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Abstract
Introduction  Uncovering safety signals through the collection and assessment of individual case reports remains a core 
pharmacovigilance activity. Despite the widespread use of disproportionality analysis in signal detection, recommendations 
are lacking on the minimum size of databases or subsets of databases required to yield robust results.
Objective  This study aims to investigate the relationship between database size and robustness of disproportionality analysis, 
with regards to limiting spurious associations.
Methods  Three types of subsets were created from the global database VigiBase: random subsets (500 replicates each of 
11 fixed subset sizes between 250 and 100,000 reports), country-specific subsets (all 131 countries available in the original 
VigiBase extract) and subsets based on the Anatomical Therapeutic Chemical classification. For each subset, a spuriousness 
rate was computed as the ratio between the number of drug–event combinations highlighted by disproportionality analysis in 
a permuted version of the subset and the corresponding number in the original subset. In the permuted data, all true report-
ing associations between drugs and adverse events were broken. Subsets with fewer than five original associations were 
excluded. Additionally, the set of disproportionately over-reported drug–event combinations in three specific countries at 
three different time points were clinically assessed for labelledness. These time points corresponded to database sizes of less 
than 10,000, 5000 and 1000 reports, respectively. All disproportionality analysis was based on the Information Component 
(IC), implemented as IC025 > 0.
Results  Spuriousness rates were below 0.15 for all 110 included countries regardless of subset size, with only seven countries 
(6%) exceeding the empirical threshold of 0.10 observed for large subsets. All 21 excluded countries had < 500 reports. For 
random subsets containing 3000–5000 or more reports, the higher end of observed spuriousness rates was close to 0.10. In 
the clinical assessment, the proportion of labelled or otherwise known drug–event combinations was very high (87–100%) 
across all countries and time points studied.
Conclusions  To mitigate the risk of highlighting spurious associations with disproportionality analysis, a minimum size of 
500 reports is recommended for national databases. For databases or subsets that are not country-specific, our recommenda-
tion is 5000 reports. This study does not consider sensitivity, which is expected to be poor in smaller databases.

1  Introduction

The collection and assessment of individual case reports 
remains key to detecting safety signals for marketed 

medicinal products [1, 2]. Signal detection from individual 
case reports, both in the scientific and the regulatory context, 
ultimately relies on accurate assessment by trained phar-
macovigilance professionals. However, supporting statisti-
cal and computational methods have played an increasingly 
important role over the last decades, partly because data-
bases have grown larger. Despite the availability of numer-
ous more advanced methods [3–7], disproportionality analy-
sis [8] is still the predominant one.
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Disproportionality analysis is primarily a tool to gener-
ate hypotheses on possible causal relations between drugs 
and adverse effects, to be followed up by clinical assessment 
of the underlying individual case reports. It is based on the 
contrast between observed and expected numbers of reports, 
for any given combination of drug and adverse event. While 
disproportionality analysis is generally recommended and 
necessary for large databases [9–12], more precise guidance 
on the required database size for using such analysis is lack-
ing. A common sentiment is that methodological limitations 
of disproportionality analysis get more relevant the smaller 
the database [10], but as far as we are aware, this has not been 
studied specifically. Increased knowledge in this area would 
assist organisations that hold smaller databases, for exam-
ple countries with low reporting volumes, in their design of 
appropriate signal detection strategies. It could also be rel-
evant for very large databases that are subjected to subgroup 
analyses, since individual subsets may still be small [13, 14].

This study aims to investigate the effect of database size 
on the robustness and relevance of disproportionality analy-
sis, and to provide practical recommendations for smaller 
database or subset sizes in various situations. Here, robust-
ness should be understood as absence of excessive rates of 
spurious or irrelevant associations. We put focus on national 
databases, which are studied using both statistical permuta-
tion techniques and clinical assessment.

2 � Data and Methods

2.1 � Data

All analyses were based on a frozen version of VigiBase, the 
WHO Global Database of Individual Case Safety Reports, as 
of 2 January 2018 [15]. Suspected duplicate reports [16] and 
reports with country of occurrence different from country of 
reporting (so called foreign reports) were excluded, yielding 
a total of 16,036,530 reports. Only drugs characterised as 
suspected or interacting were considered.

