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Abstract

Brain networks are flexible and reconfigure over time to support ongoing cognitive processes. 

However, tracking statistically meaningful reconfigurations across time has proven difficult. This 

has to do largely with issues related to sampling variability, making instantaneous estimation of 

network organization difficult, along with increased reliance on task-free (cognitively 

unconstrained) experimental paradigms, limiting the ability to interpret the origin of changes in 

network structure over time. Here, we address these challenges using time-varying network 

analysis in conjunction with a naturalistic viewing paradigm. Specifically, we developed a measure 

of inter-subject network similarity and used this measure as a coincidence filter to identify 

synchronous fluctuations in network organization across individuals. Applied to movie-watching 

data, we found that periods of high inter-subject similarity coincided with reductions in network 

modularity and increased connectivity between cognitive systems. In contrast, low inter-subject 

similarity was associated with increased system segregation and more rest-like architectures. We 

then used a data-driven approach to uncover clusters of functional connections that follow similar 

trajectories over time and are more strongly correlated during movie-watching than at rest. Finally, 

we show that synchronous fluctuations in network architecture over time can be linked to a subset 

of features in the movie. Our findings link dynamic fluctuations in network integration and 

segregation to patterns of inter-subject similarity, and suggest that moment-to-moment fluctuations 

in functional connectivity reflect shared cognitive processing across individuals.
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INTRODUCTION

Cognitive processes are supported by the transient coupling and uncoupling of activity 

between distant brain regions [1, 2]. These patterns can be modeled as networks, whose 

nodes and edges represent regions and their pairwise functional connectivity (FC) [3]. Brain 

networks can then be investigated using methodology from network science [4, 5], a 

discipline that provides both a conceptual and mathematical framework for investigating the 

architecture and dynamics of real-world networks.

Most FC analyses have focused on intrinsic connectivity, which can be reconstructed from 

brain activity recorded during rest, i.e. task-free conditions [6]. One of the most salient 

features of resting FC is its modular organization, which refers to the decomposability of the 

brain into segregated sub-networks called “modules” or “communities” [7, 8]. The 

boundaries of these modules closely recapitulate patterns of task-evoked activity [9], are 

highly replicable [10–12], and are thought to engender specialized brain function [13].

Interestingly, the level of segregation in the brain can be modulated. One contributing factor 

is cognitive state; performing cognitively-demanding tasks requires coordination between 

modules that at rest are functionally isolated from one another [14]. This constraint results in 

increased inter-modular FC, which effectively decreases segregation. This phenomenon is 

general, and has been reported across a wide range of tasks [15–18].

Another factor that can modulate segregation is time. So-called “time-varying” FC can be 

estimated by partitioning a scan session into a series of windows and estimating FC 

separately for each window, making it possible to track changes in network architecture over 

short timescales [19, 20]. Using this approach, many studies have reported temporal 

fluctuations in the brain’s level of segregation, suggesting that modules transiently couple 

and uncouple with one another over time [21–23]. This has given rise to the hypothesis that 

the brain alternates between segregated and integrated states, reflecting periods of local, 

specialized information processing and inter-modular information transfer, respectively [17, 

23–25]

Unlike task FC, where variation in segregation can be attributed to task-related cognitive 

processes, time-varying FC analysis is usually applied to resting-state datasets in which 

subjects’ cognitive state is not experimentally controlled. This makes it difficult to ascertain 

whether fluctuations in segregation are driven by coincident fluctuations in 

neurophysiological variables like drowsiness or attention [26, 27], internal cognitive 

processes [28–30], or merely reflect sampling variability around a temporally stationary 

pattern of FC [31, 32].

Indeed, disambiguating meaningful fluctuations in time-varying FC from statistical noise 

during rest [33] and tasks [34] remains an open challenge. Here, we propose addressing this 

question using naturalistic imaging, which involves presenting subjects with short videos 

(though for consistency with the literature we refer to these as “movies” throughout this 

manuscript) during the course of a scan session. Movie-watching can be considered a state 

situated somewhere between that of rest and task, in which subjects are presented with 
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identical stimuli (akin to task) but are not instructed to respond in any particular way (akin to 

rest).

Recently, movie-watching paradigms have become popular within the neuroimaging [35–38] 

and network neuroscience communities [39–41], where FC estimated from movie-watching 

exhibits greater test-retest reliability [42], benefits from reduced in-scanner head motion [43, 

44], and enhances the identifiability of individual subjects [45] compared to rest. 

Additionally, movies feature correlated categories that better match the statistical properties 

of our day-to-day experiences. For example, rather than viewing a disembodied human face, 

faces that appear in a movie are usually accompanied by speech, movement, narrative, and 

context.

Recent studies have attempted to decode the network correlates of ongoing cognitive 

processes. Using measures like inter-subject FC to track cohesive, population-level 

fluctuations in connections [46], these studies have sought to identify patterns of covariation 

between edges and features present in the movie [47, 48]. While these and related 

approaches hold promise for identifying shared drivers of time-varying FC, the inter-subject 

FC measure makes them less-suited for studying the topological properties of FC from 

individual subjects. Consequently, the principles that govern fluctuations in FC during 

movie-watching have not been fully elucidated.

To address this question, we estimate time-varying FC by applying sliding-window analysis 

to movie-watching data. We take advantage of the fact that subjects observe the same time-

locked stimuli to focus on moments in time when FC across subjects coalesces into similar 

patterns. We develop a statistical test for identifying those periods, and discover that high 

inter-subject similarity is linked to decreases in segregation, as indexed by the modularity 

measure. Next, we show that time-varying FC during movie-watching can be described in 

terms of edge clusters – groups of connections that respond similarly over the course of the 

scan. Finally, we link these patterns of fluctuations to features present in the movie. 

Collectively, our findings represent a conceptual bridge between network analysis of time-

varying connectivity and naturalistic imaging, and strengthens the link between studies of 

inter-subject similarity with cognition.

RESULTS

We analyzed fMRI data from 29 subjects each of which underwent eight scans (four rest and 

four movie-watching) on two separate sessions, totaling approximately two hours worth of 

data for every subject. For both scan categories, we estimate time-averaged (static) and time-

varying whole-brain FC. Complete methodological details can be found in the section 

entitled Materials and Methods. In this section, we summarize the results of several 

analyses. First, we compared time-averaged FC between the conditions, identifying 

differences at the level of individual connections, but also in terms of segregation and 

integration. Next, we examined time-varying FC and designed a statistical procedure to 

identify temporal windows during which subjects’ networks become highly similar to each 

another. We investigated network structure within these windows and discovered that high 

levels of inter-subject similarity corresponded to decreased modularity and increased 
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dissimilarity with respect to resting FC. Next, we investigate the edge-level correlates of 

movie-watching, leveraging hypergraph clustering to uncover constellations of connections 

that follow similar trajectories during movie-watching. Lastly, we demonstrated that 

fluctuations in time-varying FC were differentially associated with the presence and absence 

of specific features in the movie, suggesting possible drivers of brain state changes.

