intervention at steps 6–8 months apart, and the response was measured as chlamydia 

test positivity among cross-sections of women attending sentinel clinics (Golden et al., 

2015).

It is well known standard CRTs require sample size inflation due to positive correlation 

between outcomes of participants in the same cluster. Letting ρ represent the intra-cluster 

correlation, a common approach to calculate the number of clusters required is to multiply 

the number of participants required for an individually randomized trial by a design effect 

(DE) of the form {1+(n−1)ρ} and then divide by the arithmetic mean cluster size (n). Many 

articles have reported that cluster size variation reduces statistical power, and the approach 

needs to be modified (Rutterford et al., 2015). One simple modification replaces n with the 

cluster size harmonic mean (Hayes and Moulton, 2009). Another modification utilizes the 

following DE, [1 + {n(1 + κ2) − 1}ρ] where κ is the cluster size coefficient of variation 

(CV) (Eldridge et al., 2006). Using this latter approach, a further sample size increase of 

41% is needed when cluster sizes vary such that the CV is κ = 0.7 for a trial with an 

arithmetic mean cluster size of n = 100 and an intra-cluster correlation of ρ = 0.05.

Cross-sectional SW-CRTs are frequently analyzed by a linear mixed effects model described 

in Hussey and Hughes (2007). A DE based on this model that assumes equal cluster sizes 

has been proposed (Woertman et al., 2013). However, a recent systematic review of 101 SW-

CRTs detected that 48% of studies included clusters that were known to vary in size 

(Kristunas et al., 2017). In some settings, the goal is to recruit all eligible patients from a 

particular community, which naturally leads to unequal cluster sizes. For example, in the 

Washington state study numbers of women attending sentinel clinics varied per region. 

Sometimes it is possible to limit recruitment to the first M consenting participants per cluster 

(Bashour et al., 2013), but this would result in a prolonged recruitment period for sites with 

a smaller candidate pool. It would be useful to assess the potential efficiency losses or gains 

by allowing cluster sizes to vary by recruiting more participants in larger clusters.

The impact of ignoring cluster size variation in sample size calculation for cross-sectional 

SW-CRTs is unclear. Through simulation studies, Kristunas et al. (2017) reported that a 

variation in cluster size did not lead to notable power loss for continuous outcomes, but only 

a small range of parameters were examined. Martin et al. (2019) calculated the power with 

unequal cluster sizes by numerically inverting the precision matrix, and further noted that 

the power depended on the order in which the variable size clusters were randomized to 

initiate the intervention. Matthews (2019) proposes a regression-based approximation to the 
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variance of the treatment effect to allow identification of a near-optimal ordering of 

treatment initiation to achieve high power without an exhaustive search across all possible 

randomization sequences. Girling (2018) derived an analytical formula for the relative 

efficiency (RE) of a SW-CRT with unequal compared to equal cluster sizes under a 

constrained randomization setting. The derivation relies on several clusters being 

randomized at each step, such that by stratifying the randomization procedure there is no 

inequality in the total size of all the clusters randomized to initiate the intervention at each 

step. To the best of our knowledge, analytical formulas for sample size and power estimation 

for cross-sectional SW-CRTs in general settings with varying cluster sizes have not been 

derived.

Under a linear mixed effects model framework, in Section 2 we derive three analytical 

formulas of variance estimates for power calculations that account for cluster size variation 

in cross-sectional SW-CRTs. The first assumes cluster sizes and their order of randomization 

are both known, and allows us to identify upper and lower bounds for the power (Section 2.2 

and 2.3). The second provides a closed form expression for the expected variance before 

randomization when all cluster sizes are known (Section 2.4), and the third approximates 

this value if only the cluster size arithmetic mean and CV can be estimated in the planning 

stages of a SW-CRT (Section 2.5). In Section 2.6, we derive the DE for cross-sectional SW-

CRTs as compared to individually randomized trials accounting for varying cluster sizes, the 

expected relative efficiency (RE) of a cross-sectional SW-CRT with unequal compared to 

equal cluster sizes and a correction factor (CF) to correct sample size calculation. Section 

2.7 provides formulas valid under a generalization of the linear mixed effects model. Our 

simulation results are in Section 3 and illustrative examples on the impact of cluster size 

variation are in Section 4. We end the paper with a Discussion (Section 5).

