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Abstract

Purpose: To (a) create a survival risk-score using radiomic features from the tumor habitat on 

routine MRI to predict progression-free survival (PFS) in Glioblastoma, and (b) obtain a biological 

basis for these prognostic radiomic features, by studying their radio-genomic associations with 

molecular signaling pathways.

Experimental Design: 203 patients with pre-treatment Gd-T1w, T2w, T2w-FLAIR MRI were 

obtained from 3 cohorts: TCIA (n=130), Ivy-GAP (n=32), and Cleveland Clinic (n=41). Gene 

expression profiles of corresponding patients were obtained for TCIA cohort. For every study, 

following expert segmentation of tumor sub-compartments (necrotic-core, enhancing tumor, peri-

tumoral edema), 936 3D-radiomic features were extracted from each sub-compartment across all 

MRI protocols. Using Cox regression model, radiomic risk score (RRS) was developed for every 

protocol to predict PFS on the training cohort (n=130) and evaluated on the hold-out cohort 

(n=73). Further, Gene Ontology and single-sample Gene Set Enrichment Analysis was used to 

identify specific molecular signaling pathway networks that were associated with RRS features.

Results: 25 radiomic features from the tumor habitat yielded the RRS. A combination of RRS 

with clinical (age, gender) and molecular features (MGMT, IDH status) resulted in a concordance 

index of 0.81 (p <0.0001) on training and 0.84 (p = 0.03) on the test set. Radiogenomic analysis 

revealed associations of RRS features with signaling pathways for cell differentiation, cell 

adhesion, and angiogenesis, that contribute to chemo-resistance in GBM.

Conclusions: Our findings suggest that prognostic radiomic features from routine Gd-T1w MRI 

may also be significantly associated with key biological processes that impact response to chemo-

therapy in GBM.

*Corresponding Author: Pallavi Tiwari, PhD, pallavi.tiwari@case.edu, Department of Biomedical Engineering, 10900 Euclid 
Avenue, Cleveland, OH 44106. 

HHS Public Access
Author manuscript
Clin Cancer Res. Author manuscript; available in PMC 2020 October 15.

Published in final edited form as:
Clin Cancer Res. 2020 April 15; 26(8): 1866–1876. doi:10.1158/1078-0432.CCR-19-2556.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Statement of Translational Relevance

Progression-free survival (PFS) in Glioblastoma (GBM) remains a surrogate end-point for 

patient’s response to standard or experimental treatments. However, currently there are no 

clinically-validated prognostic biomarkers for predicting PFS in GBM. In this work, we attempt to 

address this gap in knowledge by developing a radiomic risk score (RRS) using radiomic features 

from the tumor habitat (i.e. necrotic, enhancing tumor, edema) to predict PFS on pre-treatment 

MRI. Further, in an attempt to establish a biological basis for these prognostic radiomic features, 

we investigate their associations with corresponding gene expression data using Gene Ontology 

and single-sample Gene Set Enrichment Analysis. Our prognostic RRS consisted of 25 radiomic 

features from the tumor habitat on Gd-T1w MRI. These features were found to be significantly 

associated with cell differentiation, cell adhesion, and angiogenesis signaling pathways. With 

additional validation, such radiogenomic analysis may allow for identification of patients who may 

be candidates for targeted therapies.
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1. INTRODUCTION

Glioblastoma (GBM) is a highly aggressive, rapidly fatal, and the most common primary 

malignant tumor in the brain. Current standard of care treatment for GBM is maximal safe 

surgical resection followed by Stupp protocol - cranial radiation therapy and concomitant 

chemotherapy, with temozolomide (TMZ).1 Despite this aggressive and multimodal 

treatment, median survival has only slightly improved to approximately 15 months, with less 

than 25% of patients surviving up to 2 years, and less than 10% surviving for over 5 years.2 

This poor prognosis can be attributed to genetic instability and intra- and inter-tumor 

heterogeneity of GBM that leads to treatment resistance, progression, and tumor recurrence. 
3,4

Recent investigative studies have identified several driver mutations (i.e., IDH - Isocitrate 

dehydrogenase), chromosomal anomalies (i.e. 1p19q chromosome deletions),5 epigenetic 

alterations (such as MGMT - O-6-Methylguanine-DNA Methyltransferase)6 as specific 

targets for personalizing anticancer therapeutics, enhancing treatment response, and 

improving survival. While these genomic biomarkers have shown some prognostic value in 

GBM, biopsies are tissue destructive, rely on a small sample of tissue that do not account for 

the inherent intra-tumoral heterogeneity extant in GBMs, and are usually expensive and 

time-consuming to perform during routine screening. With almost 40% of GBM patients 

diagnosed with cancer recurrence within 6 months even after aggressive treatment 

management, alternate treatment options such as anti-angiogenesis therapies, 

immunotherapy vaccinations and clinical trials could be more suited in patients that may be 

at high risk of tumor recurrence, to achieve prolonged progression free survival (PFS).7–9 

There is hence a need to develop imaging based biomarkers that are prognostic of patient 

outcome to potentially assist in building comprehensive and patient-centric treatment plans.
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Multiple studies suggest that tumor-associated cellular alterations are not just limited to the 

visible tumor enhancement of GBM, but infiltrate beyond the tumor margins into the peri-

tumoral brain zone.10 It is also known that 90% of GBM tumors recur in the peri-tumoral 

region and also the inner necrotic compartments.11 Radiomics has provided a surrogate 

mechanism to non-invasively characterize the tumor by capturing sub-visual cues of 

morphologic diversity (e.g. roughness, image homogeneity, regularity and edges) on routine 

MRI scans for diseases diagnosis, patient prognosis and treatment response.12 Recently, a 

few research groups have demonstrated the added prognostic value in investigating radiomic 

features, not just from within these visible tumor margins, but also from the surrounding 

peri-tumoral regions (i.e. edema) as well as the features from necrotic core.13–15 This 

concept of “tumor habitat” involves interrogating the radiomic features from the enhancing 

tumor as well as the necrotic core, and peri-tumoral edema sub-compartments across 

different MRI protocols.

