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Abstract
The endothelial surface is a highly flexible signaling hub which is able to sense the hemodynamic forces of the streaming blood.
The subsequent mechanosignaling is basically mediated by specific structures, like the endothelial glycocalyx building the top
surface layer of endothelial cells as well as mechanosensitive ion channels within the endothelial plasma membrane. The
mechanical properties of the endothelial cell surface are characterized by the dynamics of cytoskeletal proteins and play a key
role in the process of signal transmission from the outside (lumen of the blood vessel) to the interior of the cell. Thus, the cell
mechanics directly interact with the function of mechanosensitive structures and ion channels. To precisely maintain the vascular
tone, a coordinated functional interdependency between endothelial cells and vascular smooth muscle cells is necessary. This is
given by the fact that mechanosensitive ion channels are expressed in both cell types and that signals are transmitted via
autocrine/paracrine mechanisms from layer to layer. Thus, the outer layer of the endothelial cells can be seen as important
functional mechanosensitive and reactive cellular compartment. This review aims to describe the known mechanosensitive
structures of the vessel building a bridge between the important role of physiological mechanosignaling and the proper vascular
function. Since mutations and dysfunction of mechanosensitive proteins are linked to vascular pathologies such as hypertension,
they play a potent role in the field of channelopathies and mechanomedicine.
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Introduction

Maintaining vascular homeostasis and keeping blood pressure
variations in an optimal physiological range are a lifelong chal-
lenge which among others ensure a sufficient blood flow and
supply of oxygen and nutrients to peripheral organs. Therefore,
pump function of the heart, vascular resistance and renal water,
and salt homeostasis are closely monitored by various physio-
logical mechanisms, which reconcile metabolic demand and
supply on an acute and long-term scale. Endothelial cells (EC)
are located at the innermost layer of all blood and lymphatic
vessels. They are constantly exposed to mechanical forces me-
diated by the blood flow, thereby maintaining a selective perme-
able barrier between the tissue and intravascular lumen. In

addition to this transport barrier, EC contribute to the regulation
of blood pressure and represent a multifunctional signal-
transducing surface. EC function can thereby be modified by a
bench of biochemical signals (catecholamines, neurotransmitter,
cytokines, growth factors) [100, 173, 186, 196] as well as me-
chanical stimuli coming from the blood stream itself [38, 72,
134]. Blood flow induced hemodynamic forces such as shear
stress, hydrostatic pressure, and circumferential stretch can be
sensed by EC through mechanosensors and transferred into sig-
naling pathways, modifying gene and protein expression and
endothelial function [113].

The different hemodynamic forces vary depending on, e.g.,
physical activity, different vessels types, vessel location (bi-
furcation sites), and—temporally—on the pulsatile cardiac
action. Even at the level of EC, there is a distinct spatial dis-
tribution of the external forces acting on different cellular
mechanosensors. These mechanical forces are sensed and
translated into biochemical signals by specific structures and
proteins located in the membranes of endothelial cells. During
the last years, a number of potential cellular mechanosensitive
and responsive structures have been identified so far,
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including cell adhesion proteins (like VE-Cadherin, PECAM-
1), ion channels, tyrosine kinase receptors (VEGF receptor 2),
G-protein coupled receptors (GPCR), caveolae, primary cilia,
cytoskeletal actin, nesprins, integrins, and the endothelial gly-
cocalyx (eGC) [43, 81, 193].

After being sensed by the EC, the mechanical forces are
encoded and transmitted to the vascular smooth muscle cells
(VSMC), which either respond with relaxation or contraction.
In fact, a close functional interaction between EC and the
neighboring VSMC is responsible for the regulation of the
vascular tone and the ability of cells to react on different bio-
chemical and mechanical stimuli from the streaming blood.
During the last years, it became clear that in particular the
mechanical properties of EC (i) depend on flow-mediated
forces and (ii) determine the contraction status of VSMC.
This well-described mechanism is mainly based on the ability
of the EC to release nitric oxide (NO) in a shear stress-
dependent manner, which diffuses to adjacent VSMCs where
it triggers vasodilation via cGMP-dependent pathways [154].
A reduction in NO is strongly associated with increased levels
of reactive oxygen species (ROS) generated by NAD(P)H
oxidase, xanthine oxidase, or uncoupled endothelial nitric ox-
ide synthase (eNOS) within the vascular wall, leading not only
to scavenging of NO but also to disruption of some signaling
pathways that mediate its production [16]. Hence, the tight
interplay between EC and VSMC controls vascular function
and vessel tone. Primarily the ability of the EC to change their
mechanical properties, i.e., to alternate between “stiff” and
“soft” conditions, is an important physiological feature of
the endothelium. Endothelial cells which have lost this ability
and are arrested in chronic stiffening can be seen as dysfunc-
tional [95].

This review mainly focuses on the impact of the endothelial
glycocalyx and mechanosensitive ion channels in endothelial
mechanosensing. The endothelial cell surface, including glyco-
calyx, plasma membrane, cortex, and ion channels, can be seen
in total as important functional mechanosensitive and reactive
cellular compartment. Since mutations and dysfunction of
mechanosensitive structures are linked to vascular pathologies
such as hypertension [83, 127, 169], they play a potent role in
the field of channelopathies and mechanomedicine.