2. Methods

2.1 Notation and Model

We consider a cross-sectional design with individuals k = 1, … , ni sampled from cluster i = 

1, … , I at every time-point j = 1, … , T. The landmark paper on SW-CRTs by Hussey and 

Hughes (2007) proposes the following model for response variable Yijk:

Yijk = μ + αi + βj + Xijθ + eijk, αi N 0, τ2 , eijk N 0, σe2

where αi is the random effect for cluster i, βj is a fixed effect corresponding to time j (j = 1,

…,T − 1 with βT = 0 for identifiability), Xij is an indicator of treatment (1 = intervention, 0 

= control) in cluster i at time j, θ is the treatment effect, and eijk is the subject-specific error 

independent of αi.

2.2 Treatment Effect Variance when Cluster Sizes and Order of Randomization Known

Under the linear mixed effects model, estimates for the fixed effects can be obtained by 

weighted least squares (WLS). Let Z be the IT × (T + 1) design matrix corresponding to the 

parameter vector η = (μ, β1, β2, …, β T−1, θ). Then, the WLS estimator is 
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η = ZTV−1Z −1 ZTV−1Y  and the treatment effect denoted by θ  is the (T + 1)th element of 

η . The covariance matrix of η  is (ZTV−1Z)−1, where V is a block diagonal matrix provided 

in Web Appendix A.

To test the hypothesis H0: θ = 0 versus θ = θA, we can use a Wald test based on 

W = θ / Var(θ) where θ  is the estimated treatment effect from WLS. The approximate power 

for conducting a two-tailed test of size α is:

1 − β ≈ Φ
θA

Var(θ)
− z1 − α/2

where 1–β is the statistical power, Φ is the cumulative standard normal distribution function, 

z1−α/2 is the (1 − α/2)th quantile of the standard normal distribution function, and Var(θ) is 

the (T + 1), (T + 1) element of the covariance matrix (ZTV−1Z)−1.

A closed form expression for the treatment effect variance given one particular realization of 

the randomization sequence denoted by P = p was derived (Web Appendix A):

Var(θ |P = p) = fT(f + gT)
fT(f + gT)(l − z) − (f + gT)y2 − f Tw − l2 (1)

where

f = ∑
i = 1

I 1
σi2 + Tτ2, g = ∑

i = 1

I τ2

σi2 σi2 + Tτ2 , l = ∑
i = 1

I
∑

j = 1

T Xij
σi2

,

z = ∑
i = 1

I τ2

σi2 σi2 + Tτ2 ∑
j = 1

T
Xij

2
, y = ∑

i = 1

I
∑

j = 1

T Xij
σi2 + Tτ2, w = ∑

j = 1

T
∑

i = 1

I Xij
σi2

2
,

and σi2 = σe2/ni. When the sample size is the same for all clusters this variance simplifies to 

the variance provided in equation 8 of Hussey and Hughes (2007) (Web Appendix B).

The formula in equation 1 reveals that components of the denominator (ℓ, z, y2, Tw – ℓ2) 

depend upon the order in which the clusters are randomized to intervention. To gain some 

insight, we observe 

l = ∑i = 1
I ∑j = 1

T Xij
σi2

= 1
σe2

n1 X11 + … + X1T + … + nI XI1 + … + XIT  will be larger if a 

large cluster is randomized to initiate the intervention first, i.e. if n1 is large. This is because 

in SW-CRTs the clusters randomized at the first step receive treatment for the most time 

periods, so as Xij is the indicator of treatment status, X11 + … + X1T will be greater than or 

equal to the other summations. If randomization of all clusters has taken place, this variance 

formula could be utilized to check the power after randomization. If the power is too low, the 

formula could be used to determine the number of additional measurements needed to 

increase the power. As it is customary to calculate the power in trial planning stages before 

randomization, in Section 2.3 and 2.4 we provide a method to identify the upper and lower 
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bound of the treatment effect variance across all possible randomizations, as well as a closed 

form expression for the expected value of the variance to obtain the study power in an 

average sense.

2.3 Method to Find Upper and Lower Bounds for the Treatment Effect Variance

To find the upper and lower bounds for the power across all possible randomizations, the 

maximum and minimum of the denominator D(v1, … ,vI) of the variance of the treatment 

effect estimator in equation 1 were sought. This requires optimizing D(v1, … , vI) over the 

order of varying cluster sizes; that is, minimize/maximize: D(v1, … , vI) subject to: (v1, … , 

vI) is a permutation of (n1, … , nI). The above optimization problem is classified as an 

assignment problem with a quadratic objective, since D(v1, … , vI) is quadratic in v1, … , vI. 