Time-averaged FC during rest and movie-watching conditions

Time-averaged FC is thought to reflect the strength of communication between pairs of brain 

regions. The magnitude of coupling can be modulated by sensory input, stimulation, or task 

constraints. In this section we compare rest and movie-watching to assess what effect, if any, 

movie-watching has on whole-brain patterns of FC.

In Fig. 1a and Fig. 1b, we show the session-, subject-, and time-averaged FC for the resting 

and movie-watching conditions, respectively. Visually, these two patterns appear highly 

similar (the correlation of their upper triangle elements confirms as much r = 0.69; p < 
10−5). However, when we compute the average change in each connection’s weight, we find 

systematic differences between the two conditions (Fig. 1c; we show a system-averaged 

version of the same plot in Fig. S1a)1. To assess the statistical significance of differences, we 

compared the observed differences to those obtained using a permutation-based null model 

in which we randomly permuted condition labels (“rest” and “movie-watching”; 10,000 

permutations; permutations always within subjects). In general, we found that most 

connections (>60%) exhibited a statistically significant difference between conditions (Fig. 

1d; false discovery rate fixed at q = 0.01; padjusted = 0.0062).

In general, these differences were distributed across the brain and involved multiple 

cognitive systems [49]. To help visualize these differences, we generated force-directed 

embeddings of the task-free and movie-watching networks (Fig. 1e and Fig. 1f). In both 

plots, we used arrows to draw attention to particularly salient differences. For instance, in 

task-free conditions we found that sub-components of the salience and default networks 

appeared segregated from one another, but that during movie-watching FC between those 

systems increased so that they were more strongly connected and integrated (Fig. 1e,i). 

Similarly, both sub-components of the visual system appeared highly segregated at rest (Fig. 

1e,ii), but became more integrated during movie-watching. Other interesting differences 

included the integration of default mode with visual sub-components (Fig. 1e,iii) and the 

dissolution and distribution of default mode components throughout the network (Fig. 1e,iv).

These previous analyses were carried out at the level of individual connections. We also 

calculated changes in modularity and participation coefficients, measures that index the level 

of segregation among network modules [50] and the extent to which nodes’ connections are 

distributed across module boundaries [51], respectively. In agreement with past studies 

showing that network segregation decreases during tasks [15], we found that modularity, q* 

is greater during rest than movie-watching (within-subject t-test, p < 0.01; Fig. 1g). 

Specifically, we calculated the difference in q* for movie-watching and rest conditions 

1For this analysis we truncated the fMRI BOLD time series for each session so that FC was always estimated using the same number 
of observations.
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separately for each subject and tested the null hypothesis that the mean difference in q* was 

equal zero. We also found that, as a result of changes in FC, nodes have repositioned 

themselves with respect to cognitive systems, with areas in the default mode and visual 

systems forming stronger inter-modular connections during movie-watching than at rest, 

suggesting that they are becoming more “hub-like” (although we note that participation 

coefficient is one of many measures used to assess a node’s hubness [52] (Fig. 1h and Fig. 

1i).

In summary, the findings presented here suggest that movie-watching drives the brain into a 

more integrated and less modular network architecture. While visual and somatomotor 

systems are among those whose position within the network changes, differences between 

the two conditions are distributed and manifest within and across virtually all brain areas and 

systems. This is an important observation; during movie-watching subjects receive visual 

and auditory stimuli. One possibility is that differences in network architecture are localized 

to brain systems associated with the processing of those sensory modalities. However, the 

involvement of DMN and higher-order association cortices suggest that movie-watching taps 

into a constellation of brain systems, likely involved in processing more than low-level 

sensory stimuli.

Inter-subject similarity and time-varying FC

The previous analysis was carried out on time-averaged FC and revealed differences in 

network structure over entire scan sessions. To investigate changes over shorter timescales, 

we calculated time-varying FC using a sliding window technique. Past analyses of time-

varying FC networks have focused mostly on properties of time-varying FC defined at the 

level of individual subjects. Our focus, on the other hand, is on correlated fluctuations in 

network structure in which subjects’ networks reconfigure in concert with one another. 

Correlated fluctuations are more likely to reflect shared network-level responses to stimuli in 

the movie [38, 53]. To investigate these kinds of fluctuations, we developed a metric of inter-

subject similarity (ISS), which assesses at each time point, the mean similarity of subjects’ 

FC to one another (Fig. 2).

Because FC tends to be similar across individuals, in general ISS will be nonzero, even in 

the absence of “true” inter-subject synchrony. To distinguish periods of true inter-subject 

similarity from baseline, we develop a novel statistical testing procedure. Specifically, we 

compare mean ISS during movie-watching, when subjects are presented with identical time-

locked audiovisual stimuli, with mean ISS during resting conditions, when each subject’s FC 

fluctuates independently over time. In Fig. 3a we show the distribution of ISS values across 

time for one of the movies. We show an analogous plot for the resting condition in Fig. 3b 
(analogous plots for all four movie and resting scans are shown in Fig. S2). Note that the 

shape of the distribution fluctuates over time, periodically increasing to reflect windows in 

time when subjects’ FC becomes highly similar. Rest, on the other hand, is characterized by 

a distribution of ISS values that changes little over time. To identify periods of high 

synchrony across subjects, we compared mean ISS at each time point during movie-

watching with the distribution of mean ISS values during rest. We note that ISS is related to 
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the concept of inter-subject FC [46] and that, in general, periods of high ISS correspond to 

periods when inter-subject FC is not equal to zero (Fig. S3).

Using this procedure, we estimated a p-value at each time point corresponding to the 

probability that the observed ISS value would occur during rest. This procedure resulted in a 

time-series of p-values, which we could use to identify periods when ISS during movie-

watching was greater than expected by chance. In Fig. 3c we show negative log p-values for 

the movie-watching condition. Note that there exist periods when the p-values exceed even 

stringent statistical thresholds. In contrast, Fig. 3d shows analogous p-values for one of the 

task-free scans (the null distribution was estimated from the three other task-free scans to 

avoid circularity). Note that in this case, the p-values never exceed the statistical threshold. 

This observation suggests that, not only does this test distinguish periods of time when 

subjects exhibited high synchrony during movie-watching, but also demonstrates high 

specificity by accurately detecting no ISS during rest.

In more detail, when we applied this test to time-varying FC estimated during movie-

watching and identified periods of time when ISS was greater than expected by chance (false 

discovery rate controlled at q = 0.01; padjusted = 6.3 × 10−4). On average across all movies, 

this procedure detected 22.8 ± 14.2 periods of duration 3.6 ± 2.4 seconds (4.5 ± 2.9 TRs)2. 

We note that in-scanner head motion (framewise displacement) was not significantly 

different between periods of high and low ISS (Fig. S4) and that ISS was not sensitive to 

global signal regression (Fig. S5).

Inter-subject FC fluctuations are associated with fluctuations in modularity and static 
resting FC

Periods of high ISS are, by definition, separated by periods of low ISS. What features of 

brain networks distinguish these periods of time from one another? To address this question, 

we extracted representative networks for each subject and for every period of low/high ISS. 