Shear stress-mediated mechanosignaling

Due to their position, EC sense and react to changes in shear
stress caused by the blood stream, which is substantial for a
proper physiological vascular function [5, 31]. It is generally
accepted that shear forces lead to an EC-mediated vasodilation
due to secretion of vasoactive substances like NO [154]. Other
known shear stress-induced mediators involved in the control
of vascular tone are prostacyclin, a potent vasodilator [18, 111,
139], and endothelin, a strong vasoconstrictor and different
mitogenic molecules [198]. This vasomodulatory secretion

can mediate increase as well as decrease in vessel diameter.
This mechanism is also known as flow-mediated dilation
(FMD) and its impairment, caused on a decreased NO pro-
duction, which can be seen as a hallmark of endothelial dys-
function [46, 55, 95]. In line with this, FMD was found to be
markedly reduced in hypertensive patients and diseases like
hyperaldosteronism [129, 138].

Shear stress is a tangential force arising due to the friction
of the blood volume and the vessel wall (in fact the EC). It
varies over the vascular tree from 1 dyne/cm2 at venous ECs
up to 40 dyne/cm2 in arterial vessels [87, 193]. Another type
of force is the blood pressure itself, exerting a variable mag-
nitude, ranging from 120 to almost 0 mmHg (MAP; mean
arterial pressure) depending on different types and location of
the blood vessels. Both forces mediate the third type of force,
the so-called circumferential stretch, acting through
transmural pressure differences distending the vessel wall
[144]. EC response to hemodynamical variations of the blood
flow ranges from acute adaptations in ion channel function to
long-lasting gene regulatory events [33, 67]. EC can also
respond to shear stress with cytoskeletal remodeling by in-
creasing actin stress fibers [14]. Here, it is important to dif-
ferentiate between laminar and non-laminar (turbulent) forms
of shear stress [98], since these different forms of shear stress
modulate many different effects in the vascular system.
Laminar shear stress (LSS) physiologically occurs mainly at
straight parts of the blood vessels and is known to mediate
protective properties such as down-regulation of inflammato-
ry cytokines, adhesion molecules, and oxidative stress [69,
76, 102]. These positive effects are mainly caused by the
physical properties of LSS as an ideal-typical parabola shape
flow, where the shear rate is decreased at the center of the
lumen of the blood vessel and gradually increased toward the
wall [18]. Disturbances of the hemodynamic homeostasis are
associated with cardiovascular diseases [22]. Especially, path-
ologic changes in the rheology of the blood lead to and main-
tain atherogenic processes – especially in the branching re-
gions of blood vessels where non-laminar shear stress
(NLSS) occurs.

In contrast to LSS, NLSS is defined as the flow in which
the blood velocity varies continuously over the course of time,
even though the overall flowmay remain steady [18]. This can
explain the pathophysiology of atherosclerotic lesion, which
non-random distribution can be attributed to the alterations of
local function of vascular ECs by a disturbed flow pattern like
flow separation, recirculation, reattachment, low and recipro-
cal shear stress, and high spatial and temporal gradients of
shear stress [22].

To understand these flow-mediated alterations in EC func-
tion and dysfunction, a detailed knowledge of EC
mechanosignaling is crucial. The following chapters will fo-
cus on different mechanosensitive structures within the endo-
thelium (see Fig. 1 for overview).
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Mechanosensitive structures in the endothelium

The cellular tensegrity model has been proposed to explain
transduction of mechanical forces to biochemical signals [79].
It is based on the concept that complementary mechanical
forces arising from the cytoskeleton and extracellular tethering
sites to the ECM or neighboring cells are balanced. A shift in
this equilibrium mediates mechanosensing and signal trans-
duction [80]. Based on a cellular level, a hierarchical and
multi-modular tensegrity structure is postulated. In line with
this model, traction force microscopy analyzes cell tension (=
cell adhesion) exerted from cytoskeletal parts to its anchoring
points of the ECM on a flexible polyacrylamide substrate
[137]. Sims and colleagues were able to show that EC exert
force to the substrate which can be revoked by trypsin treat-
ment [160]. Individual stress fibers are tensed by actomyosin
motors and confer the forces to the ECM, thereby modulating
a cellular pre-stress which is transmitted to and balanced by
traction forces that act at the cell-anchoring points to the sub-
strate [80, 93].

Tyrosine kinase receptors (e.g., VEGFR2 or Tie-2) are ac-
tivated in ECs after shear stress exposure in a ligand-
independent manner [85, 97, 176]. The mechanism which
leads to phosphorylation of VEGFR2 in response to shear is

still not well understood. VEGFR2 seems to work in a net-
work along with PECAM-1 and VE-cadherin, mediating the
intramembrane binding to the whole mechanosensory com-
plex [27]. The eGC could be identified as another interaction
partner of VEGFR2, thereby regulating receptor endocytosis
and activation in response to eGC composition [96]. Of note,
the endothelium-stabilizing receptor Tie-2 was found to be
deactivated during sepsis, leading to an eGC breakdown,
and could be prevented by Tie-2 activation and blockage of
Tie-2 antagonist angiopoietin [40].

