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Deep Learning for Low-Dose CT Denoising Using Perceptual Loss
and Edge Detection Layer
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Abstract
Low-dose CT denoising is a challenging task that has been studied by many researchers. Some studies have used deep
neural networks to improve the quality of low-dose CT images and achieved fruitful results. In this paper, we propose a deep
neural network that uses dilated convolutions with different dilation rates instead of standard convolution helping to capture
more contextual information in fewer layers. Also, we have employed residual learning by creating shortcut connections to
transmit image information from the early layers to later ones. To further improve the performance of the network, we have
introduced a non-trainable edge detection layer that extracts edges in horizontal, vertical, and diagonal directions. Finally,
we demonstrate that optimizing the network by a combination of mean-square error loss and perceptual loss preserves many
structural details in the CT image. This objective function does not suffer from over smoothing and blurring effects causing
by per-pixel loss and grid-like artifacts resulting from perceptual loss. The experiments show that each modification to the
network improves the outcome while changing the complexity of the network, minimally.

Keywords Low-dose CT image · Dilated convolution · Deep neural network · Noise removal · Perceptual loss ·
Edge detection

Introduction

Computed tomography (CT) is an accurate and non-invasive
method to detect abnormalities in the internal parts of
the body for instance tumors, bone fractures, and vascular
diseases. In the past decades, it has been widely used
by clinicians to diagnose and monitor conditions such as
cancer, lung nodules, and internal injuries.

Since the CT images are produced by omitting X-ray
beams at the body, there has been a growing concern about
the risk of radiation. The amount of exposure during one
session of CT scan is much higher than a conventional
X-ray. For example, the radiation that a patient receives
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in a chest X-ray radiography is equal to 10 days of
background radiation [1]. Background radiation is the
amount of radiation that a person gets from cosmic and
natural resources in daily life. During a chest CT scan,
the radiation exposure is equal to two years of background
radiation [1]. Therefore, the radiation risk is much higher
in computed tomography especially for those who had
multiple CT scans. While radiation affects all the age
groups, children are more vulnerable than adults because of
their developing body and the longer lifespan which means
more CT scans may be needed. Research has found that
children who have cumulative doses from multiple head
scans are up to three times more at risk of diseases such as
leukemia and brain tumors [2].

Considering the advantages of CT scans diagnosis, it is
critical to find a solution to the radiation problem. One
approach to decreasing the radiation risk is to use lower
doses of X-ray current. However, the produced CT images
are not as clear and detailed as normal-dose CT images.
Therefore, they will not be reliable for diagnosis. This
need has made noise removal from low-dose CT an active
research field.

In recent years, many types of research have been
conducted to enhance the quality of the reconstructed
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CT images. Researches have followed three paths to
remove noise from low-dose CT images: processing
the raw data obtained from sinogram (projection space
denoising), iterative reconstruction methods, and processing
reconstructed CT image (image space denoising) [3].

In projection space denoising, the noise removal algo-
rithm is applied to the CT sinogram data obtained from
low-dose X-ray beams. Sinogram data, also called pro-
jection data or raw data, is a 2-D signal that represents
the sum of the attenuation coefficients for a beam pass-
ing through the body. The noise distribution of low-dose
CT image in the projection space can be well-characterized
[4, 5] which makes the noise removal task simple. Some
researchers have applied traditional noise removal tech-
niques on this data such as bilateral filtering before image
reconstruction. [6, 7]. These methods incorporate system
physics and photon statistics to reduce both noise and
artifacts. However, it makes the algorithm vendor depen-
dant. These methods also need access to sinogram data
which is not available for many commercial CT scanners.
Finally, these techniques should be implemented on the
scanner reconstruction system that increases the cost of
denoising [3].

Iterative reconstruction methods are another group to
improve the quality of low-dose CT images [8, 9]. In these
methods, the data is transformed into the image domain and
projection space multiple times to optimize the objective
function. In the first step, a CT image is reconstructed using
the projection data and then it is transformed back to the
projection space. In each iteration, the generated projection
data from the reconstructed CT image is compared with
the actual data from the scanner and gets corrected. The
process stops when the convergence criteria are met. These
methods take into account the system model geometry,
photon counting statistics, as well as x-ray beam spectrum,
and they usually outperform the projection space denoising
methods. They are capable of removing artifacts and
providing good spatial resolution. However, similar to the
previous group, they need access to the projection data,
are vendor dependent, and should be implemented on the
reconstruction system of the scanner. Moreover, the process
is slow, and the computational cost of multiple iterations is
high [3].