We defined a representative network to be the network within a given low/high ISS period 

with the greatest average similarity to other networks within the same window, ensuring that 

representative networks were all estimated using the same number of samples and not biased 

by the duration of a given low/high ISS time period.

For each representative network we measured two quantities: first, its modularity, q* [54], a 

measure of the level of segregation among a network’s communities, and also its similarity 

to time-averaged FC. In terms of modularity, we found that periods of high ISS were 

associated with decreased modularity (Fig. 4a; p = 0.0008), suggesting that cognitive 

systems become increasingly integrated with one another during periods when high ISS. At 

the same time, we found that during periods of high ISS were associated with reduced 

similarity to time-averaged FC (Fig. 4b,c).

To better visualize changes in network organization during high and low ISS, we projected 

subjects’ FC patterns in two-dimensional space using multidimensional scaling, which 

reduces the dimensionality of these data while approximately preserving distance structure. 

2We note that the precise number and duration of these periods will depend upon the choice of statistical threshold.
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In Fig. 4d and Fig. 4e we show those low-dimension embeddings with points colored 

according to two different criteria. In Fig. 4d, each point is colored according to its similarity 

with respect to the time-averaged resting FC. In Fig. 4e, points are colored according to their 

modularity (z-scored within subjects to remove subject-specific differences in baseline 

modularity).

Note that the brightest points in both plots largely coincide with one another, indicating that 

modular networks are also more rest-like. We further quantified this relationship by 

computing the correlation of modularity with the similarity to time-averaged, task-free FC 

and found that the two were strongly related to one another (Fig. 4f; r = 0.67; p < 0.01).

We investigated this relationship further by categorizing each point in Fig. 4e,f according to 

whether it corresponded to a period of high or low ISS. We found that periods of low ISS 

overlapped closely with one another and were concentrated near the middle of the 

embedding diagram (Fig. 4g). Periods of high ISS, on the other hand, were distributed 

around the border of the embedding (Fig. 4h). We show the difference in these density plots 

in Fig. 4i.

In summary, we found that subjects oscillate between periods of high and low similarity, 

high and low modularity, and network architectures that are rest-like and dissimilar from 

rest. Surprisingly, all of these changes were correlated with one another. One implication of 

these findings concerns the link between modularity and cognitive processing. Past studies 

have reported that when subjects perform cognitively-demanding tasks, their network 

modularity decreases [15, 16, 18]. Here, we observe that same network-level signature, but 

because movie-watching is unconstrained, we lack a direct link to cognition. On the other 

hand, the decreases in modularity took place when network architecture was least similar to 

rest and subjects were most similar to one another, suggesting that subjects were responding 

in concert to some aspect of the movie stimulus.

Movie-watching organizes functional connections into temporal communities

In the previous sections, we showed that movie-watching induces changes in network 

structure compared to rest and that, when FC is resolved at finer temporal scales, FC 

oscillates between distinct brain states. It remains unclear, however, which functional 

connections drive this effect and whether those connections exhibit consistent organization 

across movies. To address this question, we used a data-driven clustering method [50] to 

uncover groups of connections that not only exhibit similar temporal trajectories across 

subjects, but also follow similar trajectories across time [55, 56]. This approach involved 

calculating subject-averaged time-varying FC, yielding a time series for every edge. We then 

estimated the edge-by-edge correlation matrix, which we clustered using modularity 

maximization [57, 58] (we chose the resolution parameter to maximize the difference of 

minimum within-module density minus the maximum between-module density; see Fig. 

S6). This procedure resulted in the detection of twelve large communities comprised of 

edges that responded similarly across subjects and were also correlated with each other. We 

show the results of this procedure in Fig. 5.
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Fig. 5a depicts the edge correlation matrix that we used as input to the modularity 

maximization algorithm ordered according to detected communities. Fig. 5b depicts the 

same matrix after averaging connection weights within and between pairs of community. We 

show the edge trajectories in Fig. 5c. Similar trajectories for all movies are shown in Fig. S7.

To further characterize each community, we mapped edges to the nodes upon which they 

were incident. Because some of a node’s edges can be affiliated with one community and 

other edges affiliated with another, this means that brain regions can participate in multiple 

communities simultaneously. We show the five largest edge communities mapped back to 

the level of nodes and onto brain regions in Fig. 5d–h (the remaining communities and 

community overlap indices are shown Fig. S8, Fig. S9, and Fig. S10). The first community 

was the largest, and was made up of 2175 edges (34% of all possible) and included mostly 

higher-order association cortex while excluding sub-components of visual and somatomotor 

systems (Fig. 5d). The second community (1473 edges or 23%) involved similar brain areas 

and systems, but a different collection of edges (Fig. 5e). This observation suggests that 

these higher order association areas are not unifunctional in the context of movie-watching, 

but play multiple, dissociable roles. Figs. 5f–h depict communities three, four, and five. 

These communities were comprised of 558, 490, and 435 edges (8.7%, 7.6%, and 6.8% of 

all connections), and involved default mode and visual systems, default mode and limbic, 

and the visual system, respectively. We present matrix visualizations of temporal 

communities in Figs. 5i–m and, for each community, the proportion of edges associated with 

canonical brain systems that make up each community (Fig. 5n–r).

Collectively, these observations suggest that movie-watching does not induce changes in the 

weights of single, independent connections. Instead, movie-watching leads to correlated 

fluctuations among groups of edges. These groups are not simple recapitulations of known 

cognitive systems, but involve multiple systems, suggesting that movie-watching demands 

from a fixed neural substrate a multitude of functions. Similar to other studies that reported 

high levels of variability in somatomotor cortex [59–61], we find that somatomotor cortex is 

among the systems with greatest participation across communities (Fig. S9). This agrees 

with other studies that have reported activations in motor cortex under diverse contexts, 

including observing actions of others [62], planning and execution of imagined movements 

[63], and social cognition [64]. From a methodological perspective, these findings 

complement other approaches for identifying patterns in brain network organization [7, 8, 

11, 49]. Unlike these past efforts, which imposed non-overlapping partitions over brain 

regions, the approach used here maintains an advantage in that it allows for brain regions to 

be affiliated with more than one community.

Linking inter-subject similarity to movie features

In the previous section, we showed that functional connections followed clustered 

trajectories across time during movie-watching. However, these results do not directly 

identify the movie features to which the subjects were responding. In this section, we 

investigate the relationship of features from the movies to time-varying fluctuations in FC. 

We use a multi-linear modeling approach to identify statistical associations between 

connection weight and the following hand-coded features: presence of human (in any 
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context), human faces and voices (specifically), inter-personal interactions, mean luminance 

of projected images, and transitions between films (blank screens) (Fig. 6a). This analysis 

returns a regression coefficient for each edge in the network, indicating the sign and 

magnitude of correspondence between the feature time-series and edge weight fluctuations.