While a few recent studies have attempted to develop prognostic radiomic based models 

from the tumor habitat to predict progression-free and overall survival in GBM, there has 

been limited work on creating a reliable survival risk assessment model using radiomic 

features from the tumor habitat, using a large multi-institutional cohort. Further, a more 

critical missing link in previous work has been on identifying the molecular associations of 

habitat-specific radiomic features with the underlying signaling pathways that drive different 

biological processes, via radiogenomic analysis. Improved understanding of how the 

changes in biological processes at the molecular level impact changes at a radiological scale, 

could help drive adoption of the prognostic radiomic features in a clinical setting. Further, 

such cross-scale associations of radiomic-based prognostic markers with molecular 

processes in GBM could allow for designing patient-centric treatments based on their risk 

profile for poor survival.

In this work, we have two objectives. Firstly, we seek to create a prognostic radiomic risk 

score (RRS) using radiomic features from different sub-compartments of the tumor habitat 

on routine multi-parametric MRI protocols (i.e. Gd-T1w, T2w, T2w-FLAIR), to risk-stratify 

GBM patients based on their PFS. The RRS model will be trained using a multi-institutional 

training cohort of n=130 patients via least absolute shrinkage and selection operator 

(LASSO) Cox regression model. We will then evaluate the ability of this RRS to stratify an 

independent test cohort (n=73) into two groups of ‘low-risk’ and ‘high-risk’ of poor survival, 

based on the fixed median cut-off value of the RRS. In our second objective, in an attempt to 

provide a biological basis for the radiomic features driving the RRS, we will seek to identify 

radiogenomic correlations between the most prognostic radiomic features from different 

sub-compartments of the tumor habitat with molecular signaling pathway networks in GBM 

using Gene Ontology (GO) and single-sample Gene set enrichment analysis (ssGSEA).16–18 

Figure 1B illustrates an overview of our framework.

2. MATERIALS AND METHODS

2.1. Study Population

Our retrospective cohort consisted of treatment-naive multi-parametric MRI scans from 

three cohorts. Two of the three datasets were curated from publicly available datasets - The 
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Cancer Imaging Archive (TCIA)19,20 and The Ivy Glioblastoma Atlas Project (Ivy GAP).
21,22 TCIA is an open archive of cancer-specific medical images and associated clinical 

metadata established by the collaboration between the National Cancer Institute (NCI) and 

participating institutions in the United States. Similarly, Ivy-GAP is freely accessible online 

data resource that aims to identify important morphologic hallmarks of GBM.

The third dataset was curated from a Health Insurance Portability and Accountability Act 

(HIPAA) compliant and institution review board (IRB) approved participating institution – 

Cleveland Clinic Foundation (CCF), where the need for an informed consent from all 

patients was waived. Between December 1st, 2011 and May 1st, 2018, radiology image 

archives of this participating institution were searched to identify 80 GBM patients as 

confirmed via histopathology. Further information on the images acquired can be found in 

Supplementary Section 1.

The retrospectively collected 369 GBM cases from three sites were further triaged using 

inclusion criteria that involved the availability of 1) routine MRI sequences (Gd-T1w, T2w, 

T2w-FLAIR) for treatment-naive patients with diagnostic image quality and 2) PFS 

information for all individuals. A total of 166 patients with the following criteria were 

excluded: (i) absence of baseline/ pre-treatment surgery scans (n=47), (ii) missing either Gd-

T1w, T2w or T2w-FLAIR MRI protocol scans (n=76), (iii) presence of MRI artifacts (n=27) 

and (iv) missing PFS information (n = 16). Following the patient exclusion criteria, 203 

patients were enrolled for the radiomic analysis. The patient enrolment flowchart is shown in 

Figure 1A.

Of the 203 GBM patients that followed the inclusion/exclusion criteria for radiomic 

analysis, 130 patients from TCIA cohort comprised our training cohort and the remaining 73 

cases were used as independent test cohort. Further, from the 203 GBM cases, 157 tumors 

were selected for radiogenomic analysis after applying an additional inclusion criterion that 

required RNA sequencing data obtained from cellular tumor. A total of 32 GBM tumors 

were further excluded from the study due to the absence of corresponding gene expression 

data acquired on Affymetrix U133A platform. Finally, a total of 125 GBM tumors were 

investigated for the radiogenomic analysis.