Opposite to the previous methods, image space denoising
algorithms do not need the projection data. They work
directly on the reconstructed CT images and are generally
fast, independent of the scanner vendor and can be easily
integrated with the workflow. Many of the proposed
algorithms in this category are adopted from natural image
processing. KSVD [10] is a dictionary learning algorithm
based on sparse representation and dictionary learning.
It is used for tasks such as image denoising, feature
extraction, and image compression. In some studies, KSVD

is employed to improve the quality of low-dose CT scans
[11, 12]. Non-local means [13] is another algorithm initially
proposed for image denoising that has also been used by
researchers for low-dose CT image enhancement [14]. The
method calculates a weighted mean of the pixels in the
image based on their similarity to the target pixel. The
state-of-the-art block matching 3D (BM3D) [15] is also
proposed for dealing with natural image noise. It is similar
to the non-local means but works in a transform domain
like wavelet or discrete Fourier transform. The first step
of BM3D is to group patches of the image that have
similar local structure and then stack them and form a 3-
dimensional array. After transforming the data, a filter is
applied to remove the noise. This method has been followed
in some studies to perform low-dose CT noise removal
[16, 17].

In recent years, many advances have been made in
the image processing field by using deep learning (DL).
The high computational capacity of GPUs in combination
with techniques such as batch normalization [18] and
residual learning [19] has made training deep networks
possible. Some of the proposed networks have outperformed
traditional methods in challenging tasks such as image
segmentation, image recognition, and image enhancement.
Medical imaging has also benefitted from this advancement.
One of the first networks to reduce the noise of the low-
dose CT image was proposed by Chen et al. [20]. It was
inspired by a network designed for image super-resolution
with three convolutional layers [21]. Convolutional auto-
encoders have been used in [22]and [23] while the later
also takes advantage of residual learning. All of the
mentioned networks offer an end to end solution for
low-dose noise removal. They receive a low-dose CT
image as an input and predict the normal-dose CT image
as the output. However, Kang et al. firstly finds the
wavelet coefficients for low-dose and normal-dose CT
images [24]. Then these wavelet coefficients are given
to a 24-layer convolutional network as data (input) and
labels (output). The inverse wavelet transform should be
performed on the output results to find the normal-dose CT
image.

Generative adversarial networks (GAN) are a group of
deep neural networks that were first introduced by Good-
Fellow [25]. GAN has two sub-networks, a generative
network (G) and a discriminative network (D) that are
trained simultaneously. The discriminative network is
responsible for detecting real data from fake data while
the generative network tries to create fake data as close
as possible to the real data and fool the discriminator.
Generative adversarial networks have attracted much
interest, and researchers have applied it to different fields
such as text to image synthesis [26], image super-resolution
[27] and video generation [28]. GAN has also been used
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to remove noise from low-dose CT images [29–31], where
the generative network receives the low-dose CT images.
It generates normal-dose images that the discriminative
network cannot distinguish them from real normal-dose
images.

In this paper, we have proposed a deep neural network
to remove noise from low-dose CT images. Figure 1
displays this network. One approach to achieving higher
performance in deep learning is to increase the number of
layers which has become possible after introducing residual
learning [19] and batch normalization [18]. However,
more layers essentially mean more weights and higher
computational cost. In this research, we have looked for
methods that enhance the efficiency of the network without
adding to its complexity. For this purpose, our network
employs batch normalization, residual learning, and dilated
convolution to perform denoising. We have also introduced
an edge detection layer that improves the results with
little increase in the number of training weights. The edge
detection layer extracts edges in four directions and helps
to enhance the performance. Finally, we have shown that
optimizing the mean-square error as the loss function do
not capture all the texture details of the CT image. For this
purpose, we have used a combination of perceptual loss
and mean-square error (MSE) as an objective function that
significantly improves the visual quality of the output and
keeps the structural details. The perceptual loss is used in
GAN to generate fake images that are visually close to
the target image by comparing the feature maps of two
images. Yang et al. [32] have used the perceptual loss
for CT image denoising but they compared the predicted
image and the ground truth with one group of feature
maps. In this study, feature maps have been extracted
from four blocks of pre-trained VGG-16 [33] and used
as a comparison tool in conjunction with the mean-square
error.

Methods

Low-Dose CT Simulation

One of the challenges in applying machine learning
techniques to the medical domain is the shortage of
training samples. A neural network learns the probability
distribution of the data from all the samples that it sees
during the training process. If there are not sufficient
samples to train the network for all conditions, the
prediction will not be accurate. To train a network for low-
dose denoising, we need normal-dose and low-dose pairs
obtained in similar conditions. Obtaining such a dataset was
not easy. For this reason, we have generated a low-dose
dataset from normal-dose CT images to be used for training
besides two other datasets that we had.