In general, we found that each feature was associated with a distinct template of connections 

(Fig. 6b). Most dissimilar was the constellation of edges associated with the black screens 

that were interspersed between movies, which we label “blank”. Though we found evidence 

of brain-wide associations, the strongest regression coefficients were concentrated within the 

peripheral visual system (Fig. 6c, i). This is in contrast to the homocentric features (presence 

of “human”, “human face”, “human voice”, “human interaction”), whose regression weights 

were all modestly correlated with one another (reflecting, in part, the fact that those 

regressors were, themselves, correlated; see Fig. S12). These features were associated with 

spatially-distributed yet feature-specific patterns of connections. For instance, in the case of 

“human voice”, sub-components of the default mode (DMNb) strongly decouple from the 

control network and a sub-component of the salience/ventral attention network, but increase 

connection strength to other default components along with the dorsal attention network 

(Fig. 6f, l). The appearance of human faces, on the other hand, were accompanied by 

increased coupling between visual and dorsal attention networks and lacked the strong 

decoupling of DMNb with the salience/ventral attention network. We note that these 

observations are consistent irrespective of whether our linear models predict FC using each 

feature independently or whether features are combined into a larger model (see Fig. S11 for 

comparison of regression coefficients from both models and Fig. S12 for details of how each 

model deals with correlated regressors).

Not surprisingly, we found that the total variance of time-varying FC explained by the fit 

model was small (R2 ≈ 1.6%). This is likely a consequence of the relatively small number of 

predictors and the fact that they were, themselves, correlated. In future studies, two steps 

could be taken to improve these outcomes. We can derive more comprehensive annotations 

of movie features for input into models. These features could be manually coded (as in [65]), 

extracted automatically using powerful machine learning tools (e.g. with https://

www.clarifai.com), or by designing synthetic virtual environments with preprogrammed sets 

of features accessible to the experimenter [66]. Secondly, we can improve the models by 

using multivariate methods like partial least squares and canonical correlation analysis to 

uncover patterns of edges and movie features that maximally covary with one another.

These observations, along with supplementary analyses that related time-varying changes in 

participation coefficient with movie features (Fig. S13), elaborate on results from the 

previous section and suggest that not only do groups of connections follow similar 

trajectories across time, but system-specific sets of connections fluctuate in tandem with the 

appearance and disappearance of specific features in the movie. This observation, then, 

serves as a link between time-varying changes in network architecture to features present in 

the movie.
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DISCUSSION

In this report we aimed to investigate the functional network organization during movie-

watching. We found that over long timescales (static FC) and compared to rest, naturalistic 

stimuli induced increasingly integrated networks and systematic changes in hub structure. 

Over short timescales, we focused on periods when time-varying network structure appeared 

highly similar across subjects, which we argue corresponds to periods when subjects may be 

engaged in similar cognitive processes. We developed a statistical framework for identifying 

such periods, and applied it to movie-watching and resting state data, where it correctly 

identified periods of high inter-subject similarity during movie-watching but none during 

rest. In the case of movie-watching, we found that periods of high inter-subject similarity 

correspond to highly integrative brain states, in which low inter-subject similarity 

corresponds to network architecture that was increasingly rest-like and more segregated. We 

also showed that during movie-watching individual functional connections follow similar 

trajectories and can be clustered accordingly. Finally, we show that time-varying FC 

coincides with the presence and absence of particular features in the movie, suggesting 

possible drivers of time-varying FC.

Naturalistic stimuli as a filter for detecting network events in time-varying FC

Many studies have investigated the time-varying architecture of functional brain networks 

[19], characterizing the persistence and variability of individual connections [67], 

uncovering flexible brain regions that change modular assignments across time [59, 68], 

clustering networks into “states” based on their recurrence structure over one or many scan 

sessions [60, 69], or relating changes in functional network structure back to anatomical 

connectivity [25, 70]. Implicitly, these and similar studies have regarded observed time-

varying fluctuations in FC as meaningful in some way, reflecting either changes in cognitive 

state, underlying neurophysiological processes [71], or some combination of the two. 

However, it remains unclear whether these assumptions are, in fact, warranted. Recent 

studies have shown that sampling from time-invariant correlation structure produces 

variability consistent with patterns of observed time-varying FC [31, 32], while the 

observation that FC is stable both during sleep [72] and under anesthesia raises the question 

to what extent an individual’s cognitive state is manifest in FC [73], leading to debate over 

the verisimilitude of observed time-varying FC [33].

Here, we develop a novel statistical framework to help us better understand which 

fluctuations are more or less likely to be spurious. To this end, we use a measure of inter-

subject similarity as a filter for deciding whether time-varying changes in FC are more or 

less synchronous across subjects than we would expect. This measure, though it may be 

conservative and likely fails to identify meaningful but individually variable and 

idiosyncratic fluctuations in time-varying FC, nonetheless presents a statistical argument 

that there exist co-fluctuations in time-varying FC not easily explainable were time-varying 

FC simply reflecting sampling variability from a stationary correlation structure.

These findings have implications for our interpretation of time-varying FC not just during 

passive movie-watching [35], but also during task-free conditions. Most importantly, we 

show that the fMRI BOLD response is capable of resolving meaningful fluctuations in time-
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varying FC (albeit only in the statistical sense). This is an important observation, as previous 

studies have suggested that, combined with the windowing procedure, the slow 

hemodynamic response is not sufficiently temporally resolved to detect moment-to-moment 

fluctuations in FC [32]. This suggests that, at least in principle, similar fluctuations should 

be detectable at rest, which would provide critical validation of studies claiming that some 

fraction of observed fluctuations in FC at rest are cognitively relevant [26, 29, 30].

We note that, in general, there may be multiple strategies for “filtering” time-varying FC to 

identify synchronous network responses across subjects. Here, we developed a statistical 

framework based on time-varying FC. A complementary approach that has been investigated 

in previous studies [46–48] involves estimating inter-subject FC and tracking its changes 

across time. Although these approaches identify inter-subject synchrony at similar points in 

time (Fig. S3), they differ along several dimensions. For instance, our approach allows us to 

easily recover single-subject FC matrices at different points in time, e.g. when our model 

indicates high or low levels of synchrony, to compare the properties of those networks. On 

the other hand, assessing single-subject contributions to ISFC is challenging, as every ISFC 

matrix is a joint assessment of connection-level synchrony between subject pairs. Similar 

challenges exist in terms of interpreting network attributes of ISFC. For instance, two 

subject’s brain networks can both appear highly modular, while the ISFC matrix computed 

for the same pair of subjects may exhibit low levels of modularity. Future work should 

investigate the relative advantages of these techniques.

Integrated and segregated brain states during movie-watching

One of the emerging themes in network neuroscience is that the human brain negotiates a 

careful balance between segregated and integrated states of information processing [74]. 

This balance is believed to be a critical ingredient for complex, adaptive behavior – a fully 

integrated system may not be able to support specialized function, whereas a system 

composed of completely autonomous sub-units may lack the flexibility to perform complex 

behaviors [75].

