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Abstract
Collecting and curating largemedical-image datasets for deep neural network (DNN) algorithm development is typically difficult
and resource-intensive. While transfer learning (TL) decreases reliance on large data collections, current TL implementations are
tailored to two-dimensional (2D) datasets, limiting applicability to volumetric imaging (e.g., computed tomography). Targeting
performance enhancement of a DNN algorithm based on a small image dataset, we assessed incremental impact of 3D-to-2D
projectionmethods, one supporting novel data augmentation (DA); photometric grayscale-to-color conversion (GCC); and/or TL
on training of an algorithm from a small coronary computed tomography angiography (CCTA) dataset (200 examinations, 50%
with atherosclerosis and 50% atherosclerosis-free) producing 245 diseased and 1127 normal coronary arteries/branches.
Volumetric CCTA data was converted to a 2D format creating both an Aggregate Projection View (APV) and a Mosaic
Projection View (MPV), supporting DA per vessel; both grayscale and color-mapped versions of each view were also obtained.
Training was performed both without and with TL, and algorithm performance of all permutations was compared using area
under the receiver operating characteristics curve. Without TL, APV performance was 0.74 and 0.87 on grayscale and color
images, respectively, compared to 0.90 and 0.87 for MPV.With TL, APV performance was 0.78 and 0.88 on grayscale and color
images, respectively, compared with 0.93 and 0.91 for MPV. In conclusion, TL enhances performance of a DNN algorithm from
a small volumetric dataset after proposed 3D-to-2D reformatting, but additive gain is achieved with application of either GCC to
APVor the proposed novel MPV technique for DA.

Keywords Deep neural network . Data augmentation . Photometric conversion . Transfer learning . Coronary artery computed
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Background

The frequent shortage of large datasets in medical imaging
often restricts training of a deep neural network (DNN) for

tasks, including image-data classification, image segmenta-
tion, or disease localization. Compared with available large
general-image datasets, such as ImageNet [1], medical-
image datasets are relatively small. When a dataset is limited
in size, data augmentation (DA) techniques are often used to
improve training; commonly applied techniques include ran-
dom rotations, horizontal and vertical flips, random crops, and
small multi-directional translations [2]. In addition, improved
performance of a DNN can be achieved by enhancements in
image representation, such as grayscale-to-color map conver-
sion (GCC) [3]. Lastly, transfer learning (TL) has also been
shown to improve algorithm performance in datasets with
limited size [4]; TL is a deep learning method leveraging
pre-trained weighted models from large datasets to
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accomplish an identified task by fine-tuning the final layers of
a DNN while the weights of the initial layers are held stable
[5]. In medical imaging, TL is easily applicable to 2-
dimensional (2D) images due to an abundance of suitable
pre-trained models. However, this is not the case for 3D im-
ages, as is commonly found in advanced forms of imaging
(e.g., computed tomography angiography (CTA)). DNNs
have been successfully trained on multi-angle 2D projections
of 3D objects in order to overcome this limitation, and there is
evidence that the characteristics of a 3D shape can be recog-
nized with greater accuracy from a collection of independent
2D projections [6, 7].

Although the aforementioned techniques have been indi-
vidually studied outside of the medical-imaging domain, their
combined effect on DNN algorithm performance for medical
images is not known and was the focus of this work; a 3D-to-
2D representation method enabling both TL and other options
for image DA is proposed. The purpose of this study was to
evaluate the incremental impact of 3D-to-2D reformation
methods along with novel image DA, photometric conversion
(i.e., GCC), and/or TL on training of an algorithm from a
small coronary CTA (CCTA) dataset. This was in preparation
for a larger clinical study of the feasibility of use of a DNN
algorithm to support augmented intelligence in CCTA screen-
ing for atherosclerosis absence (versus any degree of disease)
[8], thereby facilitating prompt and safe emergency room dis-
charge of a chest-pain patient to home [9].

Methods

Image-Data Description

All CCTA image-dataset utilization was retrospective, per-
formed locally under Institutional Review Board approval (in-
cluding HIPAA compliance) with the waiver of patient
consent.

The image dataset was derived from 200 randomly selected
CCTA examinations (male/female 108/92; age mean/standard
deviation 50.6/12.1 years), with 100 demonstrating athero-
sclerosis and 100 atherosclerosis-free based on review by an
investigator-expert (RDW with 33-year experience in cardiac
imaging and ACC/AHA level III CCT certification). All im-
aging (March 2013 to July 2018) was standard-of-care, clini-
cally indicated by chest pain without known coronary artery
disease [10, 11] and was performed used multi-detector CT
systems (Siemens Healthineers, Erlangen, Germany).