GPCR and G-proteins have been identified in shear stress
signal transduction in various studies. For example, GPR68
could be identified in a shear stress RNAi library screen as a
necessary component for flow-mediated dilation in small re-
sistance arteries [192]. Additionally, G-proteins can be acti-
vated by shear stress independently from GPRC activation.
The G-protein Gαq/11, for example, could be activated by
shear in the presence of GPCR antagonists in the human cor-
onary artery endothelial cells [36].

Caveolae, small cholesterol and glycosphingolipid-rich
flask-shaped membrane invagination, form membrane micro-
domains containing various signaling molecules, including
the aforementioned kinases, GPCR, and ion channels [15,
54, 157]. eNOS is associated with caveolae and its positioning

Fig. 1 Mechanosensitive
structures of the endothelium.
Blood flow-induced hemody-
namic forces such as shear stress,
hydrostatic pressure, and circum-
ferential stretch can be sensed by
EC through mechanosensors.
These structures sense the me-
chanical forces and translate them
to biochemical signals by specific
proteins located on/in the mem-
branes of endothelial cells.
Potential cellular
mechanosensitive and responsive
structures are depicted in this fig-
ure. EC, endothelial cell; IEL, in-
ternal elastic lamina; VSMC, vas-
cular smooth muscle cell
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is coupled to proper NO production [61, 156]. Redistribution
of eNOS away from the plasma membrane depends on cho-
lesterol composition of the caveolae. Oxidized low-density
lipid and cholesterol depletion lead to reduce NO production
[177]. Proteins within the caveolae like caveolin-1 thereby
inhibit eNOS function and participate in EC-mediated vasodi-
lation [19]. In addition, caveolin-1 stabilizes eNOS expression
level and is proposed to be an important determinant of endo-
thelial vasodilatory functions [20].

The endothelial barrier is formed by tight junctions, VE-
cadherin and PECAM-1 [176]. The vascular permeability is
thereby mainly controlled by VE-cadherin in a Ca2+-depen-
dent manner [35]. Cadherin complexes are connected to the
cytoskeleton via catenin and vinculin and can remodel in re-
sponse to mechanical stimuli [75]. Activation of vinculin can
lead to F-actin polymerization, and VE-cadherin and
PECAM-1 protein complexes can be altered in response to
shear stress [26, 172]. Cell-matrix interactions via integrins
are also discussed to be part of the mechanosensitive complex
in EC [21]. However, evidences for a direct activation of
integrins by shear stress are limited. Integrins more likely are
activated by biochemical and not force-based signals arising
from other primary mechanosensors [105, 174].

Primary, non-motile cilia are protrusions of the apical cell
membrane with an extend up to 5 μm and consist of microtu-
bule bundles, which are connected to the intracellular cyto-
skeleton [45]. Cilia are sensitive to shear stress and can be
disassembled by LSS (15 dyne/cm2), accompanied by major
rearrangement of the cytoskeleton [82]. Cilia mediated shear
stress sensing coupled to Ca2+ signaling and nitric oxide pro-
duction. Knockdown of cilia proteins lead to disturbed
mechanosignaling [125, 126].

The cytoskeleton is composed of three major filament types,
namely (i) the microfilaments, (ii) intermediate filaments, and
(iii) microtubules. This cytoskeletal scaffold can be deformed
and transmits force/tension via focal adhesion sites, integrins,
cellular junctions, and extracellular matrix to the interior of the
cell [32]. Microfilaments consist of actin polymers, which can
be rearranged highly dynamically by change from filamentous
actin (F-actin) to globular actin (G-actin) and can be connected
between cellular structures. De/stabilization is mainly mediated
by members of the Rho family of small GTP-binding proteins
like Rho and Rac GTPases. To counteract external tensile
forces, actin can polymerize in response to tensile forces, lead-
ing to stress fiber formation, which are composed of actin and
myosin II filaments [71, 132, 178].

Intermediate filament proteins like laminin form the nucle-
ar scaffold adjacent to the inner nuclear membrane. It thereby
contributes to chromatin regulation and signaling pathways
affecting gene expression [84]. It is discussed, that laminins
act as a “mechanostat” that is able to sense extracellular forces
and respond by reinforcing the cytoskeleton and the extracel-
lular matrix, e.g., by directly transducing external forces to the

nucleus which alters gene expression [123, 135].
Microtubules are involved in shear stress-derived cell polarity
and are interconnected as well as linked to membrane proteins
throughout the cell [175, 176]. Recently, it could be shown
that microtubules also interact with integrin-based focal adhe-
sions and myosin IIA filaments [141]. This connection of
external contact, adhesion receptors, and cytoskeletal struc-
tures serves as a potent mechanotransducer for inside-out as
well as outside-in signaling pathways.

The following chapters will mainly focus on the impact of
the endothelial glycocalyx and connected mechanosensitive
ion channels in the vascular mechanosensing. Being
mechanosensitive switches, ion channels convert mechanical
stimuli attaining the cell membrane (pressure, stretch, shear)
into electrical and biochemical signals, which affect the cellu-
lar and physiological reactions.