2.2 � Creation of VigiBase Subsets

To be able to study the properties and output from dispro-
portionality analysis in smaller databases, different kinds of 
subsets of VigiBase were used.

2.2.1 � Random Subsets

We randomly sampled 500 subsets from all VigiBase 
reports, for each of the following subset sizes: 250, 500, 
750, 1000, 2000, 3000, 4000, 5000, 7500, 10,000 and 
100,000 reports. No individual report was included more 
than once in each subset. The range between 250 and 10,000 
reports was expected to cover any possible recommenda-
tions for a lower database size, and 100,000 reports was 
included as a control size representing a large database. 
While these random subsets do not correspond to any natu-
rally occurring collections of reports, this approach allows 
for a controlled and structured assessment of the relation 
between database size and the properties of disproportion-
ality analysis.

2.2.2 � Country‑Specific Subsets

National databases of individual case reports represent a 
highly relevant potential use case for disproportionality 
analysis in practice. In this version of VigiBase, 131 dif-
ferent countries of origin were represented, each one yield-
ing a country-specific subset. Because each report has only 
a single country of origin, all these subsets are mutually 
exclusive. It should be noted that, in general, the database 
held locally in a country will differ from the correspond-
ing subset of VigiBase. For some countries, the difference 
may be relatively large due to reporting backlogs or policies 
to submit only certain kinds of reports. Nevertheless, these 
country-specific subsets retain the basic property of being 
coherent collections of reports from a defined regulatory and 
cultural context, and therefore should be reasonable proxies 
for the purposes of this study.

Key Points 

Standard disproportionality analysis applied in national 
databases containing as few as 500 individual case 
reports does not yield higher rates of spurious associa-
tions than in larger national databases. For databases, or 
subsets of databases, that are not country-specific, our 
results suggest 5000 reports as a suitable lower limit to 
avoid excessive rates of false-positive associations.

These results extend our knowledge about dispropor-
tionality analysis. They should be relevant for anyone 
currently using, or planning to use, disproportionality 
analysis in small collections of individual case reports, 
such as national or regional pharmacovigilance centres 
with low reporting volumes.

This study does not consider the issue of disproportion-
ality analysis failing to identify true safety signals. As 
this is most likely a bigger concern for small databases, 
case-by-case review of all incoming reports remains a 
highly relevant alternative or complement to dispropor-
tionality analysis in such settings.
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2.2.3 � ATC‑Based Subsets

The third and final type of subsets studied was based on the 
ATC (Anatomical Therapeutic Chemical) classification of 
reported drugs [17]. Disproportionality analysis in such sub-
sets could be practically relevant; for example, when a large 
database is accessible via an advanced search and analysis 
interface. Furthermore, the hierarchical structure of the ATC 
classification might offer an interesting case study, as gener-
ally the subset size decreases with the depth of the hierarchy.

Each reported drug was mapped, at substance level, to 
all listed ATC codes at the first, second, third and fourth 
level. For example, a report containing streptomycin, which 
is listed under the ATC codes A07AA04 and J01GA01, 
would be included in the following ATC-based subsets: A 
and J at the first level, A07 and J01 at the second level, 
A07A and J01G at the third level and A07AA and J01GA 
at the fourth level. If the report contained further drugs, it 
would be similarly included in the subsets corresponding to 
the ATC codes of those drugs.

2.3 � Disproportionality Analysis

All disproportionality analyses were performed for 
drug–event combinations (DECs) defined as pairs of 
reported drugs at the preferred base (i.e. substance) level of 
the WHODrug Global terminology, and reported adverse 
events at the preferred term (PT) level of MedDRA (Medi-
cal Dictionary for Regulatory Activities) version 20.1. The 
measure of disproportionality used was the Information 
Component (IC) [18, 19], defined in the following way:

where nDE is the number of reports on the DEC, nD is the 
number of reports on the drug, nE is the number of reports 
on the event and n is the total number of reports; all referring 
to the specific VigiBase subset under consideration. nDE and 
(nDnE)/n are the observed and expected numbers of reports, 
respectively. As in standard IC analysis, a DEC was consid-
ered disproportionately over-reported if the lower endpoint 
of the 95% credibility interval for the IC was positive (i.e. if 
IC025 > 0) [19]. Note that this can never occur if nDE is < 3, 
regardless of the total size of the data set.