Multi-site data distribution has been reported in Table 1A. Our data selection for training and 

testing was performed in a randomized fashion, while ensuring that the distribution of 

patient demographics such as clinical factors (patient’s age at diagnosis, gender), and 

molecular characteristics (MGMT promoter methylation status, IDH status) were balanced 

between the training and test sets (2:1 ratio with n = 130 in the training and n = 73 in the 

independent test set). The clinical characteristics and treatment follow-up of the patients 

within the training and test cohort have been summarized in Table 1B. Within the training 

cohort, the extent of resection (gross total resection [GTR] or near total resection [NTR] or 

sub-total resection [STR]) was not known in 106 cases. From the test cohort (n=73), 40 

GBM cases had undergone GTR, 12 GBM cases underwent NTR, and 12 GBM tumors 

underwent STR. 5 cases within the test cohort underwent laser ablation.
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No statistically significant difference was found between the training and test cohorts with 

respect to the age (p = 0.75), gender (p = 0.45), and PFS (p = 0.37).

2.2. Post-acquisition pre-processing and Segmentation

Pre-processed TCIA cases along with annotations on every 2D slice were obtained from 

Bakas et al.,23,24 Cases obtained from Ivy GAP and CCF were pre-processed using the same 

pipeline as the TCIA cohort.25 For every study, MR images were reoriented to the LPS (left-

posterior-superior) coordinate system. All MRI protocols were then co-registered to the T1w 

anatomical template of SRI24 Multi-Channel Normal Adult Human Brain Atlas via affine 

registration and resampled to 1mm3 voxel resolution.26 Subsequent skull-stripping was 

implemented on all cases.25 N4-bias correction algorithm27 was not implemented in our pre-

processing pipeline as it known to obliterate the T2w-FLAIR signal.23 However, a low level 

image processing smoothing filter, Smallest Univalue Segment Assimilating Nucleus 

(SUSAN) was used to reduce high frequency intensity variations of noise.28 Lastly, we 

corrected the MRI protocols for intensity non-standardness, that refers to the issue of MR 

image “intensity drift” across different imaging acquisitions. The intensity non-standardness 

results in MR image intensities lacking tissue-specific numeric meaning within the same 

MRI protocol, for the same body region, or for images of the same patient obtained on the 

same scanner. Therefore, intensity standardization was implemented in MATLAB R2014b 

(Mathworks, Natick, MA) using the method presented in Madabhushi et al., 29

Every GBM tumor was defined into 3 sub-compartments of the tumor habitat: (1) tumor 

necrosis, (2) enhancing region of the tumor, and (3) peri-tumoral edema. Gd-T1w MR 

images were used to delineate hypo-intense signals to capture the necrotic core of GBM 

tumor, usually located in the central region of the tumor. Similarly, enhancing region of 

GBM is represented as hyper-intense regions on Gd-T1w MR images when compared pre-

contrast T1w. When pre-contrast T1w scans were not available, T2w images and T2w-

FLAIR scans were used to evaluate the presence of blood.30 T2w and T2w-FLAIR scans 

were also used to identify edema and necrotic core.

The independent test cohort, that consisted of Ivy GAP and CCF cases, was manually 

annotated using 3D Slicer software.31 Every 2-D slice of each MRI scan with visible tumor 

was manually annotated by the expert readers. A total of three experts were asked to perform 

the manual annotations on a total of 73 test studies. The senior-most expert (expert 1, V.H, 

>10-years of experience in neuroradiology) independently annotated the studies obtained 

from IVY Gap, while expert 2 (V.S) with 7 years of experience in neuroradiology supervised 

expert 3 (K.B, with 3 years of radiology experience), to manually annotate the CCF cases 

from the test set. In rare cases with disagreement across the two readers (expert 2 and expert 

3), the senior-most radiologist (V.H, expert 1) was consulted to obtain the final 

segmentations.

2.3. 3D Texture feature extraction from multi-parametric MRI

A total of 936 3D texture based radiomic and 19 shape-based features were extracted 

individually from every sub-compartment (edema, necrosis, enhancing tumor) on every MRI 

protocol. The feature set for every study on each MRI protocol included 19 shape-based 
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features, 52 Haralick features (capturing tumor heterogeneity), 501 Laws energy (captures 

presence of spots, edges, waves, and ripples in an image), 383 Gabor wavelet (capturing 

structural detail at different orientations and scales) based features on a per-voxel basis. 

Statistics of median, standard deviation, skewness and kurtosis were then calculated from 

the feature responses of all voxels within the region of interest. Therefore, a total of 2850 

features extracted for every study on every MRI protocol (Gd-T1w, T2w, T2w-FLAIR) 

across all tumor sub-compartments. List of the extracted features is summarized in 

Supplementary Sheet 1. All feature values were normalized (mean of 0 and standard 

deviation of 1). Feature extraction and statistic calculations were performed using in-house 

software implemented in MATLAB R2014b platform (MathWorks, Natick, MA, USA).

List of extracted shape-based features have been provided in Supplementary Section 2, Table 

1. Detailed description of the set of features employed in this work and its possible 

relationship to the pathophysiology of GBM is provided in Supplementary Section 2, Table 

2. Details of implementation and parameters of every 3D texture feature extracted has been 

provided in Supplementary Section 2, Table 3. The feature extraction pipeline has been 

made publicly available at https://github.com/ccipd/BrIC_Lab.

2.4. Statistical Analysis

2.4.1. Radiomic risk score (RRS)—The experimental design was setup to evaluate the 

prognostic ability of radiomic features from every MRI protocol (Gd-T1w, T2w, T2w-

FLAIR). Within the training set, univariable cox regression was used as the feature pruning 

method, where all features were investigated to find the most statistically significant 

prognostic subset radiomic features with a p-value less than 0.05. After feature pruning, 

three least absolute shrinkage and selection operator (LASSO) Cox regression models were 

setup in 5-fold cross validation with 1000 iterations, to further select the most prognostic 

radiomic features within each of the MRI protocols based on their frequency of occurrence. 