This balance gets reflected in the organization of brain networks [7, 16, 17, 76], which can 

be decomposed into modules that reflect known functional systems. Connections within and 

between these systems get refined, strengthened, and weakened to support ongoing task 

demands [15]. These refinements to connections’ weights are far from random, and follow a 

simple rule that influences the extent to which sub-systems are more or less segregated from 

one another: when an individual is tasked with performing a complex cognitive task, within-

system connections weaken while between-system connections become stronger. That is, 

with increased cognitive load, systems become more integrated and less segregated [77].

Here, we used the modularity metric to assay the extent to which systems are segregated 

from one another [50], and observed that modularity was closely related to the level of inter-

subject similarity. Specifically, when subjects networks were more similar to one another, 

their networks were less modular (less segregated) compared to periods of time when 

subjects’ networks appeared dissimilar. This observation is interesting for several reasons. 

First, it partially corroborates the implicit assumption that network inter-subject similarity 

indexes periods of shared or similar cognitive processing. We make this claim based on past 
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studies that reported similar decreases in modularity while subjects were explicitly 

instructed to engage in cognitively complex tasks [15, 16].

Second, this observation forces us to reinterpret other studies that have documented time-

varying changes in modularity at rest [22, 23, 67]. In those studies, it was speculated that 

changes in modular structure across time might be driven by corresponding changes in 

cognitive state. Validating this hypothesis, however, was impossible due to the unconstrained 

nature of resting-state. Here, we observe similar patterns during movie-watching, which we 

can partially validate by showing that they occur in synchrony across individuals, suggesting 

that those fluctuations have similar etiological origins.

In summary, we show that brain network segregation, as measured by the modularity metric, 

tracks the similarity of network structure between different individuals, a property it shares 

with task-evoked FC. This observation suggests that periods of high inter-subject similarity 

may correspond to periods when subjects are attending or responding to stimuli in the movie 

in similar ways. Nonetheless, we also observed reduced segregation during periods of low 

inter-subject similarity, whose origins remain unclear. Future experimental work should 

investigate idiosyncratic components to time-varying FC and concurrent mental operations.

Temporal segregation through edge clustering

While segregation and integration are usually treated as properties of a network’s nodes, we 

also studied segregation from the perspective of edges in the network. Specifically, we 

focused on temporal segregation. That is, we partitioned connections into clusters according 

to the similarity of their trajectories over time, an approach adopted by several similar 

studies [55, 56]. Because each node in the network maintains many connections and because 

clusters were defined at the level of these connections, it was possible for a node to be 

associated with multiple clusters.

Some of these clusters were largely unimodal and resembled the known system-level 

architecture of brain networks [8, 10, 11] (see, for example, the visual cluster depicted in 

Fig. 5h and the somatomotor clusters shown in Fig. S8). On the other hand, we found 

clusters comprised of multiple brain systems, sometimes dominated by association cortex 

(for example, the clusters shown in Fig. 5e,g), but other times involving mixtures of 

association and sensory cortices (the clusters in Fig. 5d,f).

Collectively, these observations suggest that brain network segregation is not simply a static, 

connectional property, but one that is also encoded across time. This observation has been 

made before, with many studies findings that the level of segregation in brain networks 

changes over from moment to moment [22, 23, 67]. These studies, however, have several 

key limitations. Notably, they have focused on segregation during rest, making it difficult to 

understand what factors might be responsible for driving fluctuations in segregation. Though 

these studies have modeled network organization across time, the network structure at each 

instant was encoded through node-node interactions, implying that the community structure 

was non-overlapping. Here, we focus on time-varying fluctuations during movie-watching, 

where changes in network structure are presumably driven by stimuli in the movie, and we 

model encode network structure through edge-edge interactions. This approach relaxes the 
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definition of what it means for brain regions (or connections) to form modules, allowing 

brain regions to simultaneously participate in multiple clusters. This overlapping cluster 

organization agrees with our intuitions that brain regions can play multiple functional roles 

depending upon context, rather than the sometimes brittle definition of clusters as non-

overlapping, which can (falsely) reinforce the notion that there is a one-toone mapping of 

regions to function.

Neuroscience aside, overlapping community structure should be investigated further. Recent 

mathematical results have indicated that the mapping of clusters to edge weights is many to 

one; the implication is that unless we know the true process by which our network was 

generated (and its relationship with its cluster structure), we cannot unambiguously claim 

that the detected clusters are “correct” [78]. This fact motivates the exploration of other 

approaches for grouping a network into clusters [18, 79]. Future work should focus on 

detailed comparisons of different clustering methods and their implications for 

understanding brain function.

Future directions

Here, we developed a time-varying FC framework for studying movie-watching and other 

naturalistic stimuli. The primary contribution of this framework is that it enables us to 

partition time into periods when subjects exhibit similar or dissimilar network architectures. 

Beyond the analyses presented here, this framework opens up several avenues for future 

research.

One particularly simple extension involves shifting away from periods of time when subjects 

are more similar than expected to periods of time when they are more dissimilar than 

expected. This extension could be useful for identifying idiosyncratic and individualized 

responses to stimuli. In other words, rather than focusing on fluctuations in FC that are 

shared across individuals, focus on periods of time when those fluctuations diverge, which 

could prove useful for fingerprinting [80].

We used a statistic – inter-subject similarity – that measured, on average, how similar all 

pairs of subjects were to one another according to their whole-brain patterns of FC. This 

statistic could be made more useful by, instead of averaging over all subjects, clustering the 

inter-subject similarity matrix, revealing groups of subjects that may be more internally 

similar than other groups [81]. This approach could be used for differentiating behavioral 

phenotypes or revealing sub-structure within a broader disorder [82, 83].

Limitations

This study also has a number of important limitations. One such limitation is the use of a 

group parcellation to define nodes in the network. Recent studies have shown that subtle 

misalignments of subjects to such parcellations can induce biases in FC [84]. Other studies 

have shown that, with enough data, it is possible to generate more accurate subject-specific 

parcels that improve parcel homogeneity [85, 86]. Future work should investigate this 

possibility.
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Another limitation concerns the inter-subject similarity measure, itself. In computing this 

measure, we consider the similarity across all possible connections. That is, we calculated 

similarity based on the whole brain. Future work should be directed to investigate system- or 

area-specific similarity [46], which could resolve in greater anatomical detail the drivers of 

inter-subject synchronization.

Yet another limitation concerns the choice of preprocessing pipeline. In particular, we opted 

to regress out the global gray matter signal from regional time series. This procedure has 

proven effective in reducing the contribution of in-scanner head motion and physiological 

noise on FC [87, 88] and for centering connection weights [89]. However, the global signal 

has also been linked to neurophysiological processes [90] and also serves as an index of 

arousal [71]. This suggests that, to whatever extent the global signal contributes to 

synchronous fluctuations in time-varying FC across subjects, our analysis may fail to 

characterize those fluctuations. We note, however, that the precise contribution of the global 

signal to FC (and the verisimilitude of those contributions) remains an active and highly 

debated area of research [91, 92] with no clear resolution [93–95]. Future work on this topic, 

including comparisons of the fMRI BOLD signal with other imaging modalities [96], will 

help clarify this debate and lead to more refined processing pipelines for estimating both 

time-invariant and time-varying FC.