Image-Data Processing

A custom graphical user interface (GUI) was developed using
Windows-based MeVisLab 2.8 [12] for detecting and localiz-
ing atherosclerosis (e.g., calcification and stenosis) in the

coronary artery system (Fig. 1). Through GUI integration,
coronary artery/branch-courses were initially delineated auto-
matically utilizing a work-in-progress version of commercial
capabilities of the CTcardio-vascular engine [13] with propri-
etary centerline methodology [14, 15]. Next, the GUI allowed
the investigator-expert to manually demarcate the extent of
atherosclerosis per affected artery/branch (“diseased”; n =
245) in the 100 atherosclerotic cases. While any unlabeled
artery/branch was considered atherosclerosis-negative, nega-
tive arteries/branches in atherosclerotic cases were excluded
from further analysis due to potential similarities with dis-
eased arteries/branches. On the other hand, all negative
arteries/branches in the 100 atherosclerosis-free cases (“nor-
mal”, n = 1127) were included.

3D-to-2D Projection Reformatting

Supporting the 3D-to-2D projection transformation,
circumferentially arranged straightened-Multiplanar
Reformatted (MPR) displays of each coronary artery/branch,
all longitudinally co-registered to the shared centerline,
underwent surface-illumination processing to produce a
cylindrical-appearing volume image (Fig. 2). During subse-
quent rotation of each volume image, to keep image resolution
as close as possible to original image dimensions used for
training, unique ray-traced (RT) projections were created ev-
ery 10° (0–180°), producing 18 distinctive 2D RT representa-
tions per artery/branch [16]; when all 18 were combined by
averaging the overlapping intensities, an “Aggregate
Projected View” (APV) of the original centerline-extracted
arteries/branches was produced.

For DNN algorithm development, the image data was
subdivided according to a 3:1:1 ratio for training, validation,
and testing [17]. For the APV evaluation 142, 50, and 53
diseased arteries/branches, as well as 657, 225, and 245 nor-
mal arteries/branches, were placed into training, validation,
and test sets respectively (Table 1A). However, in order to
provide balance in the training and validation sets, similar
numbers of normal arteries/branches (142 and 50, respective-
ly) were randomly selected to match those of diseased arteries/
branches [Table 1B].

Image-Data Augmentation

Recognizing that aggregating 18 distinctive 2D RT represen-
tations per coronary artery/branch as a single APV is associ-
ated with information loss due to averaging, a mosaic alterna-
tive was proposed. By this option, rather than averaging the
intensities of all 18 distinctive RT representations, a mosaic
display of the same 18 views as a 2 × 9 image matrix [18]
created a “Mosaic Projected View” (MPV); this enabled a
novel image DA technique in which the views of the diseased
arteries/branches could be randomly permuted to increase
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representations. Specifically for this work, the 18 views of
each artery/branch were randomly re-ordered five times for
the purposes of generating 710 diseased images for more ro-
bust learning while maintaining diseased:normal balance in
training (Table 1C); no such DA was performed on the vali-
dation and test sets.

Photometric Grayscale-to-Color Conversion

To date, most available pre-trained models, such as ImageNet,
Pascal-VOC, and Microsoft COCO, have been trained on col-
ored image datasets. However, the aforementioned 2D projec-
tion views generated for each artery/branch were represented
as a single-channel grayscale image. Therefore, the effect of
GCC on improved visualization was also investigated. This
process involved transforming a 12-bit grayscale image to a
24-bit RGB image (8-bit for each of the color channels) [3,
19].

Transfer Learning

TL is a common approach utilized to improve DNN algo-
rithm performance on a small dataset. While Inception-V3
[20] was used as the base DNN, in order to refine the
model for the CCTA dataset, the final layers of the
DNN were replaced by a fully connected layer of 1024
nodes in a ReLU activation unit [21], followed by a
Sigmoid output function for binary classification as

normal vs. diseased (Fig. 3). The weights of the model
were initialized with training weights based on the
ImageNet dataset.

All training was performed using Keras [22] with
TensorFlow-1.8 [23]. The initial learning rate was 0.001
on a stochastic gradient descent optimizer [24] with batch
size of 8; re-training was terminated after 120 epochs.
Traditional DA routines (e.g., random rotation, horizontal
and vertical flipping, random crops, and translation) were
performed for each case [2]. During the training/
validation process, algorithm performance (monitoring
binary cross-entropy) on the validation set was observed
per epoch with preservation of the model with highest
accuracy to that point; if the validation accuracy increased
in subsequent epochs, the model was updated.