LASSO L1 regularization technique iteratively shrinks the feature coefficient estimates 

towards zero, and chooses an optimal tuning parameter lambda (λ) that increases in a cross-

validation setup until features with only non-zero coefficients are selected. Therefore, in 

cases with very large number of features, a LASSO model can help both shrink and find the 

sparse model that involves a small subset of the features. Thus, features picked by the 

LASSO models within the training cohort, and then pooled in a linear combination and 

multiplied with their respective coefficients to construct a RRS:

RRS = ∑i = 1
n βi*τi

where n is the number of features selected by LASSO for a given MRI protocol, β is the 

weighted coefficient of the selected feature and τ is the selected MRI protocol based 

radiomic feature. Finally, the constructed RRS was then applied in the test set for validation.

2.4.2. Survival Analysis—For every MRI protocol, each patient within the training and 

test set was stratified into high-risk and low-risk group based on the median value of the 

RRS as a fixed cut-off. The prognostic ability of the RRS was evaluated by implementing 

the Kaplan Meier (KM) survival analysis and cox regression. The KM survival curves were 
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used to compare survival times across high-risk and low-risk groups, within the training and 

testing cohorts for: (a) Gd-T1w MRI protocol, (b) T2w MRI protocol and (c) T2w-FLAIR 

MRI protocol. The horizontal axis on the KM survival curve represents the time and the 

vertical axis shows the probability of survival. At any given point on the survival curve, the 

probability that a patient in each group to remain alive at that time is presented. Optimal 

classifier predictions would show maximum separation between the survival curves.13

Further, Hazard ratios (HR) were used to quantify the effect of individual feature on 

survival. Features yielding negative regression coefficients (i.e. low feature values correlated 

with long term survival) in our cox model produce a HR between 0 and 1; features yielding 

positive regression coefficients (i.e. low feature values correlated with short term survival) 

produce a HR between 1 and infinity. We also computed Concordance indices (C indices or 

C statistic) for each of our univariable and multivariable analysis experiments in R. C indices 

is the fraction of all pairs of subjects whose predicted survival times are correctly ordered 

(i.e. concordant with actual survival times). C indices = 1 indicates that the model has 

perfect predictive accuracy, and C indices = 0.5 indicates that the model is no better than 

random chance.

2.5. Radio-genomic analysis

Within the training cohort of TCIA patients, pre-processed gene expression data using 

Robust Multichip Average (RMA) algorithm32 was available for a total of 125 patients 

(Table 1A) and hence was used for our radio-genomic analysis. This TCGA GBM gene 

expression data (Level3 - Affymetrix HT HG U133A) is publicly available for download 

from the Broad Institute (http://gdac.broadinstitute.org/runs/stddata__2016_01_28).33 

Further information regarding the acquisition and expression profiling has been published by 

TCGA network.34 This transcriptomic data, consisting of 12,042 annotated genes, was used 

to investigate the possible underlying biological processes of the RRS. The most 

differentially expressing genes (DEGs) of the RRS were selected using the Wilcoxon rank 

sum test. Benjamini and Hochberg method was used to adjust the p-values and control for 

the false discovery rate (FDR) in multiple testing.35 Statistically significant DEGs (p-value < 

0.03) were then used to identify distinct Gene Ontology (GO) based biological processes.
16,17 GO highlights the most overrepresented genes and finds the systematic linkages 

between those genes and biological processes.

To further gain insight into the GO based biological processes and their association with the 

individual radiomic features from different sub-compartments that were used to create the 

Gd-T1w RRS, we performed single-sample Gene-set enrichment analysis (ssGSEA).18,36 

For a predefined set of genes, ssGSEA captures the significantly enriched or depleted 

biological processes and calculates an enrichment score for every patient in the cohort. 

These predefined set of genes for the GO based biological processes were acquired from the 

Molecular Signatures Database (MSigDB v6.2) platform (http://software.broadinstitute.org/

gsea/msigdb/genesets.jsp?collection=BP).37 Within the training cohort, ssGSEA score was 

calculated for 125 GBM patients, and then a Spearman rank correlation coefficient (ρ) 

matrix was constructed to identify the contribution of the 25 individual Gd-T1w radiomic 
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features (that were used to create the RRS) and their association with the GO biological 

processes.

All the statistical analysis was performed on MATLAB R2014b platform (MathWorks, 

Natick, MA, USA). P values <0.05 were considered significant. The Cox’s proportional 

hazard regression models were built using the ‘coxphfit’ command in MATLAB.

3. RESULTS

3.1. Radiomic risk score created using radiomic features from the tumor habitat on Gd-
T1w MRI is prognostic of Progression Free Survival

Within the training cohort, 212 prognostic radiomic features were obtained from 2850 Gd-

T1w radiomic features after feature pruning from univariable cox regression. For the Gd-

T1w protocol, the LASSO model selected 25 radiomic features with lambda value of 0.088 

(see Figure 2A). Details of the features selected and their coefficients have been listed in 

Figure 2B. The complete RSS formulation can be found in Supplementary Section 3. Of the 

25 Gd-T1w radiomic features, 8 were picked from the peri-tumoral edema region, 9 were 

selected from the enhancing region of the tumor, and the remaining 8 were picked from the 

necrotic core of GBM. The Gd-T1w RRS for every patient within the training and testing 

cohort has been provided in Supplementary Sheet 2.