In general, an assignment problem with a non-linear objective is not only NP-hard (i.e. 

cannot be solved in polynomial time), but also does not have a “good” algorithm to find a 

solution other than cycling through all possible randomization sequences. Fortunately, a 

reparametrization involving permutation matrices reformulates the problem into a mixed-

integer quadratic programming (MIQP) problem, which, while still NP-hard, has excellent 

algorithms to obtain an exact solution. Specifically, the reparametrization (Web Appendix C) 

takes the form minimize/maximize: RTMR + DTR

 subject to:  ∑
i = 1

I
R(s − 1)I + i = 1 ∀s = 1, ⋯, I, ∑

s = 1

I
R(s − 1)I + i = 1 ∀i = 1, ⋯, I

R(s − 1)I + i ∈ 0, 1

where

• R is a vector of length I2 decision variables

• M is an I2 × I2 matrix. For s,t,i,j = 1, … , I, the elements are

M(s − 1)I + i, (t − 1)I + j = − (f + gT) ∑
k = 1

T
Xsk ∑

k = 1

T
Xtk

1
σi2 + τ2T σj2 + τ2T

−f T ∑
k = 1

T
XskXtk − ∑

k = 1

T
Xsk ∑

k = 1

T
Xtk

1
σi2σj2

• D is a vector of length I2. For t, j = 1, … I, the elements are

D(t − 1)I + j = fT(f + gT) ∑
k = 1

T
Xtk

1
σj2

− ∑
k = 1

T
Xtk

2
τ2

σj2 σj2 + τ2T

The above form can now be solved by algorithms implemented by solvers such as Gurobi 

(2019). The decision variable vector R is a vectorization of the permutation matrix which 

encodes the realization of the randomization sequence that will obtain the highest or lowest 

possible power. For example, with four clusters of size 10, 15, 45 and 50 and one cluster 
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randomized at each step, an optimal solution R = (0, 0, 1, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1) is 

a vectorization of the matrix

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 with optimal order 

0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

10
15
45
50

=

45
15
10
50

We require the vectorized form R in order to feed the decision variables into a solver. One 

sequence that optimizes the objective function will be identified and the maximum/minimum 

power can be obtained by using this optimal sequence to first calculate the treatment effect 

variance using equation 1 and then to estimate the power of the Wald test using this variance. 

The randomization sequence achieving highest or lowest power can be non-unique. In the 

example, a sequence of 50, 10, 15 and 45 would also attain the same maximum power. A 

search over all possible randomizations could be conducted to identify all sequences of the 

cluster sizes that have higher power. However, for design purposes, we are most interested in 

the best and worst case scenarios for the power; identifying all sequences associated with 

each extreme case is not necessary. We have not restricted the design specified by Xij to 

devise this algorithm; Web Appendix C describes implementation for additional designs.

2.4 Expected Treatment Effect Variance when Cluster Sizes Known

When all the cluster sizes are known prior to randomization, we derive a closed form 

expression for a first-order approximation of the expected value of Var(θ |P), where the 

expectation is taken across all possible randomization realizations.

To proceed, we consider only balanced SW-CRT designs where q clusters are randomized at 

each step, where q is any divisor of the total number of clusters I, and where each cluster 

contributes samples at one baseline time-point before any cluster begins the intervention and 

at one time-point after each step. If K = I/q represents the number of steps, then cross-

sectional samples from the clusters will be taken at T = K + 1 time-points. As an example, a 

design with q = 2 results in the following treatment status matrix, where Xij is the indicator 

of treatment (1=intervention, 0=control) in cluster i at time j:

X11 X12 X13 X14 ⋯ X1T
X21 X22 X23 X24 ⋯ X2T
X31 X32 X33 X34 ⋯ X3T
X41 X42 X43 X44 ⋯ X4T

⋮ ⋮ ⋮ ⋮ ⋱ ⋮
XI1 XI2 XI3 XI4 ⋯ XIT

=

0 1 1 1 ⋯ 1
0 1 1 1 ⋯ 1
0 0 1 1 ⋯ 1
0 0 1 1 ⋯ 1
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 ⋯ 1

In the variance formula given in equation 1, three terms in the denominator, (ℓ − z), (y2) and 

(Tw − ℓ 2) depend on the order clusters are randomly assigned to initiate the intervention. To 

calculate the three expectations, E(l − z), E y2  and E Tw − l2 , we derived ℙ Xij = 1 , the 

probability cluster i is treated at time-point j, and ℙ Xij = 1, Xlm = 1 , the probability cluster i 

is treated at time-point j and cluster l is treated at time-point m, as follows:
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ℙ Xij = 1 = (j − 1)q
I , ℙ Xij = 1, Xlm = 1 = j − 1 ∧ m − 1 q

I
j − 1 ∨ m − 1 q − 1

I − 1

where a ∧ b = min(a, b) and a ∨ b = max(a, b) (Web Appendix D).