A final and important limitation concerns the nature of FC itself. In this study, we reasoned 

that if we were to observe temporally correlated fluctuations in FC across subjects, then 

those fluctuations are more likely to have been driven by movie features and stimuli. 

Following this reasoning, we performed a series of statistical analyses to demonstrate that 

FC fluctuations across subjects were, indeed, correlated. It is important to note, however, 

that FC estimated from observations may not reflect true functional coupling (even if it is 

correlated across subjects). It remains possible that, due to sampling variability, slow and 

heterogeneous hemodynamic responses, or other confounding factors, the patterns of FC we 

estimated using the windowing procedure do not reflect true interregional coupling [97]. 

Uncovering the drivers of time-varying FC (especially at rest; [98]) has proven challenging, 

and at present it remains unclear to what extent observed fluctuations in FC are driven by 

confounding factors or reflect underlying changes in mental processes and cognitive state 

[31, 32]. This area of research remains highly active and future work promises to foster 

innovative solutions [33].

MATERIALS AND METHODS

Demographics

We analyzed MRI data collected from Ns = 29 subjects (5 female, 24 male; 25 were right-

handed). This cohort was male-dominant, as subjects were intended to serve as controls for a 

study in autism spectrum disorder, which is more common in men than women. At the time 

of their first scan, the average subject age was 24.9±4.7 years.
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MRI acquisition and processing

MRI images were acquired using a 3T whole-body MRI system (Magnetom Tim Trio, 

Siemens Medical Solutions, Natick, MA) with a 32-channel head receive array. Both raw 

and prescan-normalized images were acquired; raw images were used at all preprocessing 

stages and in all analyses unless specifically noted. During functional scans, T2*-weighted 

multiband echo planar imaging (EPI) data were acquired using the following parameters: 

TR/TE = 813/28 ms; 1200 vol; flip angle = 60°; 3.4 mm isotropic voxels; 42 slices acquired 

with interleaved order covering the whole brain; multi-band acceleration factor of 3. 

Preceding the first functional scan, gradient-echo EPI images were acquired in opposite 

phase-encoding directions (10 images each with P-A and A-P phase encoding) with identical 

geometry to the EPI data (TR/TE = 1175/39.2 ms, flip angle = 60°) to be used to generate a 

fieldmap to correct EPI distortions, similar to the approach used by the Human Connectome 

Project [99]. High-resolution T1-weighted images of the whole brain (MPRAGE, 0.7 mm 

isotropic voxel size; TR/TE/TI = 2499/2.3/1000 ms) were acquired as anatomical references.

All functional data were processed according to an in-house pipeline using FEAT (v6.00) 

and MELODIC (v3.14) within FSL (v. 5.0.9; FMRIB’s Software Library, 

www.fmrib.ox.ac.uk/fsl), Advanced Normalization Tools (ANTs; v2.1.0) [100], and Matlab 

R2014b. This pipeline was identical to the GLM + MGTR procedure described in [88].

In more detail, individual anatomical images were bias-corrected and skull-stripped using 

ANTs, and segmented into gray matter, white matter, and CSF partial volume estimates 

using FSL FAST. A midspace template was constructed using ANTs’ buildtemplateparallel 
and subsequently skull-stripped. Composite (affine and diffeomorphic) transforms warping 

each individual anatomical image to this midspace template, and warping the midspace 

template to the Montreal Neurological Institute MNI152 1mm reference template, were 

obtained using ANTs.

For each functional run, the first five volumes (≈4 seconds) were discarded to minimize 

magnetization equilibration effects. Framewise displacement traces for this raw (trimmed) 

data were computed using fsl_motion_outliers. Following [88, 101], we performed FIX 

followed by mean cortical signal regression. This procedure included rigid-body motion 

correction, fieldmap-based geometric distortion correction, and non-brain removal (but not 

slice-timing correction due to fast TR [99]). Preprocessing included weak highpass temporal 

filtering (>2000 s FWHM) to remove slow drifts [99] and no spatial smoothing. Off-

resonance geometric distortions in EPI data were corrected using a fieldmap derived from 

two gradient-echo EPI images collected in opposite phase-encoding directions (posterior-

anterior and anterior-posterior) using FSL topup.

We then used FSL-FIX [102] to regress out independent components classified as noise 

using a classifier trained on independent but similar data and validated on hand-classified 

functional runs. The residuals were regarded as “cleaned” data. Finally, we regressed out the 

mean cortical signal (mean BOLD signal across gray matter partial volume estimate 

obtained from FSL FAST). All analyses were carried out on these data, which were 

registered to subjects’ skull-stripped T1-weighted anatomical imaging using Boundary-

Based Registration (BBR) with epi reg within FSL. Subjects’ functional images were then 
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transformed to the MNI152 reference in a single step, using ANTS to apply a concatenation 

of the affine transformation matrix with the composite (affine + diffeomorphic) transforms 

between a subject’s anatomical image, the midspace template, and the MNI152 reference. 

Prior to network analysis, we extracted mean regional time series from regions of interest 

defined as sub-divisions of the 17-system parcellation reported in [11] and used previously 

[83, 103, 104]. Wakefulness during movie and rest scans was monitored in real-time using 

an eye tracking camera (Eyelink 1000).

Naturalistic stimuli

All movies were obtained from Vimeo (https://vimeo.com). They were selected based on 

multiple criteria. First, to ensure that movies represented novel stimuli, we excluded any 

movie that had a wide theatrical release. Secondly, we excluded movies with potentially 

objectionable content including nudity, swearing, drug use, etc. Lastly, we excluded movies 

with intentionally startling events that could lead to excessive in-scanner movement.

Each movie lasted between 45 and 285 seconds (approximately 1 to 5 minutes). Each movie 

scan comprised between four and six movies with genres that included documentaries, 

dramas, comedies, sports, mystery, and adventure. See Table. S1 for more details.

Connectivity measures

Time-averaged FC—Let xi = [xi(1), …, xi(T)] be the vector of activity for region i. We 

calculated time-averaged FC as the Pearson correlation of activity recorded in region i and j:

rij = 1
T − 1 ∑

t = 1

T (xi(t) − μxi)(xj(t) − μxj)
σxiσxj

(1)

Where μxi and σxi are the time-averaged mean and standard deviation of activity in region i. 
All correlation coefficients were subsequently Fisher transformed.

Time-varying FC—In addition to time-averaged FC, we also calculated time-varying FC 

using a sliding window approach. This involves defining a window length of L (in units of 

TRs) and computing FC using samples within that window only. The time-varying FC at 

time t was calculated as:

rij(t) = 1
L − 1 ∑

τ = t

t + L − 1 (xi(τ) − μxi(t))(xj(τ) − μxj(t))
σxi(t)σxj(t)

(2)

where:

μxi(t) = 1
L ∑

τ = t

t + L − 1
xi(τ) (3)

and
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σxi(t) = 1
L − 1 ∑

τ = t

t + L − 1
(xi(τ) − μxi(t)) (4)

are the mean and standard deviation of region i’s activity recording in the L-length window 

starting at time t.