Endothelial glycocalyx

The glycocalyx is the top surface layer of all living cells,
including endothelial cells, and is built by a negatively
charged, brush-like structure, with a functional height up to
500 nm. This membrane-bound carbohydrate-rich layer
covers the luminal membrane of endothelial cells (endothelial
glycocalyx, eGC) and is associated with different plasma pro-
teins [187]. Together with the cortical actin, a thin actin mesh
directly underneath the plasma membrane, and membrane
proteins, like mechanosensitive ion channels, the eGC build
a highly dynamic hub for intra- and extracellular signals [52,
88]. eGC functions range from modulation of leukocyte ad-
hesion, regulation of blood coagulation, maintaining vascular
permeability barrier, and mediating flow-induced NO release.
So, it has been recognized as an important vasculoprotective
nanobarrier [28, 64]. For a detailed overview of the eGC
nanomechanics and functions, we refer to a recent review
from our group [28].

The eGC is formed by glycoproteins and proteoglycans
like heparan and chondroitin sulfate as well as hydrophilic
hyaluronic acid [146, 151, 170]. The components are cova-
lently anchored, and transmembrane proteins like syndecan
link the eGC with the intracellular actin cortex [143]. This
enables the eGC to transduce extracellular signals into intra-
cellular biochemical signaling pathways. In the same time,
because of its intrinsic charge, other negatively charged mol-
ecules (or cells) from the plasma are hindered from passing
this first barrier [25]. From this point of view, the eGC acts as
an effective cation buffering and barrier system [41, 153].
Under healthy physiological conditions, the eGC structure is
in a steady state of permanent turnover caused by flow-
mediated degradation and reorganization by biosynthesis of
new eGC components. The exact turnover of eGC can hardly
be analyzed, known values range from 6 h in enterocytes to
5 days in rat uterine epithelial cells [58, 86]. However, eGC
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must be seen as a highly flexible and inhomogeneous structure
in dependence of EC (and eGC) positioning along the vessel
tree as well as due to various electrostatic and biochemical
interactions between its constituents [121, 189].

eGC as mechanosensor

Due to its unique localization as an interface between the blood
stream and tissue, the eGC has been identified to function as a
mechanosensor as well as mechanotransducer [6, 166, 187].
For example, Yen and colleagues showed that flow-induced
NO production in post-capillary venules and arterioles of rat
mesenteric arteries can be abolished by enzymatic removal of
heparan sulfate by heparanase III treatment. The authors postu-
late that the eGC acts as a mechanotransducer and participates
in the regulation of NO production [194]. Dragovich and col-
leagues showed in brain microvascular endothelial cells that
enzymatic removal of eGC components lead to perpetuated
Ca2+ signals and eNOS activity [39] accompanied by the re-
modeling of cytoskeletal structures [3]. In fact, the eGC itself
can be modulated in structure and function in response to
changes in blood flow [68, 187]. Shear stress induces remodel-
ing of the eGC, by increasing heparan sulfate, chondroitin sul-
fate, glypican-1, and syndecan-1 at the cell surface, thereby
influencing the integrity of the glycocalyx and its ability of
sensing shear stress [195]. In addition, shear stress acting on
the EC stabilizes the eGC, which is important for proper endo-
thelial function and NO production [168, 194]. For example,
laminar shear stress induces a recruitment of hyaluronan syn-
thase 2 to the endothelial plasma membrane and increases
hyaluronan expression, a major structural eGC component
[184]. In line with this, the presence of heparan sulfate, and
thus an intact eGC, is necessary for flow-induced NO produc-
tion in aortic EC [57]. eGC breakdown by antagonism of
endothelium-stabilizing receptor Tie-2 leads to plasma leakage
and increased leukocyte recruitment in vivo [109].

These findings strengthen the idea of a vasculoprotective
function of the eGC [64, 189]. However, it is postulated that
stabilization and turnover of the eGC by shear stress might
rather be a physiological response to mechanotransductory
changes under flow conditions. We were able to show that
moderate laminar shear stress (LSS, 8 dyne/cm2) increased
the amount of heparan sulfate at the surface of endothelial
cells, while treatment with heparanase I leads to a significant
reduction of the eGC under shear stress conditions. Delgadillo
and colleagues also showed shear-mediated effect on the
physical nanobarrier function of eGC. Comparisons of differ-
ent shear rates on HUVECs lead to higher eGC thickness and
decreased neutrophil adhesion under high (10 dyne/cm2) vs.
low (0.5 dyne/cm2) shear stress [37]. In addition, moderate
LSS leads to increase F-actin polymerization within the actin
cortex (unpublished data of our group). This illustrates that
physiological shear stress is obligatory for a proper eGC

structure and plasticity to fulfill mechanosensory function
within the vascular system.

As described above, from the pathophysiological point of
view, a damaged eGC exerts a disturbed mechanotransduction
to intracellular components like the endothelial actin cortex
and will change membrane characteristics including the pres-
ence of mechanosensitive ion channel, adhesion molecules,
and cytoskeletal anchor proteins [197]. Different authors pos-
tulate feedback reinforcement between damaged eGC and
progression of endothelial dysfunction [48, 159, 197].