In a multivariable Cox analysis, the RRS built using the 25 Gd-T1w radiomic features 

resulted in statistically significant KM curves (log-rank test, p < 0.00001, HR = 4.5, Figure 

2C Left). The Gd-T1w RRS was also found to be a prognostic indicator of PFS in the 

independent test cohort (log-rank test, p value = 0.0117, HR = 2.0735, Figure 2C Right). 

Other clinical parameters (such as age, gender) between the low-risk and high-risk groups 

based on Gd-T1w RRS median cut-off were also investigated (Supplementary Section 4, 

Table S3).

Similarly, 321 and 496 prognostic features were obtained from 2850 T2w and T2w-FLAIR 

MRI based radiomic features respectively using the univariable Cox regression method. 

Then, a total of 25 T2w and 12 T2w-FLAIR radiomic features were picked by the LASSO 

models respectively. Similar to Gd-T1w RRS, statistically significant KM survival curves 

were reported with 25 T2w (log-rank test, p-value < 0.00001, HR = 28.6736) and 12 T2w-

FLAIR (log-rank test, p-value = 0.0013, HR = 4.8434) MRI radiomic features respectively. 

However, the RRS created using radiomic features from the tumor habitat of T2w and T2w-

FLAIR studies did not yield statistically significant differences in the “high risk” and “low 

risk” patient populations upon validation (log-rank test, T2w p-value = 0.49, T2w-FLAIR p-

value = 0.25).

3.2. Added clinical utility of Gd-T1w radiomic risk score to existing clinical parameters

We further assessed the added clinical utility of the RRS to existing clinical parameters (age, 

gender), molecular features (MGMT, IDH mutation status) and extent of resection (EOR, on 

test set only) to evaluate improvement in prediction of PFS in GBM patients. In a 

multivariable setting, we found that the Gd-T1w RRS resulted in a training concordance-

index (C-index) of 0.76 (95% Confidence Interval [CI]: 0.67 – 0.85) and predicted PFS on 
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the independent test cohort with a C-index of 0.75 (95% CI: 0.68 – 0.84, p-value = 0.012). 

Interestingly, combining clinical (age, gender),molecular features (MGMT, IDH mutation 

status) and EOR with the Gd-T1w RRS, improved the prediction of PFS within the training 

(C-index = 0.81, 95% CI: 0.71 – 0.90, p-value = <0.0001) and test set (C-index = 0.84, 95% 

CI: 0.67 – 0.95, p-value = 0.03) respectively, as compared to validation on test set using 

either clinical (Age: C-index = 0.55, 95% CI: 0.46 – 0.64, Gender: C-index = 0.52, 95% CI: 

0.46 – 0.64) or molecular features (MGMT status: C-index = 0.65, 95% CI: 0.57 – 0.72, 

IDH status: C-index = 0.55, 95% CI: 0.49 – 0.60) or EOR (C-index = 0.56, 95% CI: 0.44 – 

0.67) or Gd-T1w RRS (C-index = 0.75, 95% CI: 0.68 – 0.84) alone. Table 2 lists the HR and 

concordance indices for the clinical parameters (age, gender), molecular features (MGMT 

status, IDH status), EOR and combined radiomic features for predicting PFS.

3.3. Gene Ontology identifies biological processes associated with Gd-T1w radiomic risk 
score

Empirical analysis of the 12,042 annotated genes (obtained from 125 patients of the training 

cohort) using the Wilcoxon rank sum test resulted in a total of 192 DEGs that had an p-value 

of less than 0.03 (with an FDR of 3%). These 192 DEGs were identified to be differentially 

expressed between the ‘high-risk’ and ‘low-risk’ groups of the Gd-T1w RRS, and were 

further used for GO analysis. Figure 3A shows the supervised hierarchical clustering of 

these 192 DEGs using the correlation distance metric. Figure 3B shows the boxplot of two 

representative DEGs ‘ID1’ (Inhibitor of differentiation/DNA binding) and ‘BMP4’ (Bone 

Morphogenetic Protein 4). Complete list of the 192 DEGs can be found in Supplementary 

Sheet 3.

Radiogenomic analysis of the training cohort using GO, revealed that the Gd-T1w RRS was 

associated with 57 biological processes that have been listed in Figure 3C. Complete list of 

all the biological processes has been provided in Supplementary Sheet 4. It was observed 

that 24 biological processes were implicated in cell adhesion, cell proliferation, 

differentiation and angiogenesis. A directed acyclic graph investigating the inter-

relationships between these 57 biological processes have been provided in Supplementary 

Section 5.38 In Figure 3D, the fold enrichment change and number of genes involved in the 

various biological processes have been listed. It can be seen that biological processes of cell 

adhesion, that involved over 100 genes, had the highest fold enrichment change. Most of the 

GO terms involved in cell differentiation, proliferation, and angiogenesis had less than 100 

overrepresented genes, but their fold enrichment change was greater than 2.