An important decision to make in computing time-varying FC using sliding windows is the 

choice of window length, L. Here, we set L = 10 TRs (for a window duration 8.13 s). We 

note that this length is considerably shorter than the durations suggested elsewhere, which 

have argued that the minimum window duration should be inversely proportional to the 

slowest frequency component of the fMRI signal. For instance, if filtered to 0.01 – 0.1 Hz, 

then the shortest window should be 1
0.01 = 100 seconds [105, 106]. Our rationale for 

disregarding this rule of thumb is that the inter-subject similarity measure (see the next 

section) effectively acts as a filter to reduce the rate of false positives. That is, if fluctuations 

in time-varying FC within a subject are spurious, it is unlikely that similarly spurious 

fluctuations in another subject occur at precisely the same instants in time.

Inter-subject similarity

Let ru(t) and rv(t) be the network structure estimated for subjects u and v at time t. We 

calculate the similarity of these two networks by vectorizing their upper triangle elements 

and computing the correlation of those vectors: ru,v(t). In practice, we compute this 

measurement for all pairs of subjects and for every window, generating a distribution of 

inter-subject similarity scores that evolves over time.

Statistical framework for evaluating inter-subject similarity

In general, our aim was to develop a procedure for testing whether the inter-subject 

similarity (ISS) of time-varying FC was stronger during movie-watching than chance. This 

required that we complete two interrelated tasks. First, we needed to develop a test statistic 

(an estimate of ISS at each point in time, t). Then, we needed a null model to generate a null 

distribution against which we could compare our empirical test statistic and estimate a p-

value.

Addressing the first point was simple. For each movie-watching scan, we estimated subjects’ 

time-varying FC and computed the mean inter-subject similarity at every instant. That is, we 

calculated:

μr(t) = 2
Nsub Nsub − 1 ∑

u, v > u
ru, v(t) (5)

This procedure generated a time-series that indexed how similar subjects’ FC patterns were 

at each point in time.

Addressing the second point - null model construction - required more thought. We realized, 

however, that the resting-scans could serve as a convenient null model. Because subjects’ 
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recorded activity is spontaneous and temporally asynchronous with respect to one another, 

any measured similarity between subjects at rest must be driven by similarity in their 

intrinsic (task-free) architectures or by noise.

So, we concatenated the vectors of mean inter-subject similarity for all four resting scans 

and pooled their values to generate a null distribution. For all four movie-watching scans, we 

proceeded frame by frame and calculated the percent of the null distribution that was greater 

than the inter-subject similarity at that frame in the movie. We also repeated this procedure 

for resting scans to estimate framewise p-values. To avoid circularity, the null distribution 

we used to generate p-values for scan Rest1 consisted only of data from scans Rest2, Rest3, 

and Rest4.

Modularity maximization

Modularity maximization is a heuristic for detecting communities in networks [50]. 

Intuitively, it attempts to decompose a network into non-overlapping sub-networks such that 

the observed density of connections within sub-networks maximally exceeds what would be 

expected by chance, where chance is determined by the user. The actual process of detecting 

communities is accomplished by choosing community assignments that maximize a 

modularity quality function, Q, defined as:

Q = ∑
ij

Bijδ(gi, gj) (6)

where Bij = Aij − Pij is the {i,j} element of the modularity matrix, which represents the 

observed weight of the connection between nodes i and j minus the expected weight. The 

variable gi is the community assignment of node i and δ(x, y) is the Kronecker delta 

function, whose value is 1 when gi = gj and 0 otherwise. The modularity, Q, is effectively a 

sum over all edges that fall within communities and is optimized when the the observed 

weights of connections is maximally greater than the expected. In general, larger values of Q 
are thought to reflect superior community partitions.

Signed and correlation matrices—In this manuscript, we use two variations of 

modularity. First, we use the modularity quality function as a means of assessing the level of 

segregation in a network. Specifically, we estimate a variant of modularity, Q*, which has 

been shown to be especially well-suited for use with correlation matrices [54]:

Q * = Q+ + v −
v+v−Q−

(7)

where Q± = 1
v± ∑ij (rij

± −
ki

±kj
±

v± )δ(gi, gj). In this expression, rij
± represents either the positive 

or negative elements of the correlation matrix, ki
± = ∑jrij

±, and v± = ∑iki
±. In all instances 

where we report Q*, it is with respect to the seventeen systems reported in [49].

Edge communities—We also apply a second variant of modularity maximization to edge 

correlation matrices. As a product of calculating time-varying FC, we obtain a time series 
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for each connection in the network, i.e. rij = [rij(t = 1), …, rij(t = T − L + 1)]. From these 

edge-level time series, we can calculate the edge-by-edge correlation matrix, Ω, whose 

element Ω{i, j}, {k, l} is equal to the correlation of rij and rkl.

Here, we generate a modularity matrix wherein we treat the edge correlations from the 

movie as our observed network and the edge correlations from rest as our expected or 

chance network. This matrix is calculated as: B(γ) = [Ωmovie − Ωrest] − γ, where γ is a 

structural resolution parameter that can be tuned to detect different numbers and sizes of 

communities [107]. We can then optimize the corresponding modularity to identify edges 

whose trajectories across time are more correlated during movie-watching than during rest. 

Because this procedure assigns edges to communities rather than nodes, it is possible for a 

fraction of a nodes’ edges to be associated with multiple distinct communities, so that each 

node has an overlapping community structure. We note that this approach is similar to the 

hypergraph clustering reported in [55, 56].

An important open question concerns choosing the optimal value of γ. Here, we tested 51 

different γ values, linearly-spaced between from −0.005 – 0.36. We focused on the value 

that maximized the minimum average within-community correlation minus the maximum 

average between-community correlation.

We used a generalization of the popular Louvain algorithm to optimize Q [108, 109]. This 

algorithm is nondeterministic, meaning that different initializations lead to slightly different 

estimates of community structure (we run the algorithm 100 times). To resolve variability in 

these estimates we use consensus clustering [110]. The variant of consensus clustering used 

here is slightly different from that of [110]. Specifically, we calculate a co-assignment 

matrix from the 100 estimated partitions, whose elements indicate the fraction of times that 

pairs of nodes were assigned to the same community. In [110], this matrix is iteratively 

thresholded and clustered until convergence. Here, we estimate the probability that two 

nodes would be assigned to the same community were community labels randomly 

permuted. Then, we construct a new modularity matrix by subtracting this probability from 

the co-assignment matrix, which we then cluster using modularity maximization [67, 111, 

112].