According to the literature, the dominant noise of a
low-dose CT image in the projection domain has Poisson
distribution [4, 5]. Therefore, to simulate a low-dose CT
image, we have added Poisson noise to the sinogram data
of the normal-dose image. The following steps show this
procedure [34, 35]:

1. Compute the Hounsfield unit numbers of the normal-
dose CT image HUnd from its pixel values, using
the Eq. 1 (if the CT image has padding, it should be
removed, first),

HUnd = PixelValue × Slope + Intercept (1)

Slope and Intercept values can be found from DICOM
header.

2. Compute the linear attenuation coefficients μnd based
on water attenuation μwater [34],

μnd = μwater

1000
HUnd + μwater (2)

Fig. 1 Architecture of the proposed network. BN stands for batch normalization, i-Dilated Conv represents convolution operator with dilatation
rate i (i=2,3,4), and the activation function is the rectified linear unit (ReLU). Operator ©performs concatenation
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3. Obtain the projection data for normal-dose image ρnd

by applying radon transform on linear attenuation
coefficients [34, 35]. To eliminate the size factor, this
should be multiplied by the voxel size.

4. Compute the normal-dose transmission data Tnd [35],

Tnd = exp(−ρnd)

5. Generate the low-dose transmission Tld by injecting
Poisson noise [35],

Tld = Poisson(I o
ldTnd) (3)

here, I 0
ld is simulated low-dose scan incident flux.

6. Calculate the low-dose projection data ρld ,

ρld = ln

(
I o
ld

Tld

)

7. Find the projection of the added Poisson noise [34],

ρnoise = ρnd − ρld

8. Compute the linear attenuation of the low-dose CT
image μld [34],

μld = μnd + iradon
(ρnoise

voxel

)

where, iradon represents the inverse Radon transform.
9. Finally apply the inverse of Eq. 2 to find the Hounsfield

unit numbers for the low-dose CT image [34]. Figure 2d
demonstrates a normal-dose image and the simulated
low-dose images with different incident flux I 0.

Dilated Convolution

Dilated convolution was introduced to deep learning in 2015
[36, 37] to increase the receptive field faster. Receptive
field (RF) is the region of the input image that is used
to calculate the output value. Larger receptive field means
that more contextual information from the input image is
captured. The classical methods to grow the receptive field
are employing pooling layers, larger filters, and more layers
in the network. A pooling layer performs downsampling
and is a powerful technique to increase the receptive field.
Although it is widely used in classification tasks, adoption

of a pooling layer is not recommended in denoising or
super-resolution tasks. Downsampling with a pooling layer
may lead to the loss of some useful details that cannot
be recovered completely by upsampling methods such
as transposed convolution [38]. Utilizing larger filters or
more layers increases the number of weights drastically,
meaning larger memory resources will be needed. Dilated
convolution, also called atrous convolution, makes it
possible to increase the receptive field with just a fraction of
weights. One-dimensional dilated convolution is defined as

y[i] =
f∑

k=1

x[i + r .k]w[k] (4)

where x[i] and y[i] are the input and the output of the
dilated convolution. w represents the weight vector of the
filter with length f , and r is the dilation rate.

Receptive field of the layer L (RFL) with filter size f ×f

and dilation rate of r can be computed from Eq. 5 [39].

RFL = RFL−1 + (f − 1)r (5)

Equation 6 computes the number of weights needed for
an N-layer convolutional network with a filter size f × f .

number of weights=n×f 2×c+n2×f 2×(N−2)+n×f 2×c

(6)

here, n is the number of filters in each layer and c is the
number of channels. For simplification, we assume all the
layers have n filters and the number of the channels in the
input and output images are same. Table 1 compares the
number of weights and layers needed to achieve receptive
field equal to 13 in different cases. According to this table,
using the dilation rate r = 3 lets to achieve the desired
receptive field in only 4 layers when 3 × 3 filters are used.

To better understand the capability of dilated convolu-
tion, Wang et al. replaced the standard convolutions in [40]
with dilated convolutions with r = 2 and achieved com-
parable performance in only 10 layers instead of 17 layers
[39].