3.4. Gene-set enrichment analysis provides insights into the relationship of individual 
tumor habitat specific radiomic features with biological processes

Predefined gene set annotations for 15 GO based biological processes (associated with cell 

differentiation, cell adhesion and angiogenesis) were available from MSigDB, and thus used 

to calculate the ssGSEA scores. Supplementary Sheet 5 has the complete list of pre-defined 

set of genes that were used to describe these 15 GO based biological processes. ssGSEA 

scores helped understand the associations of these biological processes with the individual 

25 radiomic features that were obtained from different tumor sub-compartments and used to 

create the Gd-T1w RRS. As may be observed in Figure 4, statistically significant 
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correlations (p<0.05) were found between the shape features (i.e., sphericity, elongation and 

convexity) of the peri-tumoral edema region and biological processes of cell proliferation, 

angiogenesis and cell adhesion. Additionally, Laws energy and Gabor wavelet texture 

features from within the peri-tumoral edema region of the GBM tumor habitat, were also 

found to be correlated with cell proliferation (ρLaws Energy = − 0.186, 95% CI: −0.350 - 

−0.011) and angiogenesis (ρGabor = 0.193, 95% CI: 0.018 - 0.356) respectively.

4. DISCUSSION

Pre-treatment estimation of progression free survival (PFS) can help predict therapeutic 

efficacy of conventional first-line treatment. Additionally, recent randomized clinical trials 

have reported that PFS can be used as a surrogate endpoint that correlates well with overall 

survival (OS).39,40 Currently, there are no clinically validated imaging based markers that 

are prognostic of PFS in primary Glioblastoma (GBM).41

In this work, we had two objectives. In our first objective, we created and independently 

evaluated a radiomic risk score (RRS) using radiomic features from the tumor habitat on 

pre-treatment MR imaging to stratify GBM patients based on their PFS on n=203 studies 

from a multi-institutional cohort. In our second objective, we reported significant 

associations of the prognostic radiomic features that contributed to RRS with specific 

molecular signaling pathways, via radiogenomic analysis.

In our first objective, the survival risk score created using radiomic features from Gd-T1w 

MRI was found to be statistically significantly different across the ‘low risk’ and ‘high risk’ 

groups, both on training (p<0.001, n=130) as well as the hold-out test set (p=0.03, n=73). In 

consensus with recent studies42–44, we further discovered that integrating the risk score from 

Gd-T1w MRI with clinical parameters (age, gender) and molecular features (MGMT status, 

IDH status) improved the performance of the prognostic model. Our prognostic RRS 

consisted of a total of 25 radiomic features including textural features belonging to Laws 

energy and Gabor wavelet families, and as shape features from the peri-tumoral edema 

region, on Gd-T1w MRI. Laws energy radiomic features capture wavy, ripple, and spot-like 

patterns which may be reflective of increased peri-tumoral neovascularization and atypical 

blood vessels. Our findings also corroborate with our own previous work, where we 

identified Laws energy features from the edematous and enhancing region on T2w-FLAIR 

and Gd-T1w MRI to be predictive of OS in GBM.13,43 Similarly, Gabor wavelet features 

capture changes in structural orientation by quantifying prominent MRI intensity changes 

across multiple directional gradients in a given region of interest (ROI).45 These findings are 

in line with multiple studies that have demonstrated the efficacy of Gabor wavelets in 

predicting tumor malignancy46, disease aggressiveness47, and treatment response48 on 

imaging for various cancers.

In our second objective, we identified significant radiogenomic correlations (p<0.05) 

between our 25 prognostic Gd-T1w radiomic features from different sub-compartments of 

the tumor habitat with molecular signaling pathways in GBM using Gene Ontology (GO) 

and single-sample Gene set enrichment analysis (ssGSEA). Specifically, using the 

corresponding gene expression data available for the training set (n=125), we identified a 
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total of 192 differentially expressing genes (DEGs) across the ‘low risk’ and ‘high risk’ 

groups obtained from the Gd-T1w RRS. Prognostic value of some of these genes has been 

demonstrated within various cancers. For example, ID1 is a known to be over-expressed in 

breast, and GBM cancers.49,50 In consensus, we found that ID1 had an adjusted p-value of 

0.0039. Similarly, high expression of BMP4 has been known to be significantly associated 

with better prognosis in GBM.51 Our analysis revealed that the ‘low risk’ group was 

associated with statistically significant BMP4 expression when compared to the ‘high risk’ 

group, within the training set (p-value = 0.0069). TP53 (tumor protein p-53) inducible 

proteins such as TP53I11 (tumor protein p53 inducible protein 11) and TP73-AS1 (TP73 

antisense RNA 1) were also found to be statistically significant between the ‘low-risk’ and 

‘high-risk’ radiomic risk groups with p-values of 0.005 and 0.007 respectively. CD34, a 

transmembrane phosphoglycoprotein, known to be a prognostic marker with potential to be 

a therapeutic target, was differentially expressed with an adjusted p-value of 0.017.52

Using the 192 DEGs, GO analysis further revealed that cell adhesion, cell differentiation, 

proliferation and angiogenesis were the key biological processes that were significantly 

different across the high-risk and low-risk groups (as defined via our RRS). Biological 

processes surrounding cell adhesion, cell differentiation, proliferation, and angiogenesis are 

key contributors in driving malignant tumor behavior, support resistance to chemo-radiation 

therapy, and contribute to poor PFS in primary GBM.53,54 Previous work by Liu et al., has 

similarly shown via radiogenomic analysis that biological processes such as immune 

response, programmed cell death, cell proliferation and vasculature development dictate PFS 

in low grade gliomas.42

Finally, we demonstrated that multiple biological processes that are associated with poor 

PFS were also significantly correlated (p < 0.05) with radiomic features extracted from the 

peri-tumoral edema region of GBM. For instance, we found that sphericity (a measure of 3D 

compactness) of the edematous region, was negatively correlated with most of the biological 

processes involved in cell adhesion (ρavg = − 0.140, 95% CI: −0.308 - 0.036), and 

angiogenesis (ρavg = − 0.178, 95% CI: −0.343 - −0.002). This suggests that a more 

infiltrative pattern of tumor growth as reflected on peri-tumoral edema may be associated 

with poor prognosis in GBM patients. Further, Ismail et al., have previously reported that 

lower values of elongation of the edematous region (ratio between major and minor axes of 

the tumor) are indicative of tumor progression in conventional post-treatment primary GBM.
55 Along similar lines, we found association of lower elongation values of edema with 

angiogenesis (ρavg = 0.118, 95% CI: −0.287 - 0.058) and cell differentiation (ρavg = 0.128, 

95% CI: −0.048 - 0.299), which suggests that better prognosis may be linked with low RRS 

in GBM.

This study did have some limitations. The validation was done retrospectively and 

radiogenomic analysis was only possible on 1 out of the 3 cohorts (due to unavailability of 

the corresponding gene expression data in the Cleveland Clinic cohort, and substantial 

heterogeneity in RNA-sequencing processing pipeline of Ivy GAP cohort). While we 

compared the clinical parameters (age, gender), molecular (MGMT, IDH status) and EOR 

with RRS to the extent possible, due to the limited training cohort, the development of RRS 

in this work could not be controlled for clinical parameters, molecular status, and EoR. This 
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will be part of our future study involving large multi-site evaluation of RRS. Further work is 

also mandated to develop a radiogenomic approach that incorporates transcriptomic data 

coming from different processing platforms, and thus reducing the influence of batch effects 

in RNA-sequencing data. In future, our work will also focus on incorporating 

complementary imaging parameters (PET, perfusion, DWI) which may further improve 

survival prediction using radiogenomic analysis, while also accounting for follow-up 

treatment. Additionally, we also plan to expand our analysis with corresponding gene 

expression data available across all patients, and eventually using prospectively collected 

scans.

In summary, we developed and independently evaluated a prognostic RRS using features 

obtained from the tumor habitat on Gd-T1w MRI, which could potentially be used as a non-

invasive imaging based surrogate marker of PFS in primary GBM. We further demonstrated 

that the Gd-T1w RRS, with other clinical and molecular features can improve patient 

stratification when compared to using Gd-T1w RRS alone. Further, we identified the 

biological processes of cell differentiation, cell adhesion, and angiogenesis to be associated 

with Laws energy features from the enhancing tumor and shape features of infiltrative peri-

tumoral edema respectively, thus providing a biological basis for the radiomic features 

driving the RRS with possible underlying processes that dictate tumor behavior in GBM 

patients. Following additional large-scale prospective validation, our Gd-T1w RRS could 

potentially be used as a surrogate endpoint in clinical trials,56 predict onset of tumor 

recurrence,40,41 and for evaluating the efficacy of chemo-radiation therapy in primary GBM 

patients.57,58
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Figure 1: 
(A) Flow diagram of patient enrolment, eligibility and exclusion criteria of the dataset (B) 
Radiomic Workflow
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Figure 2: 
(A) Radiomic feature selection using the least absolute shrinkage and selection operator 

(Lasso) cox regression model. Tuning penalization parameter lambda using 5-fold cross 

validation and minimum criterion in lasso model. The partial likelihood deviance was 

plotted versus log lambda. Log Lamda = −2.4308, with lambda = 0.0880 was chosen. (B) 
Forest plot of the beta coefficients/weights of the 25 radiomic features selected in the 

radiomic risk score. Brown, green, and yellow represent features obtained from the necrotic 

core, enhancing region and edema of the tumor habitat respectively, from Gd-T1w MRI. (C) 
Kaplan-Meier curves for patients stratified into low-risk and high-risk groups according to 

the radiomic risk score (cutoff = −0.1044) in the training cohort and independent validation 

set respectively. X-axis represents the progression free survival days in days, and Y-axis 

represents the estimated survival function.

Beig et al. Page 19

Clin Cancer Res. Author manuscript; available in PMC 2020 October 15.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3: 
(A) Hierarchical clustering of the differentially expressing genes (n=192, p<0.03, false 

discovery rate = 3%) for radiomic risk score within the training cohort of 125 GBM patients. 

The genes were clustered based on the ‘correlation’ distance metric. (B) (left) Box-plot of 

the ID1 gene expression within the training cohort for the low-risk and high-risk radiomic 

groups. (right) Box-plot of the BMP4 gene expression within the training cohort for the low-

risk and high-risk radiomic groups. High BMP4 expression is known to be associated with 

better prognosis. In consensus, we report that high BMP4 expression was found in the low 

radiomic risk group. (C) Gene Ontology analysis revealed several biological processes that 

were associated with the radiomic risk score. Fisher’s exact text (with Bonferroni correction 

for multiple testing of 5%), related the radiomic risk score of progression free survival with 

biological processes of cell differentiation, proliferation, angiogenesis and cell adhesion. (D) 
2-D scatter plot to show the number of genes involved in each biological process.
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Figure 4: 
(A) Spearman rank correlation coefficient matrix of the single-sample Gene set enrichment 

analysis scores and the radiomic features extracted from the GBM tumor habitat (necrotic 

core, enhancing tumor and peri-tumoral edema). ‘*’ signifies a statistically significant 

(p<0.05) relationship (B) Top row – Gabor wavelet based radiomic features extracted from 

the peri-tumoral edema region of the GBM tumor habitat was found to be positively 

correlated with the cell differentiation and proliferation biological process. Bottom row – 

Shape feature ‘Elongation’ of the peri-tumoral edema was found to be positively correlated 

with angiogenesis and cell proliferation biological processes.
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Table 1:

(A) MRI Data acquisition sites for the Training cohort – TCIA. (B) Patient demographics for the training and 

test cohort.