Based on these results and a first-order approximation E(A/B) ≈ E(A)/E(B), we obtained the 

following formula to approximate the expected value of Var(θ |P):

EP(Var(θ |P)) ≈ fT(f + gT)
fT(f + gT)E(l − z) − (f + gT)E y2 − fE Tw − l2 (2)

where

E(l − z) = T
2 f + g

3(T + 1) , E y2 = T
12(I − 1) s1I(T − 2) + f2 3IT − 2(2T − 1) ,

s1 = ∑
i = 1

I 1
σi2 + Tτ2 2, E Tw − l2 = T(T + 1)(f + gT)2

12(T − 1)
(T − 2)

I κ2 + T ,

κ2 = I2

NSW
2 (I − 1)

∑
i = 1

I
ni −

NSW
I

2
, NSW = ∑

i = 1

I
ni,

and κ is the cluster size CV. A formula for a more general setting described in Woertman et 

al. (2013) where each cluster contributes samples at b baseline time-points and at t time-

points after each step is provided in Web Appendix D.

2.5 Approximate Expected Treatment Effect Variance with the Arithmetic Mean and 
Coefficient of Variation (CV) of Cluster Sizes

In the design stage of a SW-CRT, each cluster size may not be known, instead, the 

investigators may have information on the average and CV of the cluster sizes. We derived 

the following variance formula to approximate the variance formula provided in equation 8 

of Hussey and Hughes (2007) for the same type of design described in Section 2.4 where 

information on actual cluster sizes ni is replaced by their arithmetic mean and CV:

EP(Var(θ |P)) ≈ ITσ2 σ2 + Tτ2

σ2 ITU − U2 − I2C + Tτ2 ITU − IV − I2C
(3)

where

C = T(T + 1)
12(T − 1)

(T − 2)
I κ2 + T , U = IT

2 , V = IT(2T − 1)
6 , σ2 =

Iσe2
NSW

The derivation used the first-order Taylor approximation of the terms f and s1 about the 

arithmetic mean cluster size (See Web Appendix E for details and for a generalization for b 
baseline time-points and t time-points after each step).
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2.6 Design Effect (DE) and Relative Efficiency (RE) of Designs with Unequal Cluster 
Sizes, and Correction Factor (CF) for Sample Size Calculation

From the approximation of the treatment effect variance in Section 2.5, we derived a DE for 

a SW-CRT with unequal cluster sizes relative to an individually randomized trial of total size 

T · NSW; the overall number of participants sampled in a cross-sectional SW-CRT:

DEw, κ = 1 + (Tn − 1)ρ 3(T − 1)(1 − ρ)
(T − 2) a − κ2

I d (4)

where, a = 2+{(T+1)n−2}ρ,d = {(T+1)/T}{1+(Tn−1)ρ}, ρ = τ2/ σe2 + τ2 , n=NSW/I, ρ is the 

intra-cluster correlation, n is the arithmetic mean cluster size, and κ is the cluster size CV 

(Web Appendix F). When κ is zero, DEw,κ reduces to T · DEw, where DEw is a design effect 

derived in Woertman et al. (2013) for a cross-sectional SW-CRT with equal cluster sizes 

compared to an individually randomized trial of size NSW (Web Appendix G).

Some insight can be gained by interpreting {1 + (Tn − 1)ρ} in DEw,κ as the inflation due to 

cluster randomization for a trial with T · NSW individuals. Under equal cluster sizes, {3(T
−1)(1−ρ)}/{(T−2)a} is the inflation or reduction in sample size incurred by employing a 

stepped wedge (SW) design. If ρ = 0 an inflation of {3(T − 1)}/{2(T − 2)} would be needed 

due to the imbalance of the numbers of participants receiving the intervention compared to 

control at the early or later stages of a SW design. However, in the vast majority of CRTs the 

intra-cluster correlation is positive (i.e. ρ > 0), so a SW design is more efficient due to its use 

of within-cluster comparisons (Rhoda et al., 2011). For example, if ρ = 0.05, n = 30 and T = 

5, the relative sample size reduction is {3(T − 1)(1 – ρ)}/{(T − 2)a} = 0.35. This means the 

variance of the treatment effect is reduced by employing a SW design. Under cluster size 

variation, the κ2
I d term in the denominator of 3(T − 1)(1 − ρ) / (T − 2) a − κ2

I d  renders the 

SW design with unequal cluster sizes less efficient on average compared to a SW design 

with equal cluster sizes. A key observation is that, for certain orders of randomization, 

having variable cluster sizes may not result in an efficiency loss, as noted by Martin et al. 