In this research, we have used an 8-layer dilated
convolutional network to remove noise from low-dose CT

Fig. 2 Simulation of a low-dose CT image from Lung dataset. a Normal-dose CT image, simulated low-dose image with b I 0
ld = 1 × 104, c

I 0
ld = 5 × 103, and d I 0

ld = 2 3
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Table 1 Number of training weights to obtain RF = 13 with different
filter sizes. The number of filters in each layer is n = 64. The dilation
rate in equal to r

Filter size 3 × 3 5 × 5 7 × 7 3 × 3

r = 1 r = 1 r = 1 r = 3

Number of layers 6 5 4 4

needed for RF = 13

Number of weights 148,608 310400 407680 74880

images. The proposed network was inspired from a study by
Zhang et al. [41], and the dilation rates are 1, 2, 3, 4, 3, 2, 1,
and 1 for layers 1 to 8.

Residual Learning

One approach to improving the performance of a network
is stacking more layers; nevertheless, researchers observed
that networks with more layers do not always perform
better. Opposite to the expectations, it has been seen that
in a deeper network even the training loss grows. This
degradation problem implies that the optimization of a
deep network is not as easy as a shallow one. He et al.
[19] proposed a residual learning framework to solve this
problem by adding an identity mapping between the input
and the output of a group of layers. From then, researchers
have investigated many different combinations of adding
shortcuts between different layers and achieved interesting
results [38, 42].

In this study, we have exploited the residual learning to
improve the performance of the network. Our experiments
showed that adding symmetric shortcuts between the
bottom and top layers boosts the performance. As Fig. 1
displays, the input image and the output of layers 2 and
3 are concatenated with the output of layers 7, 6 and 5,
respectively. These connections pass the details of the image
to higher layers, as feature maps in the first layers contain a
lot of information from the input.

Edge Detection Layer

In image processing, edge detection refers to techniques
that find the boundaries of objects in an image. Many
of these methods search for discontinuities in the image
brightness that are generally the result of the existence
of an edge. Researchers have developed some advanced
algorithms to extract edges from the image. In this study, we
have adopted a simple edge detection technique to enhance
the outcome of our network. Sobel edge detection operator
[43] computes the 2-D gradient of the image intensity
and emphasizes the regions with high spatial frequency by
convolving the image with a 3 × 3 filter. The proposed
edge detection layer is a convolutional layer that has four
Sobel kernels as the non-trainable filters. Figure 3 shows the
output of this layer for a low-dose CT image. These outputs
are concatenated with the input image and given to the
network. Our experiments confirm that the edge detection
layer improves the performance of the network.

Objective Function

Mean-square error (MSE) is widely used as an objective
function in low-level image processing tasks such as
image denoising or image enhancement. MSE computes
the difference of intensity between the pixels of output
and the ground truth images. It is also used in many of
the proposed algorithms for low-dose CT denoising. We
started our research by optimizing MSE, but we noticed that
the results do not express all the details of a CT image,
though peak signal to noise (PSNR) is relatively high. This
problem has been seen in image super-resolution tasks too
[44]; however, it is more pronounced in CT images as the
image is seen in a DICOM viewer with different grey-level
mappings (windowing). Windowing helps to highlight the
appearance of different structures and make a diagnosis. Our
experiments showed that MSE loss generates blur images
that do not include all the details, especially in the textures.

Johnson et al. demonstrated that using a perceptual loss
achieves visually appealing results [44]. To compute the
perceptual loss, the ground truth image and the predicted

Fig. 3 a Low-dose CT image. Output of edge detection layer in b horizontal direction, c vertical direction, d 45◦ diagonal direction, and e 135◦
diagonal direction
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image are given to a pre-trained convolutional network, one
at a time. Then, the comparison is made between the feature
maps generated by the two images. VGG-16 [33] is a pre-
trained network for classification on ImageNet dataset [45]
which is generally used to calculate the perceptual loss in
generative adversarial networks.

In this study, we have incorporated both MSE and
perceptual loss to optimize the network. Our experiments
showed that using the perceptual loss solely results in a
grid-like artifact in the output image. This effect has been
perceived by other researchers, too [44]. Therefore, we have
combined both per-pixel loss Lmse and perceptual loss LP

to advance the optimization.