2.4 � Permutation Analysis

To systematically study the prevalence of spurious associa-
tions highlighted by disproportionality analysis in the sub-
sets of different types and sizes described in Sect. 2.2, the 
nonparametric statistical technique of permutation analysis 
was used [20, 21]. A permuted version of each data set was 

IC = log2
nDE + 0.5
nDnE

n

+ 0.5
,

created, in which the listed drugs of a given report were 
paired with the listed adverse events of a randomly selected 
report. This breaks all true underlying associations between 
drugs and adverse events, while retaining the structure of 
the data. In particular, the total number of reports as well as 
all marginal counts for drugs and adverse events remain the 
same. Additionally, the correlation structures both among 
the drugs and among the adverse events are preserved, as 
are the distributions of the number of drugs and adverse 
events per report.

To get a measure of false-positive disproportionality anal-
ysis findings that accounts for the widely varying sizes of the 
subsets, we define the spuriousness rate as the number of 
DECs for which IC025 > 0 in the permuted version of a data 
set divided by the number of DECs for which IC025 > 0 in 
the original data set. To avoid the uncertainty of dividing by 
a very small number, this spuriousness rate was only com-
puted for subsets in which at least five DECs were dispro-
portionately over-reported in the original version of the data.

2.5 � Clinical Assessment for Selected Countries

Complementing the permutation analyses, three individual 
countries’ data were studied in-depth by manual clinical 
assessment of actual lists of DECs highlighted by dispro-
portionality analysis. This allowed for characterisation 
of properties beyond the rate of spurious findings, for the 
important use case of disproportionality analysis in small 
country-specific subsets.

Any country with a total number of reports between 5000 
and 10,000 was considered. Out of the ten countries found 
eligible, one (Tunisia) was randomly selected and two more 
(Indonesia and Brazil) were subjectively added to obtain a 
geographically diverse sample. For each selected country, 
one ‘current’ (as of 2 January 2018) and two backdated lists 
of DECs were generated. The latter were based on reports 
up to the years before the country surpassed 5000 and 1000 
reports, respectively, in VigiBase. These lists contained all 
DECs that were reported disproportionately often accord-
ing to the previously defined criterion IC025 > 0, and their 
respective basic reporting statistics.

Clinical assessment was performed by an experienced 
pharmacovigilance assessor (BG). Each DEC was primar-
ily classified as ‘labelled or otherwise known’ or not. For the 
latter group, it was also noted whether there was an obvi-
ous or plausible explanation why the DEC was not labelled 
or known. Such explanations included adverse event terms 
relating to lack of effect or medication errors, and too unspe-
cific drugs or adverse event terms. In this process, the asses-
sor made use of established medical knowledge and publicly 
available documentation, primarily current Summaries of 
Product Characteristics from Europe. Individual reports 
were not assessed.
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The primary outcome metric was the proportion of DECs 
classified as labelled or otherwise known, as those high-
lighted DECs can be considered robust findings with respect 
to the performance of disproportionality analysis.

3 � Results

3.1 � Characteristics of VigiBase Subsets

A high-level overview of the characteristics of the three 
types of VigiBase subsets investigated is provided in Table 1. 
The random subsets generally display little variability within 
a given subset size, which is expected. On the contrary, the 
subsets based on countries and ATC groups display huge 
variability in all metrics considered. For example, the small-
est country subset contains only seven reports, whereas the 
largest contains over 7.5 million reports.

For the random subsets, there seems to be very limited 
potential usefulness of disproportionality analysis for sizes 
below 2000–3000 reports, as indicated by the low numbers 
of DECs highlighted with IC025 > 0. More relevant from a 
practical perspective is to study this property within the 
group of country-specific subsets, especially for countries 
with low numbers of reports. Those results are presented 
in Fig. 1, indicating that there are in general more dispro-
portional DECs for the country-specific subsets than for 
the random subsets of corresponding size. For example, 
at 1000 reports, countries generate approximately 50–80 

disproportional DECs compared with a median of 15 (range 
5–30) for the random subsets. This is not too surprising, 
since reports from an individual country should form a more 
coherent collection than a random sample from all of Vig-
iBase. Still, even for the countries, < 500–1000 reports imply 
very few disproportional DECs.

3.2 � Rate of Spurious Associations

All results concerning spuriousness rates for dispropor-
tionality analysis in VigiBase subsets of various types and 
sizes, generated with the permutation analysis described in 
Sect. 2.4, are presented in Fig. 2. The spuriousness rate for 
the 500 random large subsets of 100,000 reports was tightly 
distributed with a median of 0.085 and a range between 
0.077 and 0.094 (see Fig. 2a). Considering this subset size a 
control group, an empirical threshold of 0.10 was set to dis-
tinguish between normal and elevated spuriousness rates. As 
presented in Table 1, some subsets were excluded because of 
having too few disproportional DECs in the original (non-
permuted) data: all random subsets of 250 reports and some 
of 500 and 750 reports were excluded; 16% (21 of 131) of 
the country-specific subsets were excluded, all containing 
fewer than 500 reports; and between 2 and 20% of ATC-
based subsets were excluded for levels 2–4.

From Fig. 2a, for randomly generated subsets, smaller 
size implies greater variability. To obtain a distribution of 
spuriousness rates with a higher end close to the 0.10 thresh-
old, somewhere between 3000 and 5000 reports are required.

Table 1   Overview of VigiBase subsets used in the investigations of the properties of disproportionality analysis. Where applicable, variability is 
reported as median (min–max)

DEC drug–event combination, IC information component
a Total number of subsets/number of subsets included in permutation analysis

Type of subset No. of subsetsa No. of reports No. of reported DECs No. of DECs with IC025 > 0

Random 250 500/0 250 (fixed) 728 (566–1067) 0 (0–4)
Random 500 500/118 500 (fixed) 1434 (1200–2182) 3 (0–11)
Random 750 500/461 750 (fixed) 2143 (1888–3131) 8 (2–20)
Random 1 k 500/500 1000 (fixed) 2826 (2467–4972) 15 (5–30)
Random 2 k 500/500 2000 (fixed) 5463 (4838–6633) 62 (37–92)
Random 3 k 500/500 3000 (fixed) 7966 (7296–9627) 128 (97–177)
Random 4 k 500/500 4000 (fixed) 10,372 (9563–11,753) 205 (161–249)
Random 5 k 500/500 5000 (fixed) 12,632 (11,899–14,539) 291 (245–338)
Random 7.5 k 500/500 7500 (fixed) 18,097 (17,142–19,839) 533 (477–593)
Random 10 k 500/500 10,000 (fixed) 23,176 (22,036–26,072) 795 (716–877)
Random 100 k 500/500 100,000 (fixed) 142,286 (139,472–145,252) 10,550 (10,249–10,812)
Country-specific 131/110 2802 (7–7,652,319) 2844 (8–1,823,144) 173 (0–260,568)
ATC level 1 14/14 1,532,465 (151,017–3,423,029) 722,124 (147,388–1,025,528) 86,347 (11,299–123,187)
ATC level 2 98/96 146,849 (3–1,704,151) 143,098 (15–809,020) 10,622 (0–100,821)
ATC level 3 287/269 27,292 (8–1,704,151) 33,218 (11–487,295) 1434 (0–53,700)
ATC level 4 980/786 4491 (1–913,516) 7475 (1–311,556) 203 (0–29,394)
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For country-specific subsets, shown in Fig. 2b, the results 
are quite different: all countries except one are below or 
just slightly above the threshold, with a single minor outlier 
with a spuriousness rate of 0.14. Only 7 (6%) of all included 
countries are above the 0.10 threshold. This difference can-
not be attributed solely to the fact that countries provide 
real rather than random collections of reports: subsets based 
on ATC groups at level 4 (see Fig. 2c) are also real and 
cover approximately the same range of report counts as the 
countries. However, 12% of those subsets are above the 0.10 
spuriousness rate threshold and some values are extremely 
high. If the comparison is restricted only to subsets of sizes 
between 500 and 10,000 reports, 7% of countries are above 
the threshold compared with 20% for ATC groups of level 4.

Subsets based on ATC groups at levels 1 and 2 display 
low spuriousness rates, which is expected from their gener-
ally high numbers of reports (see Fig. 2c). Even at level 3, 
results are very different from those presented earlier for 
level 4: only seven (8%) subsets in the 500–10,000 report 
range are above the 0.10 threshold. [Among all level 3 sub-
sets, the corresponding number is 12 (4%)].

3.3 � Clinical Assessment for Selected Countries

Table 2 presents overall characteristics of the nine lists of 
disproportionately over-reported DECs from Tunisia, Brazil 

and Indonesia at different time points, as well as the results 
from the clinical assessment of those DECs. The major 
finding is that across all countries and time points, the pro-
portion of labelled or otherwise known DECs is very high 
(87–100%). This suggests that the output from dispropor-
tionality analysis in these small national subsets of VigiBase 
is robust, in the sense that most highlighted DECs corre-
spond to established causal associations. At the same time, 
it leaves little opportunity for identifying new signals: in the 
current lists from Tunisia, Brazil and Indonesia, there were 
only 10 (5%), 56 (12%) and 21 (5%) DECs, respectively, that 
were not labelled/known.

The results for Brazil deviate slightly in the sense that for 
most of the DECs that were not labelled or otherwise known, 
an explanation was identified. The predominant explanation 
was an event term that suggested lack of effect. This was, 
however, not the case for the smallest Brazilian list, dating 
back to 2002.

4 � Discussion

Disproportionality analysis is the most common statistical 
approach to support the detection of safety signals for mar-
keted medicines from databases of individual case reports. 
This study provides important new information on the 
impact of database size on the robustness of the dispropor-
tionality analysis output. Contrary to common belief, our 
results suggest that disproportionality analysis can be used 
even in small databases without an elevated risk of high-
lighting spurious associations. However, at least for national 
databases, the potential for detecting new safety signals 
decreases with the number of reports. Based on our study, it 
is possible to formulate practical recommendations that will 
hopefully complement existing signal detection guidelines, 
in particular for national and regional databases with low 
volumes of reporting.

Using different kinds of subsets of VigiBase—randomly 
sampled subsets, country-specific subsets and subsets based 
on ATC codes of reported drugs—we have investigated the 
effect of database size on the rate of spurious associations 
for drug–event combinations (DECs) highlighted with the 
specific disproportionality algorithm IC025 > 0. Spurious-
ness rates were estimated by creating a permuted version 
of each data set, void of true associations but retaining the 
structure of the corresponding original data set. In addition, 
we have clinically assessed lists of DECs highlighted by 
disproportionality analysis for three different countries at 
three different time points that correspond to three levels 
of database size: between 5000 and 10,000 reports, < 5000 
reports and < 1000 reports.

Our major finding is that, in contrast to random and ATC-
based subsets, country-specific subsets were consistently 
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Fig. 2   The rate of spuriously highlighted drug–event combinations 
by disproportionality analysis (defined as IC025 > 0) for different types 
and sizes of VigiBase subsets. a shows box plots for randomly gener-
ated subsets of sizes between 500 and 100,000 reports. Each box is 
based on 500 subsets, except for those with 500 reports (118 included 
subsets) and 750 reports (461 included subsets). b shows results for 
country-specific subsets. Of 131 countries, 21 (16%) were excluded, 

all with fewer than 500 reports. c displays results for subsets based on 
ATC groups; 2%, 6% and 20% of subsets were excluded at level 2, 3 
and 4, respectively. The horizontal lines at 0.10 indicate an empirical 
threshold for normal spuriousness rates derived from large subsets; 
individual points in (b, c) above and below this threshold are drawn 
as red squares and blue circles, respectively. Note that all x axes are 
logarithmic and adjusted to the data of the individual panels
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very robust to false-positive associations. Among the 110 
assessable countries, only 6% were above the empirical spu-
riousness rate threshold based on large databases and only a 
single country deviated more than marginally. These results 
were corroborated by those from the clinical assessment: 
even for the smallest back-dated subsets of reports, most 
DECs highlighted by disproportionality analysis were known 
associations. Because we were unable to reliably estimate 
spuriousness rates for several of the countries with < 500 
reports in VigiBase, our recommendation is still to not use 
disproportionality analysis in national or regional databases 
below 500 reports. Also, below this size, the total number of 
disproportional DECs was very low (< 50, as seen in Fig. 1), 
offering minimal potential for discovering safety signals.

For small databases or subsets of larger databases that 
are not based on an individual country or other regional 
entity, our results for random and ATC-based subsets can 
be used to form generic recommendations. From Fig. 2a, 
a lower limit somewhere between 3000 and 5000 reports 
seems appropriate, as the variability of the spuriousness 
rates rapidly increases below those sizes. This agrees rea-
sonably well with the results for ATC-based groups at level 
4 (see Fig. 2c), where extreme spuriousness rates disappear 
from around 5000 reports. Also, above this size, the propor-
tion of subsets that exceed the empirical 10% spuriousness 
rate threshold is 33 of 471 (7%), which is very close to the 
proportion for all countries. All results considered, we find 
5000 reports to be an appropriate generic recommendation.

All our results suggest that disproportionality analysis can 
be used in considerably smaller databases and subsets than 
we had expected. Our trivial and plausible explanation is 
that statistical associations cannot appear without the under-
lying data supporting them: all common disproportionality 
analysis algorithms in use require at least three reports on 
an individual DEC for it to be highlighted, and those reports 
must be submitted by someone for some reason. In our clini-
cal assessment of data from Tunisia, Brazil and Indonesia, 
we did not see any evidence of entirely nonsensical DECs 
being highlighted, not even when the total number of reports 
was < 1000. Nevertheless, it is very important to realise that 
even if disproportionality analysis may be robust in small 
databases, it may not contribute significantly to signal detec-
tion compared with qualitative methods.

By design, our study is limited to investigating robustness 
of disproportionality analysis in terms of avoiding false-pos-
itive (spurious) associations, which is a basic prerequisite for 
an effective first-pass screening tool in databases of sponta-
neous reports. The practical consequence of a false-positive 
association will typically be a waste of manual resources 
required to refute this association at a later stage. Its sever-
ity will vary greatly depending on the context but should 
not be neglected for national or regional pharmacovigilance 
centres in generally resource-limited settings, or where 

medical expertise is scarce. False-negative associations 
(i.e. true safety signals not detected by disproportionality 
analysis) are at least as important but in general more dif-
ficult to investigate. Doing this properly requires reference 
sets of time-stamped emerging safety issues [22], which are 
difficult to obtain in general, and practically infeasible on 
a country-by-country basis. Even the reference sets that do 
exist are very unlikely to provide a complete gold standard 
of all true positives, which obviously limits the possibilities 
of directly assessing false-positive and false-negative asso-
ciations alike. Our permutation analysis provides a proxy for 
the assessment of false positives, but unfortunately an analo-
gous approach for false negatives is much more challenging 
to devise. Intuitively though, smaller databases should suffer 
more from false-negative associations than larger databases. 
Our results indirectly support this notion by establishing a 
clear relationship between the number of reports and the 
number of DECs highlighted by disproportionality analysis, 
for the country-specific subsets. This puts an upper bound on 
the number of true associations that actually can be detected 
by means of disproportionality analysis.

