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High resolution temporal profiles in 
the Emissions Database for Global 
Atmospheric Research
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Emissions into the atmosphere from human activities show marked temporal variations, from 
inter-annual to hourly levels. The consolidated practice of calculating yearly emissions follows the 
same temporal allocation of the underlying annual statistics. However, yearly emissions might not 
reflect heavy pollution episodes, seasonal trends, or any time-dependant atmospheric process. This 
study develops high-time resolution profiles for air pollutants and greenhouse gases co- emitted 
by anthropogenic sources in support of atmospheric modelling, Earth observation communities 
and decision makers. The key novelties of the Emissions Database for Global Atmospheric Research 
(EDGAR) temporal profiles are the development of (i) country/region- and sector- specific yearly profiles 
for all sources, (ii) time dependent yearly profiles for sources with inter-annual variability of their 
seasonal pattern, (iii) country- specific weekly and daily profiles to represent hourly emissions, (iv) a 
flexible system to compute hourly emissions including input from different users. This work creates 
a harmonized emission temporal distribution to be applied to any emission database as input for 
atmospheric models, thus promoting homogeneity in inter-comparison exercises.

Background & summary
Owing to the increasing need of integrated climate and air quality policies, implementation of mitigation and 
adaptation measures and the application of top-down approaches using Earth observations to address environ-
mental issues, real-time mapping of human emissions of greenhouse gases (GHGs) and air pollutants is becoming 
of high relevance1–3. In this respect, annual emission estimates might be unable to reflect acute heavy pollution 
episodes4, and to model the dynamics of atmospheric formation of pollution loadings during different periods of 
the year and different hours of the day5. Even moderate total annual emissions for a certain region can be affected 
by periodic intensive emissions. Temporally disaggregated emissions are also essential to estimate surface emis-
sion fluxes of atmospheric composition (including reactive gases and greenhouse gases), and are a required input 
for advanced chemical transport models (CTMs)6,7, which simulate hourly concentrations of air pollutants8–10 
and are used in support of the legislation.

Human activities emit greenhouse gases and air pollutants with different temporal variation, depending on 
the type of activity. A review of temporal profiles from literature and profiles used by atmospheric models is con-
ducted, despite the relatively limited amount of studies in this field. Few studies focus on the monthly variations 
of the emissions4,11,12, while little attention has been paid to daily and hourly variations. In addition, the spatial 
and sectorial resolutions of relevant works are also limited, often covering only a specific region or sector8,13,14. 
Until recently, global emission inventories mainly provide anthropogenic emissions on annual or monthly time 
series15–19.

In this study, sector- and country-specific temporal profiles (EDGAR_temporal_profiles_r1, available at 
figshare)20 are developed and integrated into the EDGAR database to produce monthly and hourly emission time 
series and gridmaps. The novelty of this work relies on the development of (i) country/region- and sector- specific 
yearly splitting profiles for all EDGAR emissions, (ii) time dependent yearly profiles for emission sectors with 
inter-annual variability of their seasonal patterns, (iii) country-specific weekly and daily profiles to represent the 
hourly variations of the emissions, taking into account country specific holidays and weekends definition, (iv) a 
flexible system to compute hourly emissions including input from different users. The EDGAR temporal profiles 

1European Commission, Joint Research Centre (JRC), Ispra, Italy. 2Institute of Energy Economics and Rational Energy 
Use (IER), Universität Stuttgart, Hessbruehlstr. 49a, 70565, Stuttgart, Germany. ✉e-mail: monica.crippa@ec.europa.eu

Data Descriptor

OPEN

https://doi.org/10.1038/s41597-020-0462-2
http://orcid.org/0000-0002-9335-0709
mailto:monica.crippa@ec.europa.eu
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-020-0462-2&domain=pdf


2Scientific Data |           (2020) 7:121  | https://doi.org/10.1038/s41597-020-0462-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

can be applied to any air pollutant (SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, OC) and GHG (CO2, CH4, 
N2O) since they have been developed for all anthropogenic emissions sources which often co-emit a variety of 
pollutants. As an exemplification, in this work we also compute monthly emission time series of EDGARv4.3.2 
for all pollutants (CO2, CH4, N2O, SO2, NOx, CO, NMVOC, NH3, PM10, PM2.5, BC, OC). The EDGAR temporal 
profiles system is easily updated when new information is available and can be applied to any global and regional 
database.

As applications to modelling and policy related fields, we would like to point out that:

•	 EDGAR is used as default emission inventory in air quality modelling (e.g. Hemispheric Transport of Air Pol-
lution (HTAP_v1 and HTAP_v2)21, FP7 PEGASOS15, etc.) and model intercomparisons (e.g. HTAP, AQMEII, 
EURODELTA, etc.7). In particular, global and regional models employ their own emission time distribution, 
giving rise to heterogeneity of results and difficult interpretation of model differences. Using a common emis-
sion temporal distribution could promote homogeneity in intercomparison exercises.

•	 EDGAR emission grids are used by the Global Carbon Project as a-priori fluxes to run inverse atmospheric 
modeling22. With the increased interest in the monitoring and verification of GHGs using top-down meas-
urements temporal profiles are equally needed.

•	 EDGAR can support analysis in the agricultural sector providing more accurate information to assess impacts 
on crops23.

•	 EDGAR is widely used in support of policy design, treaty compliances, Intergovernamental Panel on Climate 
Change (IPCC) and emission verification (http://verify.lsce.ipsl.fr/). High time resolution emissions enhance 
the monitoring capability of EDGAR by adding seasonal variability to identify more targeted intervention at 
regional and global scale8,24.

This work is mainly relevant for policy makers looking at the hemispheric transport of air pollution where the 
global and regional picture of the emissions is needed to model heavy pollution events not only affected by local 
sources but also by transported pollution. Local authorities focusing on local pollution events might complement 
the EDGAR data with local (city or province scale) emission inventories.