L(θ) = λmseLmse(θ) + λPLP (θ) (7)

where, λmse and λP are weighting scalars for mean-
square error loss and perceptual loss, respectively. The
optimal weights are found using validation dataset in each
experiment. The mean-square error between the ground-
truth y and the denoised image from the proposed network
ŷ is defined as

Lmse(θ) = ||ŷ(θ) − y||2

Similar to other studies, we have employed VGG-16
network to measure the perceptual loss. The output of our
proposed network is given to the VGG16 network and four
groups of feature maps are extracted from it in different
layers. These feature maps are compared with the feature
maps that normal-dose CT image generates and then Eq. 8 is
used to compute the perceptual loss. As Fig. 4 demonstrates,
we have used the output of last convolutional layer (after
ReLU activation and before pooling layer) in blocks 1, 2 , 3,
and 4. The perceptual loss function LP (θ) is

LP (θ) =
4∑

i=1

Li (θ) (8)

Li (θ) = 1

hiwidi

||φi(ŷ(θ)) − φi(y)||2 (9)

here, φi refers to the extracted feature maps from block i

with size hi ×wi ×di . Since VGG16 is a fully convolutional
neural network, we are not limited to a specific input image

size, so hi and wi depend on the size of the input image.
The number of filters in the convolutional layer defines the
parameter di and is stated in [33].

Our experiments reveal that utilizing perceptual loss
with the mean-square error greatly improves the visual
characteristics of the output image.

Experiments Setup

In this study, we have used three datasets to evaluate the
performance of the proposed network in removing noise
from low-dose CT images: simulated dataset, real piglet
dataset, and Thoracic dataset.

To create the simulated dataset, we downloaded lung
CT scans [46] for a patient including 663 slices from
The Cancer Imaging Archive (TCIA) [47]. The CT images
were taken with 330 mAs X-ray current tube, 120 KVp

peak voltage and 1.25 mm slice thickness. Then, with
the procedure explained in “Low-Dose CT Simulation”
generated low-dose CT images. The incident flux of
simulated low-dose CT (I 0

ld ) in Eq. 3 is define equal to
2 × 103.

The second dataset is a real dataset acquired from a
deceased piglet. The dataset is produced by the authors of
[29] and is available at [48] for download. It contains 900
images with 100 KVp, 0.625 mm thickness. The X-ray
currents for normal-dose and low-dose images are 300 mAs

and 15 mAs, respectively.
Thoracic dataset [49] includes 407 pairs of CT image

from an anthropomorphic thoracic phantom. The current
tube for normal-dose and low-dose CT images are 480 mAs

and 60 mAs, respectively with a peak voltage of 120 KVp

and slice thickness of 0.75 mm.
In each dataset, 60% of the images are used for training

the proposed network, 20% for validation, and 20% for
testing. Opposite to other studies that build a test dataset
randomly, our test dataset holds the last 20% of images
in the original dataset. The reason is that the consecutive
CT images are very similar to each other and testing the
network on the random dataset does not clearly examine
the effectiveness of the network on the new images. Using

Fig. 4 Perceptual loss is computed by extracting the feature maps of blocks 1, 2, 3, and 4 from a pre-trained VGG-16 network
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Table 2 The average PSNR and SSIM of the different algorithms for the Lung dataset

Metric Low-dose image BM3D CNN200 [20] [41] DRL DRL-E-M DRL-E-P DRL-E-MP

PSNR 14.59 24.76 33.19 33.74 34.17 36.64 33.47 35.57

SSIM 0.2729 0.6750 0.6654 0.7739 0.8364 0.9033 0.7732 0.8463

the last portion of CT images assures us that the testing is
performed on images that the network has not seen before.
To prepare the data for training the network, we have used
pixel values of low-dose, normal-dose images divided by
4095. This maps the data between 0 and 1 which is suitable
for training neural networks.

The original size of CT images in all the mentioned
datasets is 512 × 512. To boost the number of training
samples, we have extracted overlapping patches of 40 × 40
from images, as the receptive field of the proposed network
is 5+4+6+8+6+4+2+2 = 37 in each direction. This
also helps to reduce the memory resources needed during
training. Since the network is fully convolutional, the input
size does not have to be fixed; test images with their original
size are fed to the network. To avoid boundary artifacts,
zero padding in convolutional operators is used [41]. The

activation function is rectified linear unit, and the number of
filters in all convolutional layers is 64 except layers 7 and
8 which have 1 filter. To see how adding the edge detection
layer and utilizing MSE and perceptual loss improve the
performance, we have trained multiple networks. Training
of all the networks is performed with Adam optimizer in
two stages: with learning rate 1e − 3 for 20 epochs and
then learning rate 1e − 4 for 20 more epochs which let
them converge to the optimal solution. Glorot normal is
used to initialize the weights [50]. Two more networks
proposed in studies [20] and [41] have also been trained
for comparison. The implementation was based on Keras
with TensorFlow backend on the system with an Intel Core
i7 CPU 3.4 GHz, 32 G memory and GeForce GTX 1070
Graphics Card. The code is available at https://github.com/
maransari/low-dose-CT-denoising.

Fig. 5 Denoising results of
different algorithms on Lung
dataset in abdomen window
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Fig. 6 Denoising results of the
different algorithms on Lung
dataset in lung window

Results

To evaluate the performance of the proposed network, we
have compared the results with state-of-the-art BM3D [15],
and two neural networks, CNN200 [20] and [41]. These
networks are retrained over each dataset. As mentioned
earlier, the initial idea of the proposed network was
derived from [41] designed for image super-resolution. To
investigate how each change in the network architecture
affects the performance, we have made three more
comparisons with three more networks.

The first network is designed to examine how residual
learning enhances the outcome. This network is similar to
the one in [41], but there are shortcuts between the outputs

of layers 2 and 3 with the outputs of layers 6 and 5,
respectively. We call this network DRL (dilated residual
learning). The objective function for this network is the
mean-square error (MSE), and we demonstrate that adding
shortcut connections improves the results.

In the second network, we have added the edge detection
layer to the beginning of the network. This network is
named DRL-E and is shown in Fig. 1. We have optimized
this network by three objective functions to investigate the
effects of choosing a loss function on the results. First, this
network is optimized by MSE loss function and we refer to it
as DRL-E-M. Next, we optimized the network by perceptual
loss and it is called DRL-E-P in this paper. Finally, the
proposed network is trained by the objective function

Table 3 The average PSNR and SSIM of the different algorithms for the Piglet dataset

Metric Low-dose image BM3D CNN200 [20] [41] DRL DRL-E-M DRL-E-P DRL-E-MP

PSNR 39.93 41.46 44.18 44.83 44.96 45.10 44.01 44.12

SSIM 0.9168 0.9733 0.9804 0.9816 0.9881 0.9885 0.9782 0.9807
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defined in Eq. 7. This network optimizes a combination of
mean-square error and perceptual loss to learn the weights
and achieve the best results. We refer to this combination as
DRL-E-MP.

For each algorithm, we have provided the quantitative
results proving that the proposed network DRL-E with
dilated convolutions, shortcut connections, and the edge
detection layer outperforms the other networks. Moreover,
visual comparisons confirm that utilizing the proposed
objective function improves the perceptual aspects of the
DRL-E network further and conserves most of the details in
the image.

Denoising Results on Simulated Lung Dataset

Table 2 displays the average peak signal to noise ratio
(PSNR) and structural similarity (SSIM) of applying the
state-of-the-art BM3D and six neural networks. Figures 5
and 6 give the visual results for the Lung dataset in
two different windows. Windowing helps to visualize the
details of CT images properly. Here, we have shown the
results in the lung and abdominal window to distinguish the
differences better. Abdomen window helps to distinguish
small changes in density and displays more texture details.
Since the lung is air-filled, it has very low density and

Fig. 7 Denoising results of the
different algorithms on Piglet
dataset in abdomen window
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Table 4 The average PSNR and SSIM of the different algorithms for the Thoracic dataset

Metric Low-dose image BM3D CNN200 [20] [41] DRL DRL-E-M DRL-E-P DRL-E-MP

PSNR 25.66 30.86 33.57 33.73 34.02 34.03 26.25 31.50

SSIM 0.3711 0.6252 0.6614 0.6761 0.6674 0.6697 0.3673 0.5485

appears black in the abdomen window. Lung window
improves the visibility of the areas of consolidation and
pulmonary vascular structures.

Figures 5 and 6 approve that the alterations of the
network have enhanced the outcome step by step. By
comparing Fig. 5f and g, we can see that adding the edge
detection layer generates sharper and more distinct edges.
This improvement also can be concluded from Table 2.
When the objective function is mean-square error, the
network with edge detection layer offers higher PSNR and
SSIM. This dataset also demonstrates the effectiveness of
perceptual loss. The results show using MSE as an objective
function generates smooth regions and effects the details
in the texture. On the other hand, perceptual loss forces

the output of the network to be perceptually similar to
the ground truth. However, training the network solely by
perceptual loss generates grid-like artifacts in the output
image. As the results of DRL-E-MP demonstrates, the
combined objective function saves most of the details in the
textures and provides a better visual outcome.

As one can expect, exploiting perceptual loss do not
improve PSNR. The reason is that high PSNR is the result
of minimizing per-pixel loss. If a network is trained to
minimize MSE, it will always have higher PSNR compare
to a network that is trained to minimize the perceptual
loss. However, as we can see here, higher PSNR does
not always provide the most visually appealing outcome.
Similar results have been observed in [44].

Fig. 8 Denoising results of the
different algorithms on Thoracic
dataset in abdomen window
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Denoising Results on Real Piglet Dataset

Table 3 displays the quantitative effects of performing the
denoising on real low-dose CT images for Piglet dataset
which approves the results obtained from simulated Lung
dataset. Comparing the PSNR of the BM3D, CNN200, [41],
DRL, and DRL-E demonstrates that when the objective
function is MSE, the network with residual learning and
edge detection layer outperforms the other ones. Figure 7
provides a visual comparison between the outcomes. It
reveals that joining perceptual loss and per-pixel loss further
improves the produced images by the proposed network.
The smoothing effect of MSE optimization helps to discard
the grid-like artifacts caused by perceptual loss. DRL-
E-MP resembles the normal-dose CT image better by
reconstructing fine details.

Denoising results on phantom Thoracic dataset

Table 4 represents the PSNR and SSIM of denoising
Thoracic dataset by all the methods. Results obtained
for this dataset is consistent with the other experiments.
Figure 8 clearly exhibits the effects of each alteration.
Comparing the results obtained by DRL and DRL-E-M
confirms that the edge detection layer helps to deliver
sharper and more precise edges. As explained before, the
only difference between these two models is using the edge
detection layer.

Conclusion

In this paper, we have combined the benefits of dilated
convolution, residual learning, edge detection layer, and
perceptual loss to design a noise removal deep network
that produces normal-dose CT image from low-dose CT
image. First, we have designed a network by the adoption
of dilated convolution instead of standard convolution and
also, using residual learning by adding symmetric shortcut
connections. We have, also, implemented an edge detection
layer that acts the same as Sobel operator and helps to
capture the boundaries in the image better. In the case of
the objective function, we have observed that optimizing by
a joint function of MSE loss and perceptual loss provides
better visual results compared to each one alone. The
obtained results do not suffer from over smoothing and
loss of details that are the results of per-pixel optimization
and the grid-like artifacts occurring with perceptual loss
optimization.

Acknowledgements This work was supported in part by a research
grant from Natural Sciences and Engineering Research Council of
Canada (NSERC). The authors would like to thank Dr. Paul Babyn
and Troy Anderson for the acquisition of the piglet dataset. The results

shown here are in whole or part based upon data generated by the
TCGA Research Network: http://cancergenome.nih.gov/.

Funding Information This work was supported in part by a research
grant from Natural Sciences and Engineering Research Council of
Canada (NSERC).

References

1. Bencardino J T: Radiological society of north america (rsna) 2010
annual meeting. Skelet Radiol 40:1109–1112, 2011

2. Donya M, Radford M, ElGuindy A, Firmin D, Yacoub M H
(2015) Radiation in medicine: origins, risks and aspirations.
Global Cardiology Science and Practice pp 57

3. Ehman E C, Yu L, Manduca A, Hara A K, Shiung M M, Jondal
D, Lake D S, Paden R G, Blezek D J, Bruesewitz M R, et al:
Methods for clinical evaluation of noise reduction techniques in
abdominopelvic CT. Radiographics 34(4):849–862, 2014

4. Wang J, Lu H, Liang Z, Eremina D, Zhang G, Wang S, Chen J,
Manzione J: An experimental study on the noise properties of x-
ray CT sinogram data in radon space. Phys Med Biol 53(12):3327,
2008

5. Macovski A: Medical Imaging Systems, vol 20 NJ: Prentice-Hall
Englewood Cliffs, 1983

6. Manduca A, Yu L, Trzasko J D, Khaylova N, Kofler J M,
McCollough C M, Fletcher J G: Projection space denoising with
bilateral filtering and CT noise modeling for dose reduction in CT.
Med Phys 36(11):4911–4919, 2009

7. Wang J, Li T, Lu H, Liang Z: Penalized weighted least-squares
approach to sinogram noise reduction and image reconstruction
for low-dose x-ray computed tomography. IEEE Trans Med
Imaging 25(10):1272–1283, 2006

8. Pickhardt P J, Lubner M G, Kim D H, Tang J, Ruma J A,
del Rio A M, Chen G H: Abdominal CT with model-based
iterative reconstruction (mbir): initial results of a prospective
trial comparing ultralow-dose with standard-dose imaging. Am J
Roentgenol 199(6):1266–1274, 2012

9. Fletcher J G, Grant K L, Fidler J L, Shiung M, Yu L, Wang J,
Schmidt B, Allmendinger T, McCollough C H: Validation of dual-
source single-tube reconstruction as a method to obtain half-dose
images to evaluate radiation dose and noise reduction: phantom
and human assessment using CT colonography and sinogram-
affirmed iterative reconstruction (safire). J Comput Assist Tomogr
36(5):560–569, 2012

10. Aharon M, Elad M, Bruckstein A et al: K-svd: an algorithm
for designing overcomplete dictionaries for sparse representation.
IEEE Trans Signal Process 54(11):4311, 2006

11. Chen Y, Yin X, Shi L, Shu H, Luo L, Coatrieux J L, Toumoulin
C: Improving abdomen tumor low-dose CT images using a fast
dictionary learning based processing. Phys Med Biol 58(16):5803,
2013

12. Abhari K, Marsousi M, Alirezaie J, Babyn P (2012) Computed
tomography image denoising utilizing an efficient sparse coding
algorithm. 2012 11th International Conference on Information
Science, Signal Processing and their Applications (ISSPA) pp
259–263

13. Buades A, Coll B, Morel J M (2005) A non-local algorithm
for image denoising. In: IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, 2005. CVPR 2005, vol.
2, pp 60–65. IEEE

14. Chen Y, Yang Z, Hu Y, Yang G, Zhu Y, Li Y, Chen W,
Toumoulin C et al: Thoracic low-dose CT image processing using

514 J Digit Imaging (2020) 33:504–515



an artifact suppressed large-scale nonlocal means. Phys Med Biol
57(9):2667, 2012

15. Dabov K, Foi A, Katkovnik V, Egiazarian K: Image denoising by
sparse 3-d transform-domain collaborative filtering. IEEE Trans
Signal Process 16(8):2080–2095, 2007

16. Hashemi S, Paul N S, Beheshti S, Cobbold R S (2015) Adaptively
tuned iterative low dose CT image denoising. Computational and
mathematical methods in medicine pp 2015

17. Kang D, Slomka P, Nakazato R, Woo J, Berman D S, Kuo C
C J, Dey D: Image denoising of low-radiation dose coronary
CT angiography by an adaptive block-matching 3d algorithm. In:
Medical imaging 2013: Image processing, vol. 8669, p. 86692g.
International society for optics and photonics, 2013

18. Ioffe S, Szegedy C: Batch normalization: accelerating deep
network training by reducing internal covariate shift. In: ICML,
2015

19. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for
image recognition. 2016 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR) pp 770–778

20. Chen H, Zhang Y, Zhang W, Liao P, Li K, Zhou J, Wang G: Low-
dose CT via convolutional neural network. Biomed Opt Express
8(2):679–694, 2017

21. Dong C, Loy C C, He K, Tang X: Image super-resolution using
deep convolutional networks. IEEE Trans Pattern Anal Mach
Intell 38(2):295–307, 2016

22. Nishio M, Nagashima C, Hirabayashi S, Ohnishi A, Sasaki K,
Sagawa T, Hamada M, Yamashita T: Convolutional auto-encoder
for image denoising of ultra-low-dose CT. Heliyon 3(8):e00,393,
2017

23. Chen H, Zhang Y, Kalra M K, Lin F, Chen Y, Liao P,
Zhou J, Wang G: Low-dose CT with a residual encoder-
decoder convolutional neural network. IEEE Trans Med Imaging
36(12):2524–2535, 2017

24. Kang E, Min J, Ye J C (2017) A deep convolutional neural
network using directional wavelets for low-dose x-ray CT
reconstruction. Medical physics 44(10)

25. Goodfellow I J, Pouget-Abadie J, Mirza M, Xu B, Warde-
Farley D, Ozair S, Courville A C, Bengio Y (2014) Generative
adversarial networks. arXiv:1406.2661

26. Reed S, Akata Z, Yan X, Logeswaran L, Schiele B, Lee H (2016)
Generative adversarial text to image synthesis. arXiv:1605.05396

27. Ledig C, Theis L, Huszár F., Caballero J, Cunningham A, Acosta
A, Aitken A P, Tejani A, Totz J, Wang Z, et al: Photo-realistic
single image super-resolution using a generative adversarial
network. In: CVPR, vol 2, p 4, 2017

28. Vondrick C, Pirsiavash H, Torralba A: Generating videos with
scene dynamics. In: Advances in neural information processing
systems, pp 613–621, 2016

29. Yi X, Babyn P (2018) Sharpness-aware low-dose CT denoising
using conditional generative adversarial network. Journal of
digital imaging, pp 1–15

30. Wolterink J M, Leiner T, Viergever M A, Išgum I.: Generative
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