First observation of a pathophysiological damage of eGC
was done by Van den Berg. He screened atheroprone regions
of mouse internal carotid arteries and observed a reduced eGC
thickness in disease predilection compared with common carot-
id arteries [179]. Others found higher eGC component synthesis
(because of higher eGC turnover) in arteries exposed to higher
shear stress compared with low shear stress [64]. Different non-
cardiovascular as well as cardiovascular diseases are accompa-
nied by disturbed eGC mechanosensing. In an in vitro model of
hyperglycemia, a disturbed flow-mediated alignment of EC was
accompanied by loss of heparan sulfate (major eGC compo-
nent), as well as reduced NO production in response to shear
stress application [17, 108]. Dialysis patients show impaired
eGC structure and shedded hyaluronic acid as well as
syndecan-1 in the blood [180]. Also the impact of eGC damage
on glomerulus filtration and development of albuminuria are
widely discussed [149]. High ox-LDL levels induce degradation
of the eGC and subsequently increased leukocyte adhesion in
cremaster venules [25]. Knockdown of syndecan-1, an impor-
tant eGC component, lead to impaired mechanosignaling in
injured carotid arteries, larger neointimal hyperplasia, and in-
creased VSMC proliferation [59]. Lack of syndecan-1 is asso-
ciated with impaired migration and enhanced adhesion of mac-
rophages, as well as increased inflammation and atherosclerotic
plaque formation [4].

In conclusion, disturbance of the eGC structure, e.g., by
changes in blood flow parameters lead to altered
mechanosignaling in EC. These results strengthen the concept
of a mutually interacting signaling hub of eGC, cortical actin,
and ion channel within the endothelial cell.

Mechanosensitive channels in the endothelium

In response to shear stress or flow-mediated membrane
stretch, opening of mechanosensitive ion channels is the very
first step in cellular mechanosignaling [24, 115, 122]. These
ion channels show partially opposed characteristics, ranging
from hyperpolarization by K+ selective TREK channels to
depolarization by Ca2+ and Na+ permeable Piezo1 channels.
Here, we mainly focus on mechanosensitive cation permeable
ion channels, leading to Ca2+ influx into the cell. There is
substantial evidence that the increase in intracellular Ca2+ is
one of the earliest events in response to shear stress. In

Pflugers Arch - Eur J Physiol (2020) 472:419–433 423



endothelium, increased Ca2+ subsequently activate eNOS and
intermediate conductance Ca2+-activated K+ channels (IKCa),
resulting in vasodilation through eNOS-mediated NO release
and/or membrane hyperpolarization. Ion channels seem par-
ticularly well suited to perceive physical forces and are strong-
ly suggested as key players in the sensing of shear stress [77].

Piezo1 and Piezo2 are mechanically activated cation chan-
nels which mediate as large homomultimeric complexes cat-
ion currents in various tissues [29, 181]. Both isoforms are
mechanically gated and confer nonselective (Na+, K+, and
Ca2+) currents with fast activation kinetics. Whereas Piezo2
is mainly expressed in tactile epithelial cells (Merkel) [190]
and mechanosensory neurons [122], Piezo1 has been reported
to mediates mechanically induces currents in various cell
types, including endothelial cells and smooth muscle cells
[142, 145]. Piezo1 was shown to be an important sensor of
shear force in EC and involved in cell alignment in flow di-
rection [103]. Laminar flow-mediated activation of Piezo1
mediates flow-induced release of ATP from endothelial cells,
resulting in the activation of the Gq/G11-coupled purinergic
P2Y2 receptor [182, 183]. P2Y2/receptor and Gq/G11 cascades
lead to activation of AKT and eNOS and mediate flow-
induced vasodilation. Both laminar and disturbed flows acti-
vate the same initial mechanosignaling pathway involving
Piezo1- and Gq/G11-mediated signaling [2]. Accordingly,
Piezo1 channel activator Yoda1 induces NO-mediated relaxa-
tion of murine intrapulmonary arteries [101].

Transient receptor potential (TRP) channels are non-
voltage gated cation channels, regulated by polymodal stimuli
and implicated in a variety of cellular functions [128]. At least
ten TRP channels (TRPC1, 5, 6; TRPV1, 2, 4; TRPM3, 7;
TRPA1; TRPP2) have been proposed to be mechanosensitive
[24, 81, 112, 158, 171]. TRP can mediate Ca2+ signaling but
also can be Ca2+ regulated by directly Ca2+ binding to the
channel or Ca2+-calmodulin complex mediated activation. In
VSMC, Ca2+ influx through TRP channels leads to membrane
depolarization and forced influx through voltage-gated Ca2+

channels (L-type or T-type Ca2+ channels, CaV1.2 / CaV3.1).
Ca2+-calmodulin complex activates myosin light chain kinase
and initiates the contractile process [73].

In many cases, it is still not finally clarified how this
mechanosensivity is mediated, although a number of studies
support the mechanosensitive characteristics of TRP channels
[73]. The following principles are discussed: (i) direct activa-
tion by extracellular forces like membrane stretch and shear-
induced changes in lipid bilayer conformation and subsequent
deformation of channel domains [60, 114, 162], (ii) tethering
of ion channel structures with cellular component like ECM,
proteins, or intracellular cytoskeleton [9, 117], and (iii) indi-
rect activation by other primary mechanosensors and subse-
quent biochemical transduction to effector TRP channels [91,
107, 119]. In the following sections, some mechanosensitive
candidates of the TRP family will be discussed.