(2019). This is likely due to the fact that the difference in the number of participants 

receiving intervention and control at the early or later stages of a SW design may be 

mitigated if large clusters are randomized to initiate the intervention early and late in the 

design. The exact randomization order of variable size clusters that provides the most and 

least efficiency is non-trivial and was the subject of Section 2.3.

Formally, the approximate expected relative efficiency (RE) of a design with unequal cluster 

sizes compared to equal can be written as (Web Appendix H):

RE ≈ T ⋅ DEw
DEw, κ

= 1 − κ2

I (1 − AT) (5)

where, the attenuation term, AT = (T − 1)(1 – ρ)/(T[2 + {(T + 1)n − 2}ρ]) is positive and 

typically small, so the average efficiency loss by having unequal cluster sizes can be 

approximated as 1 − κ2/I.
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A correction factor (CF) for sample size calculation was derived (Web Appendix I):

T ⋅ NSW ≈ T DEwNind + CF (6)

where

• Nind = 4 σe2 + τ2 z1 − β + z1 − α/2
2/θA

2  is the total sample size required for an 

individually randomized trial with an anticipated treatment effect of θA

• DEw = [3(T −1)(1 − ρ){1 + (Tn − 1)ρ}]/(T(T − 2)[2 + {(T + 1)n − 2}ρ]) is the 

Woertman et al. (2013) design effect

• CF = nκ2 (1 − AT) is the correction factor for cluster size variation with an 

attenuation term (AT) defined as AT = (T − 1)(1 − ρ)/(T[2 + {(T + 1)n − 2}ρ])

Before applying the sample size formula knowledge of the following is required: the 

arithmetic mean cluster size (n), the cluster size CV (κ), and the total number of time-points 

(T) equal to the number of steps plus one (K +1). The required sample size at each time-

point, Nsw, can be calculated by multiplying the unadjusted sample size in an individually 

randomized trial by the Woertman et al. (2013) DEw, and then adding our CF. The overall 

sample size in terms of participants each contributing one measurement in a cross-sectional 

design is T · NSW. The required number of clusters I is ⌈NSW/n⌉ and the number of clusters 

switching treatment at each step is ⌈I/K⌉, where ⌈·⌉ is the ceiling function. Woertman et al. 

(2013) suggest distributing the clusters as evenly as possible over the steps.

The correction factor CF slightly underestimates nκ2 and in many cases can be 

approximated as nκ2. This corresponds to including κ2 additional clusters to account for 

cluster size variation. The calculation requires the total number of time-points (T) to remain 

constant, and hence the number of steps (K) to remain the same. Therefore, it is only directly 

applicable if κ2 is divisible by the number of steps (K) in the proposed design. For example, 

with a CV of κ ~ 1.4 and a design with two steps (K = 2), you would include two additional 

clusters, one per step, in the design to account for cluster size variation.

2.7 Generalization to Include a Random Time Effect

The model displayed in Section 2.1 can be generalized as in Hooper et al. (2016) to 

accommodate a random time effect, as follows:

Yijk = μ + αi + βj + Xijθ + ηij + eijk, αi N 0, τ2 , ηij N 0, δ2 , eijk N 0, σe2

where nij is the random effect for cluster i at time-point j. Following a similar process, in 

Web Appendix K, we derived two variance formulas, which mirror those for the Hussey and 

Hughes (2007) model. The first assumes that the cluster sizes and order of randomization are 

both known, and allows us to identify upper and lower bounds of the power. The second 

provides a closed form expression for the expected variance before randomization when all 

cluster sizes are known. We were not able to derive the third variance formula, a DE, or a 

CF, using an approximation of the expected value of the variance if only the cluster size 

arithmetic mean and CV are available. This is because an accurate approximation would 
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require at least a third-order Taylor expansion of some components, and thus requires 

knowledge of the skewness and potentially higher moments of the cluster size distribution, 

which would be hard to obtain in trial planning stages.

3. Simulation Study Results

We conducted simulation studies to evaluate the performance of the proposed methods. For 

each chosen study design with NSW participants contributing data at each time-point, 

assuming an intra-cluster correlation (ρ) of 0.05, we set the effect size (θA) so that the power 

calculated based on a fixed cluster size using equation 8 in Hussey and Hughes (2007) 

would be 80%. Then, the estimated power accounting for cluster size variation was 

calculated using one of the formulas derived in this paper. Additionally, the power was 

empirically simulated under cluster size variation using the model in Section 2.1. Web 

Appendix L provides details of the design parameters and simulation steps.