Evaluation of the Proposed Methods

In order to assess incremental impact of the following pro-
posed methods: (1) DA (by MPV “mosaicking”), (2) photo-
metric conversion (byGCC), and (3) TL (by initializationwith
pre-trained weights), eight models reflecting the possible com-
binations of aforementioned variables (i.e., APV vs. MPV
gray-scale, APV vs MPV colored, either without/with TL)
underwent assessment (Fig. 4). Classification accuracies were
based on the area under the receiver operating characteristics
curve (AUC) evaluation.

Fig. 1 GUI for segmentation of the coronary artery system. It includes
capabilities for production of the following: (1) multiple orthogonal or
oblique multi-planar reformatted or thin-maximum intensity projection
2D images (left sided 2 × 2 panel); (2) a stacked short-axis image series
of a coronary artery [right edge strip], with manually applied tinting (red)
reflecting local presence of atherosclerosis; and (3) centerline-dependent

rotatable coronary artery 3D “branching tree” display (upper, between
2 × 2 panel and right edge strip), with artery enhancement (light-blue)
indicating manual selection of artery-of-interest, and ball marker (dark-
blue) and segment overlay (red) indicating specific level of manually
demarcated atherosclerotic plaque
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Results

DA based on mosaicked 3D-to-2D transformation (by
MPV technique) alone showed the highest DNN algo-
rithm performance improvement (Fig. 5). MPV results
either equaled (AUC = 0.87), but more often exceeded
(MPV AUC = 0.90–0.93 > APV AUC = 0.74–0.88), algo-
rithm performance by non-mosaicked training (i.e.,
APV only). Next, color-mapping from GCC alone was
superior to corresponding gray-scale comparisons only
for APV (both color APV AUC = 0.87–0.88 > gray APV
AUC = 0.74–0.78), while being inferior for MPV (both
color MPV AUC = 0.87–0.91 < gray MPV AUC = 0.90–
0.93). Last, TL using pre-trained model weights on
ImageNet alone was found to be consistently beneficial
(with pre-trained weights AUC = 0.78–0.93 > random/un-
trained weights AUC = 0.74–0.90). When TL was com-
bined with the proposed novel MPV-based DA method,
the greatest amplification of algorithm performance was
achieved (with both DA and TL AUC = 0.93).

Discussion

With the goal of strengthening the development of a DNN
algorithm for binary classification supporting augmented in-
telligence in CCTA screening for atherosclerosis absence ver-
sus any degree of disease [8] via improved image dataset size
and balance, this work was focused on a strategy potentially
incorporating the following: (1) 3D-to-2D projection
reformatting methods supporting novel DA (by MPV
mosaicking); (2) photometric conversion for enhanced image
representation (by GCC); and (3) TL initialized by pre-trained
weighting (by ImageNet), rather than by random-weighting.
The results indicate that while a positive impact from TL can
be achieved on volumetric datasets using the proposed 3D-to-
2D reformatting, greater gain in algorithm performance is re-
alized with application of either color-mapping (by GCC) to
APVor novel DA (by MPV technique).

Most pre-trained imaging-focused DNNs require 2D im-
ages, while advanced medical images (e.g., CCTA) are 3D
in nature. Thus, methods to generate 2D images from 3D

Fig. 2 Circumferentially
arranged straightened-MPR
displays of a diseased coronary
artery/branch, all longitudinally
co-registered to the shared
centerline and then surface-
illumination processed, produced
a “stretched-appearing” volume
image (top). Rotation of each
volume image with creation of
unique ray-traced (RT)
projections every 10° (only 9
shown), produced multiple RT
representations per artery/branch
(bottom)
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counterparts have become vital. This work demonstrated that
multiple mosaicked projected views of a single MPR-based
coronary artery/branch representation (i.e., MPV) can help
train a classifier using Inception-V3 after TL initialization
(e.g., with ImageNet weights), thereby facilitating the
achievement of high DNN algorithm performance of
AUC = 0.93 based on a small image dataset from only 200
examinations.

Since many of the available deep learning models were
designed for colored images, it is possible that GCC may be
beneficial in some cases in medical imaging. However, the
opposite results revealed on MPV suggests that the color-
mapping technique may only be advantageous when detection
of subtle changes in density are needed, such as in the case of
APV which averages the densities of all projections whereas
MPV displays the projections side-by-side in a mosaic
configuration.