TRPV4 has been proposed to be a candidate for the molec-
ular blood flow sensor inducing the flow-induced vasodila-
tion, a response to increased blood flow velocity or viscosity
[31]. Consistently, TRPV4 was identified to be activated un-
der hypertonic conditions and cell swelling-mediated mem-
brane stretch [104]. On the other hand, cell-attached patch
clamp approaches were not able to directly activate TRPV4
by pipette suction, suggesting an indirect activation of TRPV4
through force-sensitive signaling cascades [43]. Kohler and
colleagues showed that in rat carotid artery, endothelial cells
agonist- or shear stress-induced activation of TRPV4 leads to
dilation of rat gracilis arteries. eNOS blockade attenuates this
TRPV4-mediated effect [91]. The same group was able to
show that TRPV4 knockout showed significantly reduced
flow-induced vasodilation [70]. In line with this, Mendoza
and colleagues found a TRPV4-dependent relaxation involv-
ing NO and EDHFs and Ca2+ influx through endothelial
TRPV4 channels in response to flow [120]. Shear stress also
leads to exocytosis-mediated recruitment of TRPV4 channels
and endothelial sensitization to mechanical stress [8].

TRPV4 was found to be co-localized with TRPC1 proteins
in EC from rabbit mesenteric arteries. Analysis of (high exter-
nal) Ca2+-induced EC-dependent vasodilation showed
TRPV4- and TRPC1-dependent Ca2+-influx and induction
of NO production. Activation of TRPV4 (agonist) induced
NO production, and subsequent vasodilation could be
prevented by L-NAME (N(ω)-nitro-L-arginine methyl ester,
eNOS inhibitor), TRPV4 antagonist (RN1734), or TRPC1
antagonism (T1E3, blocking peptide). Heteromeric TRPV4
and TRPC1 channels mediate calcium-sensing receptor in-
duced vasorelaxation through NO production [65].

The TRPC1 channel is the first cloned member of the mam-
malian TRP superfamily [188]. TRPC1 function is generally
associated with regulation of store-operated Ca2+ channels
(SOC) and receptor-operated Ca2+ channels (ROCC) via inter-
action with STIM1, ORAI1, and IP3 receptors [10, 34].
Mechanical (tonic) stretch application for 14 h to human
myometrial smooth muscle cells leads to increased expression
(qPCR and WB) of TRPC3 and C4, but not of TRPC1 or C6
[30]. On the other hand, up-regulation of TRPC1, C3, and C6
could be found in pressurized hearts after aortic constriction,
suggesting mechano-responsive expression pattern of TRPC1
channels [94, 133]. Nevertheless, TRPC1 as mechano-sensitive
channel has been a subject of controversial debates [11, 63].
Overexpression of TRPC1 in frog oocytes increased the num-
ber of stretch-activated ion channels in patch clamp experi-
ments, which can be diminished by siRNA approach [114]. In
cancer-associated fibroblasts, TRPC1 is involved in responding
to an increase of the ambient pressure [53], whereas in MDCK-
F cells, TRPC1 also contributes to mechano-signaling during
cell migration [47]. TRPC1 has also been identified as a com-
ponent of biomechanical signaling in the development of
pressure-induced heart failure and hypertrophy [44, 155].
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It is controversially discussed if TRPC1 acts as homomeric
or at least as a heteromeric channel together with TRPC3/4/5
or TRPV4 [63, 110, 163, 165]. In HUVECs (primary human
umbilical vein endothelial cells), agonist-mediated stimulation
of calcium-sensing receptor (CaSR) leads to a TRPC1-
dependent increase in intracellular Ca2+ and enhances NO
production. The authors postulate a coupling of TRPC1 to
CaSR and TRPC1-mediated store-operated Ca2+ entry
(SOCE) mechanisms for Ca2+ influx [140]. TRPC1 is also
co-localized with TRPV4 in EC from mesenteric arteries.
This heteromeric channel is activated by CaSR and induces
an increase in NO production and vasorelaxation [65, 66].

TRPC6 is potentially a mechanosensitive TRP channel,
which can be activated directly by diacylglycerol (DAG)
[74, 92]. TRPC6 is important for regulating endothelial per-
meability in response to pro-inflammatory cytokines and in-
flammatory markers [99, 161]. In EC of the pulmonary arter-
ies, TRPC6 knockout diminished the TRPC6 agonist-
mediated increase in intracellular Ca2+, vascular filtration,
and edema formation [150]. Fleming and colleagues showed
that cytochrome P450 (CYP)-derived epoxyeicosatrienoic
acids (EETs), one amongst other mechanically produced me-
tabolites, supports translocation of TRPC6 to caveolin-1-rich
cell membrane areas [56]. The direct mechanical activation of
TRPC6 is discussed controversially. Inoue et al. proposed a
synergistic activation by a combined mechanical and musca-
rinic receptor agonist carbachol-mediated stimulation [148].

TRPM7 expression could be shown in HUVECs by Baldoli
and colleagues [7], where it has been linked to magnesium
transport. TRPM7 is somehow unique in comparison with
other TRP because it possesses a regulatory kinase domain
at the C-terminus [147]. The mechanosensitive potential of
TRPM7 could be shown in pressure-loading patch clamp ap-
proaches [191] as well as in fluid shear stress experiments in
mesenchymal stromal cells [106].