Firstly, the impact of the order of randomization for particular known cluster sizes using the 

variance formula derived in equation 1 was evaluated. For a design with 6 clusters with one 

cluster randomized to intervention at each step, we calculated the power for each of the 6! 

orders of randomization (Figure 1A, green dots). The 6 clusters were of size 4, 11, 18, 21, 22 

and 104, resulting in an arithmetic mean cluster size of 30 and a CV of κ = 1.23. Lower and 

upper bounds for the power were obtained using the algorithm described in Section 2.3 and 

are displayed in Figure 1A by dashed dark blue lines. The algorithm correctly finds the 

minimum and maximum power across all possible randomizations of 62.9% and 72.6%, 

respectively. Performance of the algorithm with a larger number of clusters is described in 

Web Appendix L. The green dots on Figure 1A displaying the calculated power for each 

randomization order are almost entirely covered by the orange squares displaying the 

empirically simulated power on Figure 1B. The lower and upper bounds are very close to the 

lowest and highest empirically simulated powers of 62.8% and 74.9%, respectively. 

Furthermore, using equation 2 to estimate the expected treatment effect variance across all 

randomization sequences when all clusters sizes are known, the study is estimated to have an 

average power of 68.4% (Figure 1, dotted light blue line). With only knowledge of the 

cluster size arithmetic mean and CV (equation 3), the average power estimate is 68.7% 

(Figure 1, solid pink line). Therefore, our method produced power estimates close to the 

average power. For a particular randomization, the actual power may be higher or lower than 

this average. In this particular simulation, the average power was 5 to 6% above the 

minimum simulated power across all randomization sequences, and 6 to 7% below the 

maximum simulated power. Using the average power estimate was an improvement on 

assuming a fixed cluster size of the arithmetic mean, which will tend to over-estimate the 

power by a larger degree; in this case the over-estimation was by at least 5% up to a 

maximum of 17%. A supplementary figure evaluating clusters of size 4, 11, 18, 21, 62 and 

64 is in Web Appendix L.

We went on to evaluate the expected variance formulas derived in equations 2 and 3 under 

four scenarios corresponding to different design parameters. For the four scenarios, as the 

cluster size CV (κ) increases the power decreases (Figure 2). The expected power when all 

the clusters sizes are known calculated using the variance formula in equation 2, displayed 
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by the dotted light blue line, is very similar to the approximation using the cluster size 

arithmetic mean and CV by equation 3 denoted by the solid pink line. By comparing the 

orange squares showing the empirically simulated power, we can see the expected power is 

well estimated. Most of the deviation of the orange squares from the dotted light blue and 

solid pink lines is due to the particular random order clusters received intervention in that 

simulation, since the Monte Carlo error was estimated to be ⩽ 0.75%. Supplementary 

figures evaluating the formulas for the generalization defined in Section 2.7 are in Web 

Appendix L.

Finally, we evaluated a method that simply plugs-in the harmonic mean of the cluster sizes. 

We created several example studies of 6 clusters with one cluster randomized to intervention 

at each step that held the cluster size harmonic mean fixed at 30, but varied the cluster size 

arithmetic mean and CV. Plugging-in the harmonic mean of 30 in the variance formula given 

by equation 8 of Hussey and Hughes (2007) with no other adjustment under-estimated the 

power (Figure 3). Whereas, using the arithmetic mean over-estimated the power. The actual 

power was somewhere in-between the two estimates, and is displayed for each 

randomization sequence on Figure 3 (green dots). Our method correctly identified the 

average power over all the randomization sequences using the arithmetic mean and CV.

4. Illustrative Examples

4.1 Design of the Washington State Study Accounting for Unequal Cluster Sizes

The Washington state community-level randomized trial of expedited partner therapy aimed 

to reduce chlamydia test positivity by making free patient-delivered partner therapy and 

other public health services available (Hussey and Hughes, 2007). The trial was designed to 

randomly assign 24 local health jurisdictions (LHJs, the clusters) at 4 steps (K = 4) with 6 

clusters instituting the intervention (q = 6) at each step. The primary outcome was chlamydia 

test positivity among cross-sections of women testing in sentinel clinics. Assuming 162 

women would test in each LHJ between each step, a 5% chlamydia positivity under control, 

an intra-cluster correlation ρ of 0.00665, and α = 0.05, the study had approximately 85% 

power to detect a prevalence difference of 0.015 (i.e. 3.5% chlamydia positivity under 

intervention, θA = 0.015) using σe2 = 0.05(1 − 0.05) + 0.035(1 − 0.035) /2. The results 

publication revealed that numbers of women tested varied by LHJ (Golden et al., 2015).

To evaluate the impact of varying cluster sizes on sample size, we estimated the the overall 

sample size (T · NSW) and number of clusters (I) required to achieve 85% power for a range 

of cluster size CV (κ) values (Figure 4). If the cluster size CV was high at κ = 2.1, the SW-

CRT design with 4 steps would instead require a total of 28 clusters (I = 28) with 7 

randomized at each step (q = 7) (Figure 4B). This represents a 17% inflation of overall 

sample size (T · NSW) from 19,440 to 22,680 (Figure 4A). In this example with 4 steps and 

CV of κ = 2.1, it is relatively easy to adapt the original design to include four additional 

clusters by adding one at each step. However, in general, adaptation to incorporate additional 

clusters may not be as straightforward. For example, if the CV was 1.5, only 2 additional 

clusters would be required. The design would have to be changed to have a different number 
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of steps or larger mean cluster size, and finding a design that is practical with adequate 

power may be an iterative process.

4.2 Relative Efficiency (RE) of the Trial by Bashour et al. (2013) Comparing Unequal to 
Equal Cluster Sizes

The trial by Bashour et al. (2013) was designed to determine the effect of training residents 

in interpersonal and communication skills on women’s satisfaction during labour and 

delivery. Four tertiary care teaching maternity hospitals in Damascus with expected 

deliveries ranging from 5,000 to 15,000 per year, and number of residents ranging from 7 to 

137, were randomized one-per-step (i.e. I = 4, q =1, T = 5). The original study included n = 

100 women per hospital per time-point. Given the considerable variation in hospital sizes, 

we assess the average RE of allowing cluster sizes to vary by recruiting more participants in 

larger hospitals compared to the design with equal cluster sizes. For intra-cluster correlations 

(ρ) of 0.01, 0.05 or 0.25, and the cluster size CV (κ) ranging from zero to 2, we calculated 

the average RE for unequal to equal cluster sizes (Figure 5). If each hospital had recruited 

6% of the expected deliveries at each step, a total of 400 women would be recruited at each 

step, but the cluster sizes would vary such that the CV would be about 0.48. If ρ was 0.05, 

this would result in an average efficiency loss of about 6%. If each hospital recruited 

proportional to the number of residents, the CV would be 1.03 and there would be 26% 

average efficiency loss.

5. Discussion

Cluster size variation should be taken into account when designing a SW-CRT. While the 

effect of unequal cluster sizes on study power appears to be smaller for a cross-sectional 

SW-CRT than for a parallel CRT, the relationship is more complex. In the presence of 

unequal cluster sizes, the power of a SW-CRT is heavily dependent upon the order of 

randomization. It would be useful to consider allocation approaches that may result in 

efficiency gain (see for example, Matthews (2019)). The variance formula derived in 

equation 1 is associated with a particular realization of the randomization sequence. As the 

number of possible randomization sequences increases drastically with the number of 

clusters and an exhaustive search for the lower and upper bounds for the power would be 

computationally prohibitive, we devised efficient algorithms for identification of these 

power bounds. Rapid increase in computing power has made simulations a flexible and 

attractive alternative to analytical derivations to calculate study power in many settings; here, 

however, as the time required to conduct such simulations increases considerably with the 

number of randomization sequences, the availability of analytical formulas with efficient 

search algorithms makes it more feasible to obtain minimum and maximum power estimates 

in the study design stage.

In a balanced SW-CRT design where an equal number of clusters are randomized to initiate 

treatment at each step, we provide formulas to estimate the average power loss associated 

with cluster size variation. This average power loss is non-negligible, and larger when the 

number of clusters is small or the cluster size CV is greater than one. Both a formula for the 

expected treatment effect variance requiring knowledge of the actual cluster sizes, as well as 
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an approximation only requiring the projected cluster size average and CV, are provided. For 

practitioners, the latter will enable feasible designs to quickly be identified from information 

available in the early trial planning stages in a way that is considerably more accurate than 

plugging-in the arithmetic or harmonic mean cluster size. If the number of clusters are 

sufficiently large and several clusters are randomized to initiate treatment at each step, so 

that there is no substantial inequality in the total size of all clusters randomized at each step, 

the power loss will be alleviated (Girling, 2018). However, in settings where total numbers 

of clusters are not large, this would not be feasible. Indeed, SW-CRT designs benefit from 

within-cluster comparisons and make CRTs possible in situations where the number of 

clusters is too small for a parallel design, as the power of a parallel design crucially depends 

on the number of clusters (Rhoda et al., 2011; Donner and Klar, 1996).

The primary linear mixed effects model used in this paper (Hussey and Hughes, 2007), 

assumes random cluster effects, fixed time effects, no cluster by time interaction and no 

treatment by time interaction. This model can be adapted to incorporate more flexible 

modeling assumptions. In Section 2.7, we generalized the proposed method, when all cluster 

sizes are known, to allow a random time effect as described in Hooper et al. (2016). Variance 

formulas that allow random treatment effects were more challenging (Hughes et al., 2015). 

Furthermore, we have assumed that from each of the i = 1, … , I clusters exactly ni 

participants will be sampled at each time-point. In practice it is possible that the number of 

participants sampled at each time-point may vary within a cluster. To what extent this 

variation affects study power and methods for adjustment requires further investigation.

Hooper et al. (2016) proposed a DE for cohort SW-CRTs with equal cluster sizes, but the 

effect of cluster size variation has not been determined. For cross-sectional designs, the 

average RE of unequal compared to equal cluster sizes depends on the intra-cluster 

correlation, so we expect the within-individual correlation to also play a role in cohort 

designs. However, since average efficiency loss for cross-sectional SW-CRTs was largely 

driven by the number of clusters and cluster size CV, it would be interesting to examine if 

this is also true for cohort designs.

The variance formulas and DE in this paper are derived under a linear model, and therefore 

are particularly suited to continuous and count outcomes, or to designs evaluating a 

prevalence difference. Li et al. (2018) proposed a method to determine sample size for 

binary outcomes on the log-odds scale within the framework of generalized estimating 

equations. This method assumes equal cluster sizes. In future work we aspire to further 

investigate power and sample size formulas for binary outcomes accounting for unequal 

cluster sizes.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Power for all possible randomizations with upper and lower bound indicated for a SW-CRT 

with 6 clusters of arithmetic mean size (n) 30 and CV (κ) of 1.23. i) fixed cluster size: uses 

the variance formula in equation 8 of Hussey and Hughes (2007), ii) varying cluster sizes 

known: uses the variance formula in equation 2, iii) varying cluster size (CV): uses the 

variance formula in equation 3, iv) randomization order: uses the variance formula in 

equation 1, v) bounds: uses the method described in Section 2.3, vi) empirical: the 

empirically simulated power from 3,500 simulations.
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Figure 2. 
Estimated power as the cluster size coefficient of variation (κ) increases for four simulation 

scenarios with arithmetic mean cluster size (n) 30. q is the number of clusters randomized at 

each step, b is the number of time-points each cluster contributes samples at baseline, t is the 

number of time-points each cluster contributes samples between each step. i) fixed cluster 

size: uses the variance formula in equation 8 of Hussey and Hughes (2007), ii) varying 

cluster sizes known: uses the variance formula in equation 2, iii) varying cluster size (CV): 

uses the variance formula in equation 3, iv) empirical: the empirically simulated power from 

3,500 simulations.
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Figure 3. 
Estimated power at a fixed harmonic mean of 30 for SW-CRTs with 6 clusters. i) harmonic 

mean: uses the variance formula in equation 8 of Hussey and Hughes (2007) plugging-in a 

harmonic mean of 30, ii) arithmetic mean: uses the variance formula in equation 8 of Hussey 

and Hughes (2007) plugging-in the arithmetic mean given on the X-axis, iii) varying cluster 

sizes known: uses the variance formula in equation 2, iv) varying cluster size (CV): uses the 

variance formula in equation 3, v) randomization order: uses the variance formula in 

equation 1, vi) empirical: the mean empirically simulated power from 150 simulations of 

each randomization order (108,000 simulations in total).
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Figure 4. 
A) Overall sample size (T · Nsw) and B) number of clusters (I) required to achieve 85% 

power for a SW-CRT with 4 Steps. i) fixed cluster size: estimates the sample size using T · 

DEw (Woertman et al., 2013), ii) varying cluster size (CV): estimates the sample size using 

equation 6.

Harrison et al. Page 18

Biometrics. Author manuscript; available in PMC 2020 September 12.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Average relative efficiency (RE) for 4 clusters with q =1 randomized at each step (T = 5) and 

arithmetic mean cluster size of n = 100. ρ is the intra-cluster correlation.
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Table 1

Schematic of a stepped wedge cluster randomized trial (SW-CRT) with one baseline time-point (b = 1), two 

clusters randomized to initiate the intervention at each step (q = 2), two time-points between each step (t = 2) 

and four steps (K = 4). 0 represents control and 1 intervention.

Time

1 2 3 4 5 6 7 8 9

Cluster

1 0 1 1 1 1 1 1 1 1

2 0 1 1 1 1 1 1 1 1

3 0 0 0 1 1 1 1 1 1

4 0 0 0 1 1 1 1 1 1

5 0 0 0 0 0 1 1 1 1

6 0 0 0 0 0 1 1 1 1

7 0 0 0 0 0 0 0 1 1

8 0 0 0 0 0 0 0 1 1
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