Methods
This section describes (i) how higher temporally distributed emissions (total country and sectorial emissions as 
well as spatially distributed emissions) are derived from annual emissions, (ii) how yearly, weekly and daily pro-
files (in terms of weighting factors) are developed.

General approach to distribute annual emissions to high time resolution data.  The general 
approach to account for the temporal variation of emissions is to distribute the annual total to monthly, daily 
and hourly emissions using yearly (12 coefficients for monthly variation in a year), weekly (7 coefficients for daily 
variation in a week), and daily (24 coefficients for hourly variation in a day) profiles. Temporal disaggregation 
of emission data may increase the range of data uncertainty as precise estimate of monthly, daily, and hourly 
distributions of emissions is quite complex and heterogeneous, in particular when operating at the global scale25. 
However, most of these studies are limited in scope with regard to the coverage in emission sources, time frames, 
and geographical regions.

Till present, the EDGAR database provides annual and monthly sector- and country- specific emission time 
series and maps but with some limitations that we are overtaking with this study. The ‘Online-only Table 1’ pro-
vides an overview of sector specific yearly profiles previously used by EDGAR16 and the current work (EDGAR_
temporal_profiles_r120). In Janssens-Maenhout et al.16 the distribution of yearly emissions to monthly data is 
mainly based on regional seasonal factors obtained from scientific literature (see ‘Online-only Table 1’) which 
are applied to all world countries based on their regional belonging (the Northern and Southern Hemispheres 
and the Equator). For the Southern Hemisphere, the Northern Hemisphere profiles were assumed shifted by six 
months, and for the countries in the equatorial region no seasonality was included (scaling factors of 1).

In this study, the most appropriate temporal profile for each EDGAR process is identified through a quality 
assessment procedure. All EDGAR processes (e.g. energy, industry, residential, transport, agriculture, etc., for a 
total number of 227 processes) and all countries (226 countries over the globe) are covered and allow the dis-
aggregation of annual emissions over time for all co-emitted air pollutants and greenhouse gases by the same 
sources. The temporal profiles developed in this work can be applied to any greenhouse gas or air pollutant 
primarily co-emitted in the atmosphere by any IPCC emission reporting category (with the exception of Land 
Use, Land Use Change and Forestry (LULUCF) which is currently not included in EDGAR and in the temporal 
profiles). Particulate matter emissions from e.g. fireworks, wind erosion in agriculture, resuspension, etc. are 
not included in the EDGAR emission estimates and their seasonal pattern might need to be described through 
atmospheric models.

Combining annual emissions and temporal profiles, monthly and hourly disaggregated emission data for dif-
ferent sources and countries are generated for a representative year 2005 when no information over historic time 
series is available. The 2005 year is selected for this purpose because it is a relatively recent year without anom-
alies (e.g. in terms of climate, economy, etc.) and is a base year for many mitigation measures (e.g. Nationally 
Determined Contributions under the Paris Agreement).

Yearly, weekly, and daily profiles are integrated into the EDGAR database in order to disaggregate annual 
emissions into finer data; to distribute the annual emissions to hourly emissions per grid the following relation-
ship is used:
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where:

•	 E = Emissions;
•	 x = Country, sector, year and month specific activity;
•	 y = Country, sector and day specific activity;
•	 z = Country, sector, day, hour and time zone specific activity;
•	 n = month- and year- specific number of days;
•	 i = grid code (lon/lat);
•	 s = Sector;
•	 h = hour (from 1 to 24);
•	 c = Country;
•	 j = Year;
•	 m = Month (from 1 to 12);
•	 d = Weekday;
•	 t = Time zone

Computing monthly emissions: region and country mapping.  In order to distribute yearly emis-
sions to monthly data, all world countries are grouped into 23 regions for which region-specific yearly profiles are 
defined. Regional yearly profiles are defined mainly based on three parameters: i) climate zones, ii) heating degree 
days (HDD), and iii) ecological zones, defined as following:

	(1)	 Seasonal cycles are different for the different climate zones (e.g. equator (band between ±30°N), Northern 
(above 30°N) and Southern Hemispheres (below 30°S)), consequently affecting the seasonal variation of 
the activities and emissions.

	(2)	 Weather conditions strongly affect the energy consumption and emissions, especially extremes of temper-
atures. HDD is the cumulative number of degrees by which the mean daily temperature falls below a given 
temperature called the “reference temperature” (usually 18 °C or 19 °C which is adequate for human com-
fort). A “degree day” is calculated as the difference between the reference temperature and the average of 
the maximum and minimum temperature over the day. HDD is regarded as a reliable indicator for appro-
priately accounting for the effect of weather on energy demand. Based on a review of HDD data sources, 
HDD data are collected from the CMCC-KAPSARC degree days database26, which provides average HDD 
over the last decades for 147 countries. For countries which are not included in the CMCC-KAPSARC 
database, extrapolation is made considering mainly geographical proximity.

Fig. 1  Regional aggregation of world countries for yearly profiles mapping.
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	(3)	 Temporal variation of activities and emissions can also be different among various ecological zones, espe-
cially for agriculture and biomass burning. The Food and Agriculture Organization of the United Nations 
(FAO) defines ecological zones considering climatic variables such as mean 24-hour temperature, diurnal 
temperature range, sunshine fraction, wind speed, relative humidity, wet day frequency and precipitation27.

Based on the above three parameters, all countries are grouped into 23 regions for yearly profiles mapping, as 
shown in Fig. 1. The definition of the regions is also listed in the file EDGAR_temporal_profiles_r1.xls.

Computing weekly, daily and hourly emissions.  The final stage of the methodology to disaggregate 
emissions in time is the production of hourly emissions at the global scale in form of total and/or sector specific 
emissions and gridded data. Weekend days, holidays, and time zone offset can be different for different countries 
and have relatively big influence on weekly and daily profiles. Therefore, to integrate weekly (daily share) and daily 
profiles (hourly share), the information on the day type (as defined in Table 1) of each day should be considered, 
since the hourly variation of the activities for certain sectors (e.g. transport) can be different on a weekday and on 
a holiday in different countries.

The definition of the weekend days is also different among countries. Weekend types with different weekend 
days are defined for all world countries and mapped into EDGAR. Globally, there are six weekend types which are 
included in the EDGAR model, as specified by Table 2. Fixed and variable holidays are also compiled for all the 
countries over the 1970-nowadays time series. Coupling all these information with country- specific weekly and 
daily profiles into EDGAR, hourly emission time series and grid maps are produced.

In addition, to integrate the time zone information into EDGAR, time zone boundaries are extracted from 
time zone boundary builder (https://timezonedb.com/download). Country code, offsets from UTC, and sum-
mertime shift (from 1970 till nowadays, https://github.com/evansiroky/timezone-boundary-builder, https://
www.timeanddate.com/time/dst/2005.html) are identified and compiled for all time zone regions. The develop-
ment of such a system allows the representation of the hourly emissions during a specific day or heavy pollution 
episode in one global map.

Day type Definition

1 Weekday

2 Weekend day one

3 Weekend day two or public holiday

Table 1.  Definition of day type.

Weekend type Weekend days

1 Friday

2 Friday, Saturday

3 Friday, Saturday, Sunday

4 Saturday, Sunday

5 Sunday

6 Thursday, Friday

Table 2.  Definition of weekend type.

Sector
Indicator data for 
monthly variation

Indicator data for 
daily variation

Indicator data for 
hourly variation

Power plants Fuel use
Temperature Load curves Load curves

Industrial combustion plants
Production rate
Fuel use
Temperature

Working times
Holidays Working times

Small combustion plants Fuel use
Temperature User behavior User behavior

Refineries Fuel use
Oil throughput

Working times
Holidays

Working times
Shift times

Industrial processes Production rate Working times
Holidays

Working times
Shift times

Road transport Traffic counts Traffic counts Hourly traffic

Table 3.  Driving forces (indicator data) for the temporal variations of activities and emissions of significant 
sources in the IER database36.
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Development of temporal profiles for anthropogenic emissions.  The basis of our work is the IER 
(Institute of Energy Economics and Rational Energy Use) database of temporal profiles to distribute the annual 
emissions from EDGAR, since it includes a large number of source- and country- specific temporal profiles devel-
oped within different studies28–33 and applied in several projects34–38. A review of temporal profiles from other 
studies and used by atmospheric models was also conduced. There are relatively limited amount of studies in this 
field. Studies have more focus on the monthly variations of emissions4,11,12, while little attention has been paid to 
daily and hourly variations39,40. The spatial and sectoral resolutions of relevant studies are also limited, often only 
for a specific region or sector8,13,41. Comparison of the IER database with the temporal profiles used by certain 
atmospheric models and other emission inventories shows good agreement across sectors, and a higher sector 
and region resolution in the IER database42.

The approach of deriving temporal profiles is based on statistical data sets (e.g. Eurostat, ENTSO-E, UN 
monthly bulletin, etc.) that can be used as proxy data for the temporal profile computation. The IER temporal 
profiles database covers the following main sectors: energy industry, fuels transformation/non-energy use, com-
bustion in manufacturing industry, non-metallic mineral processes, chemical processes, metal processes, inter-
national and domestic aviation (distinguishing between cruise, climb and descent, take-off and landing), road 
transportation, non-road ground transport, international and domestic shipping; residential combustion, oil pro-
duction and refineries, solvent use, agriculture, solid waste disposal, fossil fuel fires, large scale biomass burning.

Table 3 provides an overview of the indicator data used to represent the drivers of the temporal variations of 
activities and emissions of significant sources in the IER database. For example, fuel use and temperature are the 
main indicators for monthly variations of activities in power plants, industrial and small combustion plants. Daily 
and hourly variations of industrial activities are indicated by working times, time shifts and holidays. Temporal 
variations of transport activities are represented by traffic counts data.

In addition to the information provided by the IER database, for the power generation, residential combus-
tion and agriculture sectors, further developments of the yearly profiles have been included in the current work, 
as discussed in the next paragraphs. As major improvement compared to the IER database is the generation of 
time dependent temporal profiles for these sectors, reflecting the inter-annual variability of the key indicators 
used to temporarily distribute the annual emissions into monthly data. The ‘Online-only Table 1’ compares the 
data sources used to derive the yearly profiles in EDGAR_temporal_profiles_r1 and in the former version of the 
EDGAR database (EDGARv4.3.216).

Due to the limited data availability for all countries, it is not always possible to consider regional or local char-
acteristics for each country. Country-specific temporal profiles are extrapolated to the globe using information 
on climate zone, seasonal variation, average temperature, and other socio-economic parameters. Yearly, weekly, 
and daily profiles expressing the temporal variation of activities and emissions are then compiled in the database 
for all countries.

Fig. 2  Inter-annual variability of monthly scaling factors over the 2000–2017 time series for the power 
generation sector for Asian countries (red), North America (light blue), Oceania (dark green) and Latin 
America (blue). Mean values ± one standard deviation are represented.
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Concerning the hourly profiles development, the aim of this study is to build a system within the EDGAR 
database allowing the downscale of annual emissions to hourly data at gridcell level. The hourly profiles imple-
mented in the current work do not always represent the best profile for each sector and country combination. 
However, having rather generic profiles reduces the discontinuity from cell to cell due to the application of the 
same hourly profile through all the countries. The end-users of the EDGAR data can however provide ad hoc tem-
poral profiles to be implemented in the EDGAR system. Moreover, EDGAR data are often used in global chemical 
transport models which do not always require hourly emission data as input.