TRPP2 (also known as polycystin-2 and polycystic kidney
disease 2, PKD2) has been linked to mechanosensitive func-
tions of primary cilia. Reduced expression of TRPP2 leads to
decreased NO production in murine EC [1]. Knockdown of
TRPP2 leads to an inability of EC to transduce extracellular
shear stress into intracellular Ca2+ signaling and biochemical
nitric oxide synthesis [125]. Also an interaction between
TRPP2 and TRPC1 and a potential role in stretch-induced
injury of blood-brain barrier endothelial cells is postulated
[12, 136]. Additionally, it was observed that only a
heteromeric channel composition of TRPP2, TRPC1, and
TRPV4 is able to mediate flow-induced cation currents [42].

The epithelial sodium channel ENaC has primarily been
described in principal cells of the distal nephron in the kidney,
where it is mainly involved in salt and water homeostasis [13,
62]. Now it is obvious that ENaC is expressed in a variety of
different tissues where it fulfills diverse functions. In particu-
lar, ENaC was identified in the vascular endothelium, where it

controls endothelial nanomechanics [50, 167]. ENaC, like
many other ion channels, is linked to cytoskeletal components
and these interactions are used for mechanotransduction [51,
78, 118, 185]. It is proposed that an increase in ENaC activity
in EC and thus an enhanced sodium influx stabilizes cortical
actin in its filamentous form (F-actin), leading to a more rigid
cell cortex [131, 185]. Unpublished data from our group show
that functional inhibition of ENaC provokes a shift from F- to
G-actin which in turn leads to a softening of the cell cortex. In
contrast, chemical stabilization of the actin cytoskeleton abro-
gates this effect. Hence, ENaC function and actin dynamics
are strongly correlated in EC.

In the case of the epithelial ENaC, a flow-modulated stimu-
lation of ENaC activity and sodium absorption ismediated by an
increase in hydrostatic pressure, suggesting a flow-sensitive way
of channel gating [152]. In addition, Guo and colleagues showed
that ENaC can be activated by flow and increased hydrostatic
pressure, and increased intracellular sodium levels lead to reduce
NO production in EC [67]. In line with these findings, we were
able to show that ENaC is inserted into the membrane in re-
sponse to acute shear stress modulations (unpublished data from
our group). This leads to increase Na+ influx into the EC and
polymerization of the cortical actin. A recent publication shows
that ENaC shear force sensing is dependent on sugar residue
interaction with the eGC. Extracellular N-glycosylated aspara-
gine residues of ENaC interconnect the channel with the ECM
as well as eGC, and removal of these N-glycans lead to de-
creased shear force-induced ENaC currents [90]. These data
support the idea of a tight interaction and interdependence of
eGC, ion channel function, and cytoskeleton as coupled
mechanosensors of the endothelium.

Interaction between mechanosensitive ion channels
in the VSMC and EC

The regulation of the vascular tone is basically mediated by
processes within the vessel wall. As mentioned before, EC
and VSMC are in close physical vicinity and their functions
are tightly coupled. Hence, biochemical as well as mechanical
signals from the streaming blood are recognized by the endo-
thelial surface structures and conducted to the VSMC. One of
the best described paracrine mechanism of EC-VSMC inter-
play is the EC-derived NO release which directly affects the
contraction status of the VSMC: A high production of NO in
EC leads to relaxation of the VSMC and decreased vessel
tone, while a reduction of NO release causes contraction of
the VSMC and increased vessel tone. This in turn is directly
linked to the mechanical properties of endothelial cells: A soft
endothelial cell cortex is easily deformable by the streaming
blood and thus the endothelial cell releases higher amounts of
NO in contrast to a stiff cell cortex [51, 130]. The mechanical
properties of the endothelial surface and the regulation of the
vascular tone are mediated by ion channels (see Fig. 2). Of
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note, many typical EC mechanosensitive ion channels are also
identified in the VSMC, but the functional interaction of them
is only sparsely described.

Here, some examples of mechanosensitive ion channels are
described which are expressed in different cell layers of the
vessel and seem to interact to maintain signal transduction and
function within the vessel.

In EC, the mechanosensitive ENaC plays a crucial role in
the orchestratedmechanism of vascular tone control. The plas-
ma membrane insertion of the channel leads to stiffening of
the endothelial surface which is mechanistically linked to the
polymerization of the cortical actin leading to a subsequent
reduction of NO release upon stimulation with shear stress
[49]. In VSMC, ENaC is part of the transduction pathway of
constriction response to pressure and acts as potential
mechanosensor as it mediates pressure-induced vasoconstric-
tion [41, 89]. Constitutive absence of the endothelial αENaC
subunit leads to drastically decreased flow-dependent dilation
of mouse mesenteric arteries, indicating that ENaC acts as
mechanosensor [167]. Mutations in endothelial β- and
γENaC contribute to severe forms of arterial hypertension
[83]. Whether VSMC ENaC plays a role in this situation is
not known yet. However, the presence of the channel in both
cell types and similar regulatory mechanisms [185] let us as-
sume a concerted action in the control of blood vessel tone.