Community overlap entropy—The edge community detection procedure assigned every 

pair of nodes, {i, j} to a community. To better understand how these edge-level labels were 

related to individual brain areas (nodes), we calculated each node’s community overlap 

entropy [113]. Let Γi = {gi1, …, giN} be the set of community assignments for all edges 

involves node i. Each element, gij ∈{1, …, K} indicates to which of the K communities edge 

{i, j} was assigned. We then calculate the fraction of all edges assigned to each community, 

c, as Prc, and subsequently calculate the entropy over this distribution as: 

H = − ∑c = 1
K Prc log Prc . We normalize this entropy to the interval [0, 1] as 

Hnorm = H
log K . We repeat this procedure separately for every node i ∈{1, …, N}, resulting 

in node-defined entropies, Hi.
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Participation coefficient—Knowing a network’s community structure allows us to 

classify nodes based on their functional roles. One popular measure for doing so is the so-

called participation coefficient [51], which measures the extent to which a node’s 

connections are distributed within or across modules. The participation coefficient is 

calculated as:

Pi = 1 − ∑
m = 1

M κim
ki

2
(8)

where ki and κim are the total number (or weight) of connections made by node i overall and 

to module m.

Multi-linear models

To map the association of time-varying FC with features present in the movie, we build 

edge-level multi-linear regression models. Let rij = [rij(1), …, rij(T)] denote the time series 

of connection weights between nodes i and j, and let fl = [fl(1), …, fl(T)] be the z-scored 

time series of feature l. All features were coded as binary variables; the exception was 

luminance, which was coded continuously.

To model the response of connection {i, j} to feature, l, we constructed the simple linear 

model:

rij = β0 + βlfl + ϵ . (9)

In this equation, rij is the predicted connection time series, β0 is the intercept term, and βl is 

the regression coefficient for feature l.

We extended this simple linear regression to include multiple terms – one for each of the six 

coded features:

rij = β0 + ∑
l = 1

6
βlfl + ϵ . (10)

We fit the model to time series data from every connection by minimizing the least square 

error. The p-value associated with each β regression coefficient was calculated using a one-

sample t-test.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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SIGNIFICANCE STATEMENT

Cognition fluctuates over short timescales. To understand the network-level correlates, 

many studies have embraced “dynamic” network analysis. This approach s prone to false 

positives and sampling variability can artifactually create the illusion of change. 

Moreover, several groups have argued that fMRI is incapable of detecting true changes in 

network structure over time, even if they exist. Here, we address these challenges directly 

using naturalistic stimuli. We create dynamic networks during rest and movie-watching 

and show that subjects’ networks periodically become synchronized during movie-

watching but never at rest, confirming that dynamic network analysis is capable of 

detecting cognitively meaningful changes in brain network state. We further explore 

synchronization effects using network modularity analyses.
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FIG. 1. Time-averaged FC at rest versus movie-watching.
(a) Time-averaged FC matrix at rest, ordered by brain systems. (b) Time-averaged FC matrix 

during movie-watching, ordered by brain systems (c) Unthresholded mean differences in FC 

between time-averaged movie-watching and rest. (d) Result of statistical analysis comparing 

movie-watching and rest. Red cells indicate connections that were significantly stronger 

during movie-watching than rest, whereas blue indicates the opposite. Grey cells were not 

statistically different between conditions. Panels e and f depict thresholded versions of the 

matrices from a and b, with node locations determined by a force-directed embedding 

algorithm. We draw attention to particularly salient differences using Roman numerals. (g) 

Differences in between movie-watching and rest. (h) Node-level differences in ranked 

participation coefficient. (i) Same information as in panel h, but with differences in 

participation coefficient averaged by cognitive system.
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FIG. 2. Schematic illustration of inter-subject similarity.
We compare network structure between pairs of subject and across time using the inter-

subject similarity (ISS) metric. To calculate ISS, we first divide fMRI BOLD time series into 

overlapping windows and, using only the samples that fall within a window, estimate each 

window’s FC. Given networks estimated for two subjects at time t, we calculate ISS by 

vectorizing the upper triangle elements of each network and computing the Pearson 

correlation of those elements. We repeat this procedure for each window in time and for all 

pairs of subjects. This procedure generates a time-varying estimate of the similarity between 

subjects’ networks.
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FIG. 3. Statistical analysis of inter-subject similarity.
(a) Distribution of inter-subject similarity (ISS) across time during a representative movie-

watching scan. b) Distribution of inter-subject similarity (ISS) across time during rest. (c) 

We developed a statistical test to quantify the probability of observing a mean ISS value 

during movie-watching by chance, where we defined chance based on ISS values at rest 

averaged across time. This procedure associated each moment in time with a p-value, against 

which we performed statistical testing. The three dotted lines represent different critical 

values, ranging from p = 0.05 (uncorrected for multiple comparisons) to an adjusted p-value 

after fixing false discovery rate at q = 0.01 (1%). When we applied these critical values to 

movie-watching data, we consistently identify periods of time that exceed the criterion for 

statistical significance. (d) Applying the same criteria to resting data (using ISS values from 

3/4 scans to estimate p-values for the remaining scan), we find no points in time that exceed 

the critical value.
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FIG. 4. Differences in modular architecture during periods of high and low inter-subject 
similarity.
(a) Differences in modularity during low versus high inter-subject similarity. (b) We 

calculated the correlation of subjects’ functional connectivity at rest with their time-varying 

functional connectivity for every instant in time. (c) Distribution of correlation coefficients 

from previous analysis. We used multi-dimensional scaling to embed subjects’ functional 

connectivity matrices in two dimensions. In panels d and e we show the same set of points, 

each corresponding to functional network and colored according to their similarity with 

resting functional connectivity and modularity. In panel d, for instance, brighter points 

indicate greater similarity to resting FC. Similarly, in panel e, brighter points indicate greater 

levels of modularity. (f) Scatterplot of resting correlations with modularity. (g) The density 

of points corresponding to low inter-subject similarity coincides with functional networks 

that are both modular and correlated with static rest. (h) Points corresponding with high 

inter-subject similarity are distributed along the perimeter. (i) Difference in distributions.
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FIG. 5. Detecting edge communities.
Panels a and b depict edge correlation matrix and the community-averaged edge correlation 

matrix. Rows and columns are ordered by community. Here, we exclude small and singleton 

communities. (b) Edge time series organized by community label. To better understand 

which parts of the brain were associated with each of the five communities, we calculated 

the fraction of all edges assigned to community that were incident upon each brain region. 

Panels d-h show these proportions projected onto cortical surfaces. We also visualize the 

edge communities by labeling edges in the connectivity matrix by community (panels i - m) 

and by aggregating node proportions according to cognitive system (panels n-r).
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FIG. 6. Relating movie features to time-varying CC.
We hand-coded and tracked six features across all movies. These included blank screens, 

presence of a human, a human face, human voice, interactions between humans, and the 

luminance of the projected image. (a) Subject-averaged time-varying FC alongside feature 

time series. We used linear models to identify combinations of features that predicted 

subject-averaged time-varying FC. In b, we show the correlation of regression weights for 

each of the six features. (c - h) Regression coefficients plotted in matrix form. Bright red and 

yellow elements indicated that the presence of a feature resulted in increased FC, while dark 

blue indicated that the presence of a feature resulted in decreased FC. (i- n) The top 2% 

elements (by absolute value) from each of the six matrices.
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