Data homogeneity is another factor not studied here that 
could influence the performance of disproportionality analy-
sis. If the data contains a limited number of similar drugs or 
adverse events, the background reporting rates used to com-
pute the expected number of reports may be inappropriately 
high. The same can happen if one or a few DECs account for 
a high proportion of reports, an effect often called masking. 
Both of these issues can potentially cause an inflation in 
the false-negative rate, and it has been suggested that small 
databases might be particularly vulnerable to this [10]. We 
recommend being mindful of these aspects and possibly 
investigating frequency distributions of drugs and adverse 
events, especially if analysing subsets of a database where 
skewness may be expected. Additional research should be 
conducted to investigate in more detail the impact of low 
numbers of reports on the false-negative rate and how this 
relates to data homogeneity. False negatives are important 
since, in contrast to false positives, they cannot easily be 
identified during subsequent manual review.

A limitation of our clinical assessment is that the clas-
sification of DECs as either known or not was made using 
current knowledge. This may have overestimated the pro-
portion of known DECs, at least for the lists based on back-
dated subsets. Additionally, for accessibility and language 
reasons we have used European product labels. The adverse 
effects included therein might not be known in the selected 
countries, or there could be particular circumstances that 
would make some of the DECs classified as known by us 
to be considered signals in the local setting. Nevertheless, 
the fact that a disproportionately over-reported DEC has 
been included in a product label anywhere validates the 
highlighted statistical association as such. Lastly, all our 
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analyses are based on a single measure of disproportional-
ity, the IC, and a single algorithm, IC025 > 0. While this is a 
limitation, all commonly used measures are similar enough 
for drug-event analysis that we would expect our results to 
generalise reasonably well beyond the IC [23]. As for the 
choice of algorithm, we have used the standard form of IC 
analysis because this seemed the most relevant from a practi-
cal perspective. Using other algorithms, either with the IC 
or another measure of disproportionality, might give slightly 
different results, especially if using a non-standard algorithm 
with either very high or very low propensity to highlight 
disproportionate reporting.

5 � Conclusions

This study shows that disproportionality analysis can be used 
in small collections of individual case reports without great 
risk of generating excessive numbers of spurious findings. 
Based on our results obtained with the disproportionality 
analysis algorithm IC025 > 0, we recommend a lower size of 
at least 500 reports for national databases, and at least 5000 
reports for databases or subsets of databases constructed in 
other ways. This study does not consider the issue of true 
safety signals not detected by disproportionality analysis, 
and does not suggest that disproportionality analysis will 
be equally effective and meaningful at all database sizes. 
For small databases, where the risk of false-negative asso-
ciations is most likely higher, case-by-case review or sys-
tematic review of all reported drug-event combinations is 
probably advisable, resources permitting. Regardless of 
database size, it is imperative to acknowledge the primary 

role of disproportionality analysis as a tool for hypothesis 
generation, and the importance of subsequent manual clini-
cal review.
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Table 2   Results from the 
clinical assessment of current 
and backdated lists from 
Tunisia, Brazil and Indonesia 
of drug–event combinations 
reported disproportionately 
often

DEC drug–event combination, IC information component
a As of the end of the data extract (i.e. 2 January 2018)
b This is data collected prior to Indonesia joining the WHO Programme for International Drug Monitoring 
in 1990, which has been retroactively added to VigiBase

Combination list No. of reports No. of DECs with 
IC025 > 0

No. of labelled/known DECs

Yes No (with/with-
out explanation)

Tunisia currenta 7189 201 191 (95%) 10 (0/10)
Tunisia 2010 4209 100 99 (99%) 1 (0/1)
Tunisia 2000   634   10 9 (90%) 1 (0/1)
Brazil currenta 6064 479 423 (88%) 56 (39/17)
Brazil 2015 4297 315 273 (87%) 42 (30/12)
Brazil 2002 932 29 29 (100%) 0 (0/0)
Indonesia currenta 6925 389 368 (95%) 21 (1/20)
Indonesia 2013 4156 191 189 (99%) 2 (0/2)
Indonesia 1976b 564 21 20 (95%) 1 (0/1)
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