Temporal profiles for power generation.  Electricity production and fuel consumption in the power 
sector coupled with ambient temperature are considered as the indicators of the yearly variation of power gen-
eration emissions. In order to develop monthly profiles to be applied to the EDGAR power generation emis-
sions, monthly electricity statistics are gathered from IEA (https://www.iea.org/statistics/monthly/#electricity) 
and other national statistics. IEA provides monthly statistics for electricity production (in GWh/month) for dif-
ferent type of fuels (natural gas, oil, coal, biofuels, other) for all OECD countries from January 2016 till 2018, 
while from January 2000 onwards the monthly statistics of produced electricity by country are not provided by 
fuel category. OECD countries include: Australia, Austria, Belgium, Canada, Chile, Czech Republic, Denmark, 
Estonia, Finland, France, Germany, Greece, Hungary, Iceland, Ireland, Italy, Japan, Korea, Latvia, Lithuania, 
Luxembourg, Mexico, Netherlands, New Zealand, Norway, Poland, Portugal, Slovak Republic, Slovenia, Spain, 
Sweden, Switzerland, Turkey, United Kingdom, United States. Therefore the same monthly profile is assumed for 
all fuels over those years. For the years before 2000, the same monthly profile as in 2000 is assumed. For China, 
information on the monthly GWh produced for all fuels is obtained from the National Bureau of Statistics of 
China (http://www.stats.gov.cn/english/), covering the 1990–2017 period. Regional averages are also computed 
using the country specific yearly profiles and applied to the remaining world countries consistently with the 
regional aggregation shown in Fig. 1. Emissions from the different power plant types included in the EDGAR 
database (i.e. auto producers electricity plants, auto producers heat plants, auto produced cogeneration, public 
cogeneration, public district heating, public electricity production, own use of electricity and heat) are distributed 
assuming the same temporal pattern of the electricity production, being the latter the major contributor of the 
emissions of the whole energy sector (e.g. in 2018, 76% of global fossil CO2 emissions from power generation 
are produced by public electricity generation). For completeness, profiles for nuclear power plants and pumped 
storage of electricity are estimated under the assumption of continuum operation (although they have a yearly 
shutdown for at least 3 weeks).

Figures 2–5 show the mean seasonal variations of the yearly profiles (i.e., monthly scale factors) obtained from 
the IEA monthly electricity statistics over the time period 2000–2017 for the 35 OECD countries and obtained 
from the National Bureau of Statistics of China over the time 1990–2017. This analysis allows us to evaluate the 
representativeness and stability of each profile for a given country over the years and to identify specific features 

Fig. 3  Inter-annual variability of monthly scaling factors over the 2000–2017 time series for the power 
generation sector for Central European countries (light green) and Turkey (grey). Mean values ± one standard 
deviation are represented.
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of the monthly variation of the energy production depending on the geographical location of each country. Larger 
standard deviations occur for Lithuania, Latvia, Finland, Iceland, Norway and Sweden, meaning that for these 
countries larger variations in the power generation happen from one year to another probably due to changes 
in economic variables, meteorological conditions as well as electricity trade. The EDGAR database is not an 
input-output model and currently it does not include trade information which might have some effects also on 
the electricity patterns described in this work. In addition, data availability might influence the different standard 
deviations represented in Figs. 2–5. Higher contributions of the energy sector are expected over the cold months, 
while lower contributions are found over the warmer months (see as an example the seasonal pattern of Northern 
European countries represented in Fig. 4). A particular feature of the Southern European countries characterized 
by very hot summer periods is the presence of local peaks also over the summer months due to the energy pro-
duction for cooling (see Fig. 5).

To calculate the daily variation, the influence of weekdays is taken into account, while to resolve hourly emis-
sions typical national heat and electricity demand profiles are implemented accordingly with the methodology 
developed by Adolph29, showing lower contributions at night and characteristic peaks during the day time.

Temporal profiles small scale combustion.  Emissions from small scale combustion (e.g. the residen-
tial sector) show a significant seasonal variability, reflecting the climatic conditions of each country. In order to 
account for the ambient temperature dependence of the heating system in the residential sector, heating degree 
days (HDD) have been computed using the 2 meters temperature data with hourly resolution obtained from the 
ERA5 atmospheric reanalysis of global climate produced by ECMWF within the Copernicus frame over the years 
1980 till 2017 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview). 
Hourly averages are computed using the temperature data available for each gridcell at 0.25° × 0.25° within each 
country, thus allowing the computing of country specific yearly profiles for this sector based on HDD (assuming a 
reference temperature of 18 °C for all countries to allow comparability amongst them). In addition to the seasonal 
variability associated with the HDD metric, a proportion of energy consumption is assumed for each of the 23 
regions to be constantly used for the production of hot water in the residential sector based on the IER dataset42. 
EDGAR emissions from the residential sector are related with the combustion of fuels for heating and cooking in 
household/commercial/other purposes. Therefore, HDD is an indicator that suites this purposes globally (north-
ern and southern hemispheres) and this is also the reason why the temporal profiles do not incorporate Cooling 
Degree Days (CDD) since mainly related with electricity consumption.”

To calculate hourly emissions for the residential sector, hourly patterns of fuel use for heating purposes and 
hourly patterns of production related fuel use following the typical daily working times are considered within the 
IER database. However, hourly variation of heating related fuel use depends on heating technology, insulation 
standards and climatic conditions, variables that are partly included in the current work. For central-heating, 
we assume a reduction of residential emissions at high ambient temperature, showing a reduction of residential 

Fig. 4  Inter-annual variability of monthly scaling factors over the 2000–2017 time series for the power generation 
sector for Northern European countries (pink). Mean values ± one standard deviation are represented.
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emissions at night time. For coal or wood stoves, two daily peaks are observed, corresponding to the morning 
and late-afternoon or evening fueling of the stoves in the early morning and after returning home from work. 
In the IER database42, hourly patterns for households are derived from an evaluation of a comprehensive sur-
vey in Germany in VDI (Verein Deutscher Ingenieure) guideline 206743. For commercial and institutional heat 
plants a similar hourly pattern of the household combustion activities is assumed due to the lack of information. 
Additional information from surveys in different small consumers groups conducted by Seier32 is also included.

Temporal profiles for agriculture.  Monthly variation of agricultural emissions can be quite different among 
different sub-sectors (e.g. animal emissions, manure emissions) and pollutants (e.g. CO2, CH4, NH3). Moreover, tem-
poral variations of agricultural emissions can vary from one year to another as they are related to meteorological 
conditions, e.g. temperature, wind speed (Friedrich and Reis, 2004). Owing to the lack of data and studies and the 
complexity of the problem, yearly profiles for agriculture sector are associated with relatively higher uncertainties36. 
Atmospheric modelers often use as reference for the seasonality, the monthly CH4 emissions of rice44 (https://data.giss.
nasa.gov/ch4_fung/). Among all cultivation activities, we dedicated special effort in including seasonal profiles for the 
rice cultivation sector, representing a relevant source of CH4 emissions in the world (ca 11% in 201216). Emission from 
rice cultivation in top methane emitters countries like China and India (∼20% and ∼10% of global share) accounts for 
over 4% and 1% of total methane emission, respectively. For the other crop related emissions (wheat, maize, etc.), the 
assumption of constant production over the year is made, leaving developments for this subsectors to a future release.

The recent RiceAtlas45 produced by the International Rice Research Institute (IRRI) provides a comprehensive 
rice calendar with monthly specification at country to sub-country level, covering the whole world with monthly 
cultivated area and production data. The split between the different agro-ecological ecosystem types is already 
taken into account by EDGAR, in that four specific emission factors are implemented depending on the fraction 
of cultivated area: rainfed, deep water, irrigated, and upland (never flooded for a significant period of time).

The month-varying weights in Fig. 6 represent the share of the area cultivated to rice as average in the years 
2010–2012, as provided by the RiceAtlas, and aggregated for the sub-regions of Fig. 6. The seasonality reflects the 

Fig. 5  Inter-annual variability of monthly scaling factors over the 2000–2017 time series for the power 
generation sector for Southern European countries (yellow) and Western European countries (grey). Mean 
values ± one standard deviation are represented.

https://doi.org/10.1038/s41597-020-0462-2
https://data.giss.nasa.gov/ch4_fung/
https://data.giss.nasa.gov/ch4_fung/


9Scientific Data |           (2020) 7:121  | https://doi.org/10.1038/s41597-020-0462-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

multiple crop patterns during the majority of the year (e.g. regions 7, 8 and 9, including India and Indonesia), or 
concentrated during half year (typically from early/late spring to early/late autumn), as for example in region 16.

Laborte et al.45 explain the limitations of other existing rice calendars datasets, which include poor or outdates 
coverage, missing information about multiple crop per year. The RiceAtlas fits the purpose of providing EDGAR 
with the most updated and comprehensive monthly disaggregation available. Early studies by e.g. Matthews et al.44, 
based on FAO statistics for annual production and on a variety of sources to derive monthly splitting, provided an 
exhaustive compilation of monthly cultivated rice area and associated latitudinal methane emission, which has been 
used as reference for emission calculation by a number of studies (e.g. Bergamaschi et al.46). Comparing the time series 
of monthly rice calendar predicted by Matthews et al.44 and by the RiceAtlas for four among the top ten world rice 
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Fig. 6  Monthly weights for rice-area and for the 23 world regions.
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producers, the profiles for China and India do not show any significant offset although a weak deviation in magnitude 
is observed. For USA, RiceAtlas predicts an earlier cultivation and quicker ending respect to Matthews et al.44, peaking 
in April-May rather than from May to September and terminating in October rather than November. For Indonesia, 
the difference between the two monthly series is quite substantial, with seasonal offset and difference in the peaking 
period, possibly due to change of practice or difficulty in retrieving monthly splitting for this country. In this sense, the 
consistency of the recent RiceAtlas datasets can be thought as a reliable update for compilation of emission inventories.

Animal related emissions estimates do not show a yearly pattern, since intensive production activities in this 
sector are kept rather constant. However, some variations in the emissions over the course of the year might be 
found in countries where animals are grazing in summer months and kept in stables in winter periods (or rainfall 
periods) and where animal feed varies considerably throughout the seasons. In this work we rely on the assumption 
of intensive animal production with no seasonality for indoor husbandry (mainly cattle, pigs and poultry), although 
representing a simplification of country specific practices which a global database like EDGAR cannot modulate.

Hourly emission patterns follow animal activity, which is mainly influenced by times of feeding, drinking 
and resting and thus shows a clear day/night-rhythm. Typical courses of emissions are examined in the work of 
Comberg & Wolfermann47, Hahne et al.48, Hinz & Linke49, Kaiser50 and Mayer51.

The temporal variability of emissions from manure management is mainly dependent on temperature and 
grazing periods, although the amplitude of this seasonality is rather uncertain. No detailed information is availa-
ble about the hourly pattern of manure management, therefore a day/night-rhythm determined by the influence 
of temperature is assumed within the IER database36.

To our knowledge, no global data is available regarding enteric fermentation in ruminants and manure man-
agement (only few local measurements could be found52,53 to better describe the seasonal variation of animal 
related emissions.

Temporal profiles for road transport.  Road transport emissions are characterized by very strong seasonal 
and hourly variations. Temporal profiles included in this work are entirely based on the IER database36, whose 
methodology and assumptions are briefly summarized below.

Monthly variations of road transport emissions are gathered from monthly national energy statistics available 
from EUROSTAT54 for Europe. Additional information is also included from traffic flow data (e.g. traffic counts) 
although appropriate traffic counts data are often not available. While different vehicle types show a similar tem-
poral behavior, different road types (e.g. motorways, rural and urban roads) show different temporal patterns. 
Stronger seasonal variation is found for motorways than for rural and urban roads, and a stronger seasonal var-
iation in rural areas than in urban areas. Hourly variations, instead, are quite similar for different road types and 
regions. Whereas evaporation emissions mainly depend on temperature, exhaust emissions are connected with 
the variation of traffic volume. Road transport emissions are characterized by a very strong hourly variation, with 
daytime peaks up to 7 times higher than the lowest emissions happening at night time.

Temporal profiles for other mobile sources.  Other mobile sources include air, ship and railway traffic, 
and off-road vehicles. Landing and take-off cycles (LTO cycles), passenger numbers and freight statistics available 
from airports or the International Air Traffic Association (IATA) are used to generate profiles for aircraft emis-
sions in the EDGAR database. However, in the EDGAR_temporal_profiles_r120, only one yearly profile is defined 
for the flight components included in the EDGAR emissions (landing and take-off, cruise and climb-out and 
descent) since no differentiation of the monthly variation of these components is present. Modelers interested in 
low- and high-altitude emissions can directly use the EDGAR aviation emission gridmaps disaggregated for the 
different flight components or apply the same yearly profile to disaggregate their own emission data of each flight 
phase. Hourly emissions from air transport are assumed to be distributed over the day without strong variations.

To distribute shipping emissions, the number of ships per hour, day, week, or months in harbours or on ship 
routes could be used. However in this work, an equal distribution over the year and over the day is assumed due 
to the lack of appropriate data.

For off-road vehicles (e.g. construction machinery, agricultural machinery) a similar temporal variation of 
production processes in small enterprises (night/day, working day/weekend) is assumed. A strong seasonal vari-
ation is taken into account for activities of agricultural machinery36.

Temporal profiles for waste.  The temporal distribution applied to the waste sector in this work is based on 
the IER database36. Emissions from the waste sector include landfills, incineration plants and sewage treatment 
plants which are assumed to be constant during the year and with no significant weekly and daily patterns. Also 
for landfills, the seasonal changes in ambient temperature do not affect waste temperature in layers deeper than 
two meters below surface.

Quality 
score Description

% CO2 emissions 
in 2005

1 Well matched. 33

2 Sector-specific, sub-sector not differentiated. 38

3 Catch all processes, a general profile that provides a best available match. 23

4 Best profile available, not considered to be a specific match. 6

Table 4.  Quality scores used to describe the quality of the match between the temporal profile and the EDGAR 
process.

https://doi.org/10.1038/s41597-020-0462-2


1 1Scientific Data |           (2020) 7:121  | https://doi.org/10.1038/s41597-020-0462-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

Temporal profiles for other sources.  The temporal patterns (monthly and hourly) of all remaining emis-
sion sources (e.g. refineries, industrial processes, fuel extraction, transformation, etc.) are taken from the IER 
database36.

Data Records
The EDGAR temporal profiles library (EDGAR_temporal_profiles_r120) and the emission time series of 
EDGARv4.3.2 with the new monthly resolution are available for all pollutants (CO2, CH4, N2O, SO2, NOx, CO, 
NMVOC, NH3, PM10, PM2.5, BC, OC) as Microsoft Excel files and can be freely accessed via the EDGAR website 
at http://edgar.jrc.ec.europa.eu/overview.php?v=temp_profile (last update: March 2020). We have applied the 
EDGAR_temporal_profiles_r1 to the EDGARv4.3.2 emission data since the latest EDGARv5.0 version currently 
covers only the GHGs and to allow EDGAR users to compare the monthly emission time series of EDGARv4.3.2 
obtained with the former EDGAR temporal profiles (available at https://edgar.jrc.ec.europa.eu/overview.
php?v=432_AP and https://edgar.jrc.ec.europa.eu/overview.php?v=432_GHG) with the new ones.

Data are registered at figshare20 and available also at https://data.europa.eu/doi/10.2904/JRC_DATASET_
EDGAR 55. Monthly temporal profiles are downloadable online for each country (226 countries plus international 
shipping and aviation) and source category (e.g. energy, industry, residential, transport, agriculture, etc., for a 
total number of 227 processes). The EDGAR_temporal_profiles_r120 are reported in the EDGAR_temporal_
profiles_r1.xls file including the following information: region/country, activity sector description, IPCC_1996_
source_category, IPCC_2006_source_category, year, yearly temporal profiles. The EDGAR temporal profiles 
library will be further improved for specific sectors or countries when new data will become available. New 
versions will be periodically uploaded to the JRC EDGAR Repository.

Technical Validation
All datasets used to compile the temporal profiles database EDGAR_temporal_profiles_r120 for global anthropo-
genic emissions are entirely based on official international statistics (e.g. IEA, NBSC, EUROSTAT, etc.), reputa-
ble data sources (ECMWF ERA5 atmospheric reanalysis of global climate, etc.) and relevant scientific literature 
works, which guarantee the robustness and validity of the underlying data used in this research.

Temporal allocation of emissions is often based on expert opinions as well as on the use of surrogate data, 
therefore limiting the information about the accuracy and the quality of the data. It is challenging to quantify the 
impact on uncertainty of some of the data handling steps, e.g. expert judgement in allocation of temporal profiles 

EDGAR code Description
Representative 
quality score

AGS Agricultural soils 1

AWB Agricultural waste burning 4

BMB Large scale biomass burning 1

CHE Production of chemicals 1

ENE Energy industry 1

ENF Enteric fermentation 4

FFF Fossil fuel fires 1

FOO Production of foods 2

IDE Indirect emissions from non-agricultural NH3 and NOx 4

IND Combustion in manufacturing industry 1

IRO Production of iron and steel 1

MNM Manure management 4

N2O Indirect N2O emissions 1

NEU Non energy use of fuels 1

NFE Production of non-ferrous metals 1

NMM Production of non-metallic minerals 1

PAP Production of pulp and paper 2

PRO Fuel production/transmission 1, 2, 3

PRU Production and use of other products 3

RCO Residential 1

REF Oil refineries 1

SOL Application of solvents 1

SWD Solid waste disposal 3

TNR Non-road transport 1

TRF Transformation industry 1, 2, 3

TRO Road transport 1

WWT Waste water 4

Table 5.  List of EDGAR sector codes and representative quality score for yearly profiles.
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to a particular EDGAR sector. The results from such approach would be greatly influenced by the assumptions 
incorporated into the analysis. It is therefore considered that a qualitative analysis is the most appropriate method 
for expressing uncertainties, by using “quality scores” (Table 4). The use of “quality scores” is an approach com-
monly used when uncertainties are particularly large or difficult to quantify (as used in other studies, e.g. Huang 
et al.56). In this case, quality scores are assigned to an EDGAR source group to represent the quality (accuracy/
appropriateness and completeness) of the temporal profiles that are assigned to the EDGAR sector. A quality 
assessment of the generated datasets is performed, showing the reliability of the temporal disaggregation in par-
ticular for combustion related sectors (e.g. power plants, transportation, residential combustion, etc.), while antic-
ipating the need for further development for some fuel transformation activities, some agriculture sub-sectors 
(e.g. manure management, enteric fermentation, and agricultural waste burning) and waste management.

The EDGAR emission process code consists of five 3-letter codes which identify the sector, sub-sector, fuel 
type, technology and end-of-pipe measures related to the emissions. The temporal profiles mapping is performed 
mainly at sector and sub-sector level (first 2 levels of EDGAR code), considering that technology and end-of-pipe 
measures have little impacts on the temporal variation of the activities, and on the other hand the lack of fuel type 
specific temporal profiles. Table 5 lists the aggregated sectors of the EDGAR database for which different types of 
temporal profiles are assigned, together with representative quality scores.

In order to show how well a temporal profile qualitatively matches the corresponding EDGAR process, quality 
scores indicating the level of the matching quality are assigned (see Table 5). Four levels of mapping quality scores, 
from 1 to 4, are defined to give an indication on how well a matching is and on priorities for further improvement 
for the yearly profiles. Quality scores 1 and 2 are considered to be a relatively good match and representative of 
the EDGAR sector. Quality scores 3 and 4 represent fuzzy matches due to the lack of process-specific temporal 
profiles and are considered to be the priority areas for further development. A quality code of 1 is assumed for 
oil, 2 for gas and 3 for coal related fuels for the fuel production sector (PRO). A quality code of 1 is assumed for 
combustion activities in the transformation industry sector, 2 for transformation in gas to liquids plants, chem-
ical heat for electricity production, fuel transformation in gas works and non-specified transformation activity 
and 3 for blast furnaces, electric boilers, blended natural gas, heat pumps, gasification plants for biogas, charcoal 
production plants, coke ovens, transformation in liquefaction/regasification plants in gas to liquids plants, in coal 
liquefaction plants, in patent fuel plants, distribution losses in transformation processes, petrochemical industry.

Table 4 also presents the percentages of global CO2 emissions in 2005 associated with each quality code. 
33% of CO2 emissions in 2005 are attributable to sources for which temporal profiles with quality code 1 (well 
matched) are mapped. 38% of CO2 emissions are associated with temporal profiles that are considered to be sector 
specific without fully differentiation of sub-sectors (i.e. quality code 2). 29% of CO2 emissions are attributable to 
the sources to which a general temporal profile is assigned (quality code 3 and 4). Lower mapping qualities are 
found for some fuel transformation activities and some agriculture sub-sectors (e.g. manure management, enteric 
fermentation, and agricultural waste burning), owing mainly to the fact that temporal variation of activities and 
emissions from these sectors are quite diverse and to lack of knowledge. Further improvements are therefore 
needed to develop more representative temporal profiles for these sources.

To further address the quality of the produced data set per sector and region, the assigned temporal profiles 
are compared with the temporal profiles used by common atmospheric models as discussed in the following 
section.

Data set Spatial resolution
Sectorial 
resolution Temporal resolution

This study Global, country-specific 20 sectors yearly, monthly, weekly, daily, hourly

CHIMERE 28 European countries 11 sectors yearly, monthly, weekly, daily, hourly

LOTOS-EUROS 28 European countries 11 sectors yearly, monthly, weekly, daily, hourly

EDGARv4.3.216 Global, 3 geo-regions 15 sectors yearly, monthly

HTAP USA, Canada, Europe, China 6 sectors yearly, monthly

CEDS Global, country-specific 7 sectors yearly, monthly

Table 6.  Overview of the compared data sets.

Fig. 7  Time series (2000–2018) of monthly fossil CO2 emissions by sector in the world.
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Results comparison.  Temporal profiles are commonly required by CTMs to distribute annual emissions to 
monthly and hourly emissions. To conduct a comprehensive comparison between the temporal profiles assigned 
to the EDGAR database in this study with other existing data sets, temporal profiles used by the CHIMERE57 and 
LOTOS-EUROS58 models are reviewed and collected. The monthly profiles used in the EDGAR v4.3.2 database, 
the Hemispheric Transport of Air Pollution v2 (HTAP) Task Force59 and the Community Emissions Data System 
(CEDS)60 are also included in the comparison.

Table 6 summarizes the main characteristics of the six data sets considered in the comparison regarding spa-
tial, sectorial and temporal resolution. CHIMERE and LOTOS-EUROS profiles cover the 28 European countries. 
HTAP temporal profiles were developed for Europe, the United States of America (USA), and Canada. Temporal 
profiles from EDGAR v4.3.2 are global; however, they only distinguish three geo-regions, i.e. the Northern tem-
perate zone, equator, and the Southern temperate zone. This study (226 countries) and the CEDS (222 countries) 
inventory provide country-specific temporal profiles for global emission databases. However, the CEDS inven-
tory, similar to HTAP and EDGAR v4.3.2, only has yearly profiles.