A. DATA DISTRIBUTION

Training Cohort (n = 130) Independent Test Cohort (n= 73)

Site MR Imaging Genomics Site MR Imaging Genomics

TCIA

MD Anderson 24 22 Ivy GAP 32 29

Henry Ford Hospital 46 46 CCF 41 0

UCSF 23 23

Duke 9 9

Emory 9 9

Case Western Reserve 10 10

Thomas Jefferson 9 7

Total cases 130 125 Total cases 73 29

B. PATIENT DEMOGRAPHICS

Clinical Parameter Training Cohort Test Cohort p-value

Age (Mean, Range in years) 57.9 (19 – 84.8) 58.2 (26 – 77) 0.7597

Gender (n, %)
Female 47 (36%) 31 (42%)

0.4524
Male 83 (64%) 42 (58%)

Mean Progression Free Survival (PFS, in months) 9.5 10.8 0.3710

Therapy class (n, %)

RT + TMZ 98 (75%) 73 (100%)

RT 32 (25%) 0 (0%)

TMZ 0 (0%) 0 (0%)

Extent of resection [ EOR ¤ ] 
(n, %)

Tumor resected 
† 106 (81.5%) 3 (4%)

Gross total resection (GTR) N/A 40 (54.7%)

Near total resection (NTR) N/A 12 (16.4%)

Sub-total resection * (STR) 16 (12.3%) 12 (16.4%)

Biopsy 8 (6%) 1 (1.3%)

Laser Ablation 0 (0%) 5 (6.8%)

MGMT Status (n, %)

Methylated 39 (30%) 32 (44%)
0.398

Unmethylated 32 (25%) 37 (51%)

Information Unavailable 59 (45%) 4 (5%)

IDH Status (n, %)

Wild type 102 (79%) 56 (77%)
0.1484

Mutated 6 (4%) 8 (10%)

Information Unavailable 22 (17%) 9 (13%)

% - percentage values have been rounded off by one decimal. P values were computed by using Student t-test for continuous variable and Fisher 

exact test for categorical data. Abbreviations: MGMT - O-6-Methylguanine-DNA Methyltransferase, IDH - Isocitrate dehydrogenase. EOR ¤ : 

Gross total resection = No evidence of enhancing tumor in post-surgery MR imaging scans, Near total resection = > 90% tumor resection, Sub-total 
resection = 51-90% tumor resection .
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†
Extent of tumor resection (GTR/NTR/STR) unknown for most of the TCIA cases.

*
Sub-total resection status information was available for the training cohort (TCGA-GBM) only in the cases curated from Henry Ford Hospital.
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Table 2:

Cox regression analysis within the training and test cohorts. Hazard ratios, concordance using clinical and 

radiomic features and statistical significance (via p-value) obtained from different sub-compartments (edema, 

necrosis, enhancing tumor) of GBM tumor habitat on Gd-T1w MRI. Cox regression analysis was implemented 

in a univariable setting for clinical and molecular features, and EOR (test set only). Multivariable cox 

regression model was implemented for the radiomic risk score as well as the combined features. 

Abbreviations: 95% CI – 95% Confidence Interval, C-Index – Concordance Index, MGMT - O-6-

Methylguanine-DNA Methyltransferase, IDH - Isocitrate dehydrogenase, EOR – Extent of resection.

Cox Regression Analysis

Feature

Training Cohort Independent Test Cohort

Hazard 
Ratio (95% 

CI)

C- Index 
(95% CI) p-value

Hazard 
Ratio (95% 

CI)

C-Index 
(95% CI) p-value

Univariable 
Analysis

Clinical 
features

Age
1.017

(0.99 – 
1.032)

0.54
(0.46 - 
0.63)

0.145
0.9789

(0.9441 – 
0.9937)

0.55
( 0.46 - 
0.64)

0.015*

Gender
1.467

(0.8481 - 
2.539)

0.53
(0.45 – 
0.60)

0.17
0.7263

(0.4126 - 
1.278)

0.52
(0.46 – 
0.59)

0.268

Molecular 
features

MGMT 
Status

0.694
( 0.4061 - 

1.187)

0.52
(0.48 – 
0.64)

0.182
0.2646

(0.1406 - 
0.4982)

0.65
(0.57 - 
0.72)

< 0.0001*

IDH Status
0.9349

(0.2868 - 
3.048 )

0.51
(0.46 – 
0.55)

0.724
0.2471

(0.0755 - 
0.808)

0.55
(0.49 – 
0.60)

0.021*

Extent of resection (EOR) - - - 0.8075
(0.60 – 2.53)

0.56
(0.44 – 
0.67)

0.5562

Multivariable 
Analysis

Radiomic risk score
4.544

(2.901 - 
7.117)

0.76
(0.67 – 
0.85)

< 0.0001*
2.073

(1.211 - 
3.549)

0.75
(0.68 – 
0.84)

0.012*

Clinical features + Molecular 
features + EOR (test set only) 

+ Radiomic risk score
-

0.81
(0.71 – 
0.90)

< 0.0001* -
0.84

(0.67 – 
0.95)

0.03*
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