Another example of a mechanosensitive ion channel which
is expressed in both EC and VSMC is Piezo1. This non-

selective cation channel is activated by mechanical stimuli,
such as membrane stretch or shear stress. In EC, Piezo1 is
activated by shear stress and leads to Ca2+ influx and phos-
phorylation of AKT and eNOS which results in an increased
NO production and subsequent VSMC-mediated vasodilation
[183]. In contrast, in VSMC, Piezo1 is activated by stretch and
involved in processes of vascular remodeling under patholog-
ical conditions leading to a decrease in vessel diameter [122,
145]. Together, both Piezo1-dependent mechanisms effective-
ly maintain basal blood pressure regulation.

As mentioned before, many members of the TRP channel
family are also expressed in both EC andVSMC. In the vascular
endothelium, TRP channels are known to act as stretch
mechanosensors and to be involved in Ca2+ signaling. In
VSMC, Ca2+ influx through TRP channels in general leads to
membrane depolarization. Hence, they play a role in myogenic
tone response and vasoconstriction. If and how TRP channels in
EC and VSMC do interact is not really resolved at the moment.

In general, there is increasing evidence that the communica-
tion between EC and VSMC is not “one-way” from the endo-
thelium to the muscle cells but rather a mutual interaction be-
tween both layers. However, shear- or stretch-induced responses
in VSMC-free capillaries depend on the mechanosensing by the
endothelial cell layer, while the pressure-dependent myogenic
response can be attributed to the VSMC.

Recently, myoendothelial junctions have been identified as
morphologically distinct structures which are formed by the

Fig. 2 Model of eGC- and ion channel-mediated mechanosignaling.
Physiological LSS is accompanied by an intact eGC structure and a
“soft” and deformable actin cortex. EC can react to changes in blood
flow with increased eNOS activity and NO-mediated vasodilation (left
figure). Pathophysiological increase of shear stress (e.g., by NLSS) leads
to a disturbed eGC structure, increased Ca2+, and Na+ influx and

stiffening of the cell cortex. This is accompanied by reduced eNOS
activity and impaired flow-mediated vasodilation (right figure). The
ability of the EC to change their mechanical properties, i.e., to alternate
between “stiff” and “soft” conditions, is an important physiological
feature. Loss of this plasticity leads to a dysfunctional endothelium
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membranes of both EC and VSMC and appropriate gap junc-
tions between them. These gap junctions are composed of two
connexons, composed of at least six connexin proteins. They
basically serve as signaling microdomains to enable cross talk
between EC and VSMC. Dilating substances, such as NO, are
delivered from the EC to the VSMC, whereas IP3 diffusion
from VSMC to EC provokes a Ca2+-response and leads to
constriction. The latter pathway most likely activates intracel-
lular Ca2+ stores through TRPV4 (for review see [164]). Thus,
via myoendothelial junctions, the cross talk between the en-
dothelium and smooth muscle is facilitated.

In an elegant study by Chiu et al., it was demonstrated that
vascular EC function is influenced by the neighboringVSMC. In
a co-culture shear stress model, the alignment of EC under flow
occurs more rapidly than under static conditions. Furthermore,
they conclude that shear stress may lead to a down-regulation of
pathophysiological relevant genes and thus may exert
vasculoprotective effects [23]. This again is a strong indicator
of the functional and physiological relevant interaction between
the vascular layers, maintaining vascular tone and reactivity.

Conclusion and perspectives

Proper regulation of the vessel tone is the basis of cardiovascu-
lar health. One of the major mechanisms which contribute to
the fine tuning of vasodilation, or contraction is the sensing of
mechanical stresses exerted on the vessel wall. In particular,
endothelial cells immediately react with a change of their nano-
mechanical properties and conduct biochemical and/or me-
chanical signals to the vascular smooth muscle cells. Only the
close interaction between all layers of the vascular wall (i) gly-
cocalyx on top of endothelial cells, (ii) endothelial cells, and
(iii) smooth muscle cells can maintain vessel tonus, regulate the
expression of genes and proteins, and can cause morphological
changes. Important mediators of the mechanosignaling are
mechanosensitive ion channels expressed in both cell types.
Disruption of these ion channel-mediated mechanisms may
cause various diseases, such as hypertension and atherosclero-
sis, commonly described as channelopathies. Gain-of-function
mutations in ENaC, for example, lead to a sustained stiffening
of the endothelial cell cortex which might contribute to the
severe hypertension in patients and mice [83].

There is evidence that TRP channels also contribute to the
pathogenesis of hypertension, and it is reported that mutations
in TRPC channel genes can be linked to cardiovascular dis-
eases [127]. Expression of TRPC3 for example is elevated in
patients with malignant hypertension in the vascular endothe-
lium [169]. TRPM4 may be also involved in the control of
blood pressure as TRPM4-deficient mice showed a hyperten-
sive phenotype [116]. In this context, Keiji Naruse introduced
the term “mechanomedicine.” This includes the investigation
and characterization, but also the therapeutical benefit of this

knowledge [124]. Especially, in the cardiovascular system, the
mechanosensitive structures could serve as both predictors
and pharmaceutical targets in cardiovascular pathologies.
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