The CHIMERE and LOTOS-EUROS temporal profiles apply Standardized Nomenclature for Air Pollutants 
(SNAP) sector categorization, and differentiate 11 SNAP sectors. The HTAP and CEDS data sets have a relatively 
rougher sector resolution (6 and 7 main sectors, respectively). The EDGAR v4.3.2 data set integrates temporal 
profiles for 15 main sectors. In this study, temporal profiles covering 20 main sectors are mapped to all EDGAR 
processes.

Regarding temporal resolution, the EDGAR v4.3.2, CEDS, and HTAP data sets have only yearly profiles with 
monthly variations. CHIMERE, LOTOS-EUROS and this study employ yearly, weekly and daily profiles, and 
therefore enable emission distribution not only to monthly scale but also to hourly values.

In addition, a very important novelty of our work is the development of year dependent monthly scaling fac-
tors for activities with strong inter-annual variability. This information is absent in the aforementioned literature 
datasets.

Global monthly emission pattern.  When applying the EDGAR_temporal_profiles_r120 to the 
EDGARv5.0 emissions61, https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019), the corresponding 
monthly data successfully reproduce the major seasonal patterns that are expected, as shown in Figs. 7–9.

Figure 7 shows the time series of monthly fossil CO2 emissions from the year 2000 to 2018 for sectors with 
a strong temporal variability over the course of the year61. As top CO2 emitting countries are located in the 
Northern Hemisphere (e.g. China, USA, Europe, Russia), the monthly variations of global CO2 emissions are 
dominated by the seasonal variations of the Northern Hemisphere countries. Therefore the annual variability 
of global CO2 emission is strongly influenced by the power generation and residential combustion sectors, with 
higher emissions during the winter months and lower emissions from May to August. The residential sector is the 
one showing the strongest monthly variation, with emission peaks during cold months more than 3 times higher 
than the summer time peaks. Emissions from the agricultural sectors have an anti-correlated seasonal cycle com-
pared with combustion related emissions due to the occurrence of higher agricultural emissions over the warmer 
months. This pattern is also enhanced when looking at the seasonality of CH4 emissions (Fig. 9), showing strong 
temporal variability in the agricultural sector anti-correlated with the residential combustion activities. As global 
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Fig. 8  Seasonality of regional fossil CO2 emissions in 2015 (expressed in Mt/month).

https://doi.org/10.1038/s41597-020-0462-2
https://edgar.jrc.ec.europa.eu/overview.php?v=booklet2019


1 4Scientific Data |           (2020) 7:121  | https://doi.org/10.1038/s41597-020-0462-2

www.nature.com/scientificdatawww.nature.com/scientificdata/

average, agricultural activities are characterized by emission peaks during warmer months 1.5 times higher than 
during cold months.

Figure 8 represents the seasonality of fossil CO2 and Fig. 9 of CH4 emissions in 2015 by sector for different 
regions in the world. The highest contributions to CO2 emissions happen in the Northern Hemisphere during 
cold months mainly due to the combustion of fuels in the power and residential sectors. Specific seasonality is 
observed in Brazil and Latin America for the agricultural sector mainly from agricultural waste burning activities 
and agricultural soil emissions. The seasonality of CH4 emissions is mostly dominated by agricultural activities, 
in particular in countries with high emissions from rice cultivation which reflect the rice cultivation calendar (e.g. 
China, India, Japan, Rest of Asia).

Usage Notes
The unique feature of the EDGAR_temporal_profiles_r120 library relies on the possibility to use the newly devel-
oped sector- and country- specific temporal profiles i) as EDGAR application using data from in any EDGAR 
release, ii) by global and regional atmospheric modelers and iii) by emission inventory developers. The aim of this 
work is not only to improve the current knowledge of highly time resolved emissions, but in particular to allow 
any modeler to implement these new temporal profiles in any model, thus allowing the analysis of the impact of 
different emission temporal disaggregation methods on the model output. In addition, this work provides the 
basis for emission inventory developers aiming at disaggregating their annual emissions into higher resolution 
data.

In order to allow a straightforward implementation of the EDGAR_temporal_profiles_r120 in any other sys-
tem (emission database or model), each sector specific temporal profile has been mapped with a sector descrip-
tion and the standard Intergovernamental Panel on Climate Change (IPCC) 1996 (https://www.ipcc-nggip.iges.
or.jp/public/gl/guidelin/ch1ri.pdf) and 2006 (https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/1_Volume1/
V1_4_Ch4_MethodChoice.pdf) classification and definition of source categories. Similarly, countries are identi-
fied with their name, regional belonging and International Organization for Standardization (ISO 3166-1 alpha-3 
standard) codes in order to allow a clear and unique identification by any user.

Country names are consistent with the Interinstitutional Style Guide of the European Commission available 
at http://publications.europa.eu/code/en/en-370100.htm, the “Short name” definition listed in the “List of coun-
tries, territories and currencies” table at http://publications.europa.eu/code/en/en-5000500.htm has been used 
(updated at 16/07/2019).

Code availability
Most of the temporal profiles data processing has been done using the software R version 3.5 and Python version 
3.6. The computation of heating degree days maps was based on the 2 m air temperature of ECMWF ERA5 re-
analysis62 and produced by using IDL8.6 programming software. Further computations, such as mapping sectors 
and countries have been performed using Microsoft Access 2010.
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Fig. 9  Seasonality of regional CH4 emissions in 2015 (expressed in Mt/month).
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The implementation of the EDGAR_temporal_profiles_r1 library into the Emissions Database for Global 
Atmospheric Research has been developed using a dedicated EDGAR development tool of the Joint Research 
Centre named EOLO based on Php and Microsoft SQL Server. This system cannot be accessed outside the institu-
tion but further details can be provided upon request. All scripts related with this work are available at figshare20.
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