Recently, recurrent convolution neural networks were used
to characterize coronary stenosis and plaque with accuracies
of 0.80 and 0.77, respectively; it produced encouraging “proof
of concept” for artificial intelligence-based coronary analysis
[25]. In the current technical development, higher algorithm
performance was achieved with a 3D-to-2D image conversion
technique combined with novel DA and TL.

Nevertheless, there are technical limitations to the pro-
posed CCTA evaluation. First, a 2D, rather than 3D, approach
to the representation of CCTA image data is used. However,
this is justifiable because of the following: (1) ,most curated/
labeled medical-imaging datasets available are relatively
small, compared with publicly available datasets, and need
amplification; (2) it is impractical to have radiologists labor
over the annotation of large volumes of images, compounded
further by the 3D nature of CCTA data; (3) CCTA data access
and image-annotation expertise are currently limited to our
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Fig. 3 DNN algorithm training with Inception-V3. The additional fully connected ReLU layer and Sigmoid output layer are added at the end of the DNN
as shown (right). A sample input of DA coronary artery representations is also shown (left)

Table 1 A relative shortage of diseased artery/branch APV
representations was demonstrated when a 3:1:1 image-dataset
distribution was used for training:validation:testing, leading to an
undesirable imbalance for training and testing (1A). When 1:1
diseased:normal dataset balancing was applied for training and
validation, low case volumes (e.g., only 142:142) was expected to limit
training performance (1B). To increase diseased artery/branch

representations for training, while maintaining diseased:normal dataset
balance, a novel DA method was developed for dataset enlargement
through creation of additional depictions of the same arteries/branches
(i.e., MPV); by this “mosaicking” DA method alone, the 142 original
diseased APVs identified for training were amplified to 710 diseased
MPV representations, approximating the 657 non-permuted normal
MPVs (1C)

1A 3:1:1 Distributed

Training Validation Testing Total

Diseased APV 142 50 53 245

Normal APV 657 225 245 1127

1B 3:1:1 Distributed+1:1 balanced

Training Validation Testing Total

Diseased APV 142 50 53 245

Normal APV 142 50 245 437

1C 3:1:1 Distributed+1:1 balanced+data-augmented for training

Training Validation Testing Total

Diseased MPV 710 50 53 813

Normal MPV 657 50 245 952
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Fig. 5 Changing AUC based on applications of proposedDA, GCC, and/
or TL methods is shown. The increase in performance from MPV-based
DA (right) over APV use alone (left), as well as from the utilization of
pre-trained model weights (TL with ImageNet) (bottom), compared to

random-weight initialization of training (i.e., no TL) (top), demonstrate
both the individual and additive value of the proposed novel DA and TL
methods towards yield in DNN algorithm classification

Fig. 4 To assess incremental impact of the following proposed methods
on DNN algorithm performance: (1) DA (by MPV “mosaicking”), (2)
photometric conversion (by GCC), and (3) TL (by initialization with pre-
trained weights), eight models reflecting the possible combinations of

aforementioned variables were developed; they included APV vs MPV
in gray-scale (left), as well as APV vs MPV in color-map (right), both
without and with application of TL
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site and their cardiac radiologist workforce; and (4) there has
been previously reported success with use of transfer learning
for 2D views of 3D image datasets. Second, there is reliance
on vessel auto-segmentation which proved imperfect, with
infrequent incorrect extraction of arteries/branches due to un-
predictable centerline deviation, with no easy option for man-
ual rectification. Last, observed occasional incorrect displace-
ments of coronary calcifications from the peri-centric field of
view during segmentation may have contributed to falsely
atherosclerosis-free algorithmic interpretations. However,
both issues would have impacted global algorithm perfor-
mance but should not have impacted comparisons as no selec-
tive modification was made to the training sets other than the
augmentations described earlier.

Conclusion

This report corroborates the use of 3D-to-2D reformatting
techniques along with novel DA (by MPV technique) and
TL-combined strategy to overcome recognized image-data
limitations common in medical imaging. The mosaicking
method for DA, as well as the GCC strategy on APV, de-
scribed in this report could alone have important applications
in other areas of medical imaging [18, 26], but further inves-
tigation is needed to determine whether these techniques can
also be successfully utilized in other clinical scenarios includ-
ing different imaging modalities and regions of the body.
Nonetheless, this report addresses practical opportunities for
managing the anticipated ongoing issues related to shortages
of curated image-data for DNN algorithm training.
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