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Abstract
Whole-heart coronary magnetic resonance angiography (WHCMRA) permits the noninvasive assessment of coronary artery
disease without radiation exposure. However, the image resolution of WHCMRA is limited. Recently, convolutional neural
networks (CNNs) have obtained increased interest as a method for improving the resolution of medical images. The purpose of
this study is to improve the resolution of WHCMRA images using a CNN. Free-breathing WHCMRA images with 512 × 512
pixels (pixel size = 0.65 mm) were acquired in 80 patients with known or suspected coronary artery disease using a 1.5 T
magnetic resonance (MR) system with 32 channel coils. A CNN model was optimized by evaluating CNNs with different
structures. The proposed CNN model was trained based on the relationship of signal patterns between low-resolution patches
(small regions) and the corresponding high-resolution patches using a training dataset collected from 40 patients. Images with
512 × 512 pixels were restored from 256 × 256 down-sampled WHCMRA images (pixel size = 1.3 mm) with three different
approaches: the proposed CNN, bicubic interpolation (BCI), and the previously reported super-resolution CNN (SRCNN). High-
resolution WHCMRA images obtained using the proposed CNN model were significantly better than those of BCI and SRCNN
in terms of root mean squared error, peak signal to noise ratio, and structure similarity index measure with respect to the original
WHCMRA images. The proposed CNN approach can provide high-resolutionWHCMRA images with better accuracy than BCI
and SRCNN. The high-resolution WHCMRA obtained using the proposed CNN model will be useful for identifying coronary
artery disease.
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Introduction

Coronary artery stenosis causes ischemic heart disease such as
angina pectoris. Ischemic heart disease is the leading cause of
death, resulting in approximately eight million deaths around
the world [1]. Therefore, it is important to detect coronary
artery stenosis at an early stage. Awhole-heart coronary mag-
netic resonance angiography (WHCMRA) permits the nonin-
vasive assessment of coronary artery stenosis without expos-
ing the patient to radiation. Although WHCMRA has several
advantages over coronary computed tomography (CT)

angiography such as the ability to use non-contrast enhanced
imaging and robustness to heavy coronary calcification, low
spatial resolution remains a major limitation of WHCMRA.

Learning-based super-resolution (SR) is a post-processing
technique to increase image resolution [2–4]. Wu et al. devel-
oped a learning-based super resolution technique using kernel
partial least squares [2]. Xian et al. also proposed an SR ap-
proach that integrates external and internal statistics [3].
Although these studies demonstrate that learning-based SR
techniques can achieve high performance, these techniques
require a large number of reference images and also take an
enormous amount of time to compute.

Deep learning approaches such as convolutional neural
networks (CNNs) have achieved superior performance in var-
ious fields such as classification, detection, segmentation, and
super-resolution in images [5–11]. CNNs can automatically
extract multilevel features, specific to the application, from
images. The performance of CNNs has been reported to be
better than that of conventional methods that use image pro-
cessing techniques. Dong et al. [12, 13] developed a super-
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resolution CNN (SRCNN) for improving the image resolution
of natural images. The SRCNN is applied in three steps,
namely, patch extraction and representation, non-linear map-
ping, and reconstruction. It learns an end-to-end mapping di-
rectly between the low- and high-resolution images. Although
Umehara et al. [14] applied SRCNN and demonstrated the
effectiveness of this approach in increasing the image resolu-
tion of chest radiographs, SRCNN was originally developed
for natural images. Therefore, SRCNN might not be suitable
for medical images, because there is a large difference in the
signal patterns of natural and medical images. It has also been
reported that the accuracy of the resolution improvement
changes greatly when the structure of SRCNN is changed.
Thus, it is important to determine the suitable CNN structure
for the target image.

In this study, we optimized the structure of a CNN to im-
prove the image resolution of WHCMRA images and then
evaluated their fidelity to the original images. It is desirable
to obtain WHCMRA images with a resolution that is higher
than 512 × 512 pixels (pixel size = 0.65 mm) in the clinical
diagnosis of patients with coronary artery disease. However,
owing to the limitations in imaging time that can be tolerated
by patients, WHCMRA images with higher spatial resolution
cannot be constructed from actual MR image data acquired
from human subjects. Thus, 256 × 256 pixel images (pixel
size = 1.3 mm) were generated by down-sampling 512 × 512
WHCMRA images (pixel size = 0.65 mm) using nearest-
neighbor interpolation. To evaluate the accuracy of the
super-resolution images, the 256 × 256 down-sampled images
were restored to 512 × 512 pixel images using the CNN, and
the fidelity of the restored images was evaluated using the
original 512 × 512 WHCMRA images as the gold standard.

Materials and Methods

Materials

The use of the database in this study was approved by the
institutional review board at Mie University Hospital. The
database was stripped of all patient identifiers.

Free-breathing WHCMRA images 512 × 512 × 150 pixels
in size were obtained from 80 patients with known or
suspected coronary artery disease using a 1.5 T MR system
with 32 channel coils. These images were acquired under the
following conditions: a navigator echo for respiratory gating,
a narrow ECG-gated acquisition window in the cardiac cycle,
T2-prep, and spectral pre-saturation with inversion recovery
(SPIR). The voxel size of the WHCMRA images was
0.65 mm× 0.65 mm× 0.8 mm. To train and evaluate a CNN
model, we randomly divided the patient data into a training set
and a test set. Each set included the data of 40 patients. The
CNNwas developed and evaluated usingMATLAB 2018a on

a workstation (CPU: Intel Core i9-7900X processor, RAM:
128 GB, and GPU: NVIDIA GeForce GTX 1080Ti).

Methods

Structure and Optimization of CNN

The number of combinations of hyper-parameters, such as the
size of the input layer, the number of convolutional layers, and
the kernel size and the number of filters at each convolutional
layer, is infinite for a CNN. To build a CNN that is optimized
for increasing the resolution ofWHCMRA images, we started
with a basic CNN model consisting of three convolutional
layers followed by a rectified linear unit (ReLU) layer. In the
initial model, the first, second, and third convolutional layers
had 32 filters with a kernel size of 3 × 3 and a stride of 1, 16
filters with a kernel size of 1 × 1 and a stride of 1, and one filter
with a kernel size of 3 × 3 and a stride of 1, respectively.

To optimize the input patch size for the input layers of the
CNN model, low-resolution small regions (patches) of 64 ×
64, 32 × 32, and 16 × 16 pixels, which were extracted from the
low-resolution images, as described in “Training and Testing
of the CNN” section, were tested for their ability to increase
image resolution (described in “Evaluation of Fidelity” sec-
tion). Then, the patch size with the best performance was used
to optimize the remaining hyper-parameters.

To optimize the three convolutional layer model, three dif-
ferent kernel sizes of 9 × 9, 5 × 5, and 3 × 3 pixels were tested
in the first layer while fixing the kernel sizes in the second and
third convolutional layers.

We also evaluated CNN models with four and five
convolutional layers. A CNN model with four convolutional
layers was constructed by adding a new convolutional layer in
the penultimate layer of the three convolutional layer model
with the best performance. Three different kernel sizes of 9 ×
9, 5 × 5, and 3 × 3 pixels were tested in the additional
convolutional layer while fixing the kernel sizes in the other
convolutional layers. A CNN model with five convolutional
layers was constructed by further adding a convolutional layer
in the penultimate layer of the best four convolutional layer
model. Again, three different kernel sizes (9 × 9, 5 × 5, and
3 × 3 pixels) were tested for the additional convolutional layer.

Training and Testing of the CNN

One of the most common approaches for training a CNN for
image super-resolution is to prepare pairs of high-resolution
and low-resolution images taken from the same scenes. To
double the resolution of WHCMRA images, it would be nec-
essary to prepare pairs of 1024 × 1024 and 512 × 512
WHCMRA images for the same patients. However, 1024 ×
1024 WHCMRA images cannot be acquired from patients or
healthy volunteers, owing to the extremely long acquisition
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time and low signal-to-noise ratio. Consequently, in this study,
256 × 256 down-sampledWHCMRA images were restored to
512 × 512 pixels using the CNN to evaluate the accuracy of
the resolution improvement. The fidelity of 512 × 512 CNN
images with respect to the original 512 × 512 WHCMRA im-
ages was evaluated.

To train the CNNmodel to increase the resolution of 256 ×
256 images to 512 × 512 images, the 256 × 256 images (pixel
size = 1.3 mm) generated by down-sampling the 512 × 512
WHCMRA images (pixel size = 0.65 mm) were employed
as high-resolution images whereas 128 × 128 images (pixel
size = 2.6 mm) generated by further down-sampling the
256 × 256 down-sampled WHCMRA images were used as
low-resolution images. In other words, the 256 × 256 down-
sampled images and 128 × 128 further down-sampled images
were used as high-resolution images and low-resolution im-
ages, respectively, in the training phase.

Figure 1 shows the overall training process for the basic
CNN model. The 128 × 128 low-resolution images were up-
sampled to 256 × 256 low-resolution images using bicubic
interpolation (BCI). The 256 × 256 low-resolution images
were divided intoN ×N patches atN/2-pixel intervals whereas
the 256 × 256 high-resolution images were divided into N ×N
patches at positions corresponding to the low-resolution
patches. Each low-resolution patch was input to the input lay-
er of the CNN model. The corresponding high-resolution
patch was used as the desired output (the teaching signal).
The CNN model was trained using the relationship between
low-resolution patches and the corresponding high-resolution
patches in terms of signal patterns. The weights in the CNN

model were updated such that the mean squared errors be-
tween the output of the CNN model and the teaching signals
were minimized. The learning parameters were as follows: the
mini-batch size was 2560, the learning rate was 10−6, and the
maximum number of epochs was 500.

To test the CNN model, the trained CNN was given 256 ×
256 down-sampled WHCMRA images and 512 × 512 CNN
images were output. Note that the 256 × 256 down-sampled
images were used as high-resolution images while training the
CNN, and 256 × 256 down-sampled images were used as low-
resolution images during CNN testing.

Evaluation of Fidelity

The fidelities of the 512 × 512 CNN images generated from
the 256 × 256 down-sampledWHCMRA images with respect
to the original 512 × 512WHCMRA images were determined
to evaluate the accuracy of the super-resolution images. The
fidelities of the images constructed using the CNN were com-
pared with those obtained using SRCNN and BCI. In this
study, the root-mean-squared error (RMSE), peak signal-to-
noise ratio (PSNR), and structural similarity index measure
(SSIM) were employed as evaluation metrics [15, 16].

RMSE is defined as follows:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 I−I 0ð Þ2
r

ð1Þ

Here, N is the number of pixels in image, I is the original
WHCMRA image, and I′ is the constructed image. Values of
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Fig. 1 Training of the convolutional neural network (CNN) model
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RMSE closer to 0 indicate a greater fidelity between the super-
resolution image and the original image in terms of pixel
values.

PSNR is defined by the following equation:

PSNR ¼ 20� log10
MAXI

RMSE

� �
ð2Þ

Here, MAXI is the maximum pixel value in the original
WHCMRA image. A higher PSNR indicates a smaller error
in the pixel values of the original WHCMRA image and the
constructed image.

SSIM [17] is defined as follows:

SSIM ¼
2μxμy þ C1

� �
2σxy þ C2

� �
μ2
x þ μ2

y þ C1

� �
σ2
x þ σy

2 þ C2

� � ð3Þ

Here, μx and μy are the mean pixel values of the original
WHCMRA image and the constructed image, respectively,
and σx and σy are their respective standard deviations. In ad-
dition, σxy is the covariance between the original WHCMRA
image and the super-resolution image, and C1 and C2 are
positive constants used to avoid a null denominator. SSIM
was used to evaluate the integrated similarity in terms of
brightness, contrast, and structure between the two images.

Results

Table 1 compares the fidelities of the CNN images with three
different input patch sizes, namely, 16 × 16, 32 × 32, and 64 ×
64 pixels. The mean and standard deviation values with re-
spect to RMSE, PSNR, and SSIM for the images obtained
using an input patch size of 32 × 32 pixels are 7.07 ± 2.59,

39.41 ± 1.37 dB, and 0.998 ± 0.001, respectively. This indi-
cates a significant improvement over the results obtained
using 16 × 16-pixel patches (RMSE 7.27 ± 2.63, P < .001;
PSNR 39.03 ± 1.30 dB, P < .001; SSIM 0.997 ± 0.001,
P < .001). There are no significant differences in the RMSE,
PSNR, and SSIM values of the images obtained using 32 × 32
and 64 × 64 pixel patch sizes (RMSE 7.07 ± 2.59, P = .22;
PSNR 39.42 ± 1.38 dB, P = .063; SSIM 0.998 ± 0.001,
P = .41). Table 2 compares the fidelities for CNN images ob-
tained with three different kernel sizes of 9 × 9, 5 × 5, and 3 ×
3 pixels in the first convolutional layer. Here, the input patch
size was set to 32 × 32 pixels. The fidelities for images obtain-
ed with a kernel size of 3 × 3 pixels in the first convolutional
layer were significantly greater than those obtained using the
9 × 9 and 5 × 5-pixel kernel sizes (P < .001). Tables 3 and 4
compare the fidelities of the images with four and five
convolutional layer CNNs using three different kernel sizes
in the penultimate convolutional layer while fixing the kernel
sizes in the other convolutional layers. The fidelities for im-
ages obtained with kernel set (3-1-3) in the three
convolutional layers are significantly greater than those ob-
tained using four and five convolutional layers (P < .001).
Therefore, the CNNmodel that was constructed from an input
layer with an input patch size of 32 × 32 pixels and kernel
sizes of 3 × 3, 1 × 1, and 3 × 3 in the first, second, and third
convolutional layers, respectively, was determined to be the
optimal CNN model for improving image resolution in
WHCMRA images.

Figure 2 compares the 512 × 512 super-resolution images
generated from the 256 × 256 down-sampled WHCMRA im-
ages using BCI, SRCNN, and the proposed CNN. The BCI
images and the SRCNN images are slightly blurred when
compared with the CNN images. Two radiologists compared

Table 1 Comparison of the fidelities of CNN images with three
different input patch sizes

Input patch size 64 × 64 32 × 32 16 × 16

RMSE 7.07 ± 2.59 7.07 ± 2.59 7.27 ± 2.63

PSNR [dB] 39.42 ± 1.38 39.41 ± 1.37 39.03 ± 1.30

SSIM 0.998 ± 0.001 0.998 ± 0.001 0.997 ± 0.001

Table 2 Comparison of the fidelities of CNN images with three
different kernel sizes in the first convolutional layer

Kernel size 9 × 9 5 × 5 3 × 3

RMSE 9.94 ± 3.97 8.13 ± 3.12 7.07 ± 2.59

PSNR [dB] 36.69 ± 1.66 38.33 ± 1.44 39.41 ± 1.37

SSIM 0.995 ± 0.002 0.997 ± 0.001 0.998 ± 0.001

Table 3 Comparison of the fidelities of CNN images with four
convolutional layers by using three different kernel sizes in the
penultimate convolutional layer

Kernel set 3-1-9-3 3-1-5-3 3-1-3-3

RMSE 10.62 ± 4.30 9.09 ± 3.57 8.07 ± 3.10

PSNR [dB] 36.13 ± 1.81 37.43 ± 1.55 38.39 ± 1.48

SSIM 0.994 ± 0.002 0.996 ± 0.002 0.997 ± 0.001

Table 4 Comparison of the fidelities of CNN images with five
convolutional layers by using three different kernel sizes in the
penultimate convolutional layer

Kernel set 3-1-3-9-3 3-1-3-5-3 3-1-3-3-3

RMSE 11.56 ± 4.59 9.96 ± 3.96 9.05 ± 3.56

PSNR [dB] 35.40 ± 1.76 36.70 ± 1.65 37.49 ± 1.59

SSIM 0.993 ± 0.003 0.995 ± 0.002 0.996 ± 0.002
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the 512 × 512 super-resolution images with the original 512 ×
512 WHCMRA images and confirmed that no artifacts occur
in the super-resolution images. Table 5 compares the fidelities
of the images obtained using BCI, SRCNN, and the proposed
CNN. The mean RMSE of the CNN images and the original
WHCMRA images is 7.07 ± 2.59. This is a significant im-
provement when compared to the results for the BCI images
(11.40 ± 6.46, P < .001) and SRCNN images (13.23 ± 7.73,
P < .001). The mean PSNR and SSIM for the CNN images
are 39.41 ± 1.37 dB and 0.998 ± 0.001, respectively, which are
greater than those of the BCI images (PSNR 36.15 ± 1.32 dB,
P < .001; SSIM 0.995 ± 0.004, P < .001) and the SRCNN im-
ages (PSNR 35.36 ± 1.71 [dB], P < .001; SSIM 0.993 ± 0.003,
P < .001). All indices indicating fidelity demonstrate that our
model is significantly better than BCI and SRCNN.

Discussion

In the current study, we optimized the structure of a CNN to
improve the image resolution of WHCMRA images. Using
the proposed CNNmodel, high-resolutionWHCMRA images
with significantly higher accuracy can be constructed when
compared to those obtained using the conventional methods.
We also found that the CNN model trained using the relation-
ship between image patterns with pixel sizes of 2.6 mm and
1.3 mm can be used to construct high-resolution images with a
pixel size of 0.65 mm from images with a pixel size of
1.3 mm. To the best of our knowledge, this CNN-training
approach, which uses images with different resolution rela-
tionships for training and testing, has not been employed
before.

Down-sampled WHCMRA image
(pixel size of 1.3 mm)

BCIimage
(pixel size of 1.3 mm)

SRCNNimage
(pixel size of 0.65 mm)

CNNimage
(pixel size of 0.65 mm)

Fig. 2 Comparison of the images constructed using bicubic interpolation (BCI), super resolution CNN (SRCNN), and the proposed CNN model
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Table 1 compares the resultant fidelities when the size of
the input patch was changed to 16 × 16, 32 × 32, and 64 × 64
pixels. Although the fidelity indices for CNN images with an
input patch size of 16 × 16 pixels are significantly lower than
those with 32 × 32 pixels and 64 × 64 pixels, there are no
significant differences between the results for 32 × 32 pixels
and 64 × 64 pixels. However, training the CNN with an input
patch size of 64 × 64 pixels took three times as long as training
with a patch size of 32 × 32 pixels. Therefore, we believe that
an input patch size of 32 × 32 pixels is suitable for this study.
The fidelities for the CNN images with kernel size of 3 × 3
pixels in the first convolutional layer were significantly great-
er than those obtained using the 9 × 9 and 5 × 5-pixel kernel
sizes, as shown in Table 2. In SRCNN, for natural images, the
kernel size in the first convolutional layer is 9 × 9 pixels.
Given that medical images tend to have large local changes
in signal patterns, a small kernel size would be suitable for

analyzing local information. Therefore, the kernel size in the
first convolutional layer was set to 3 × 3 pixels in this study.
Recently, deeper CNNs have been developed to improve per-
formance, especially in the field of classification. The fideli-
ties of CNN images with three convolutional layers are sig-
nificantly better than those obtained using four and five
convolutional layers, as shown in Tables 3 and 4. The
SRCNN also consists of three convolutional layers.
Therefore, we believe that even just three layers may be suf-
ficient for increasing image resolution. This has the advantage
of low computational cost.

Although the proposed CNN model achieves the highest
fidelities when generating 512 × 512 CNN images from
256 × 256 down-sampled WHCMRA images, obtaining
WHCMRA images with a resolution higher than 512 × 512
pixels is desirable in clinical practice. Therefore, we attempted
to apply the proposed CNN to generate 1024 × 1024 high-
resolution images (pixel size = 0.325 mm) from the original
512 × 512 WHCMRA images (pixel size = 0.65 mm). During
the training of the proposed CNN model, the 256 × 256 im-
ages that were generated by down-sampling 512 × 512
WHCMRA images were used as low-resolution images,
whereas the 512 × 512 WHCMRA images were used as
high-resolution images. Figure 3 compares the 1024 × 1024
images constructed from the 512 × 512 WHCMRA images
using BCI and the proposed CNN model. The proposed

Table 5 Comparison of the fidelities of images constructed using BCI,
SRCNN, and the proposed CNN model

BCI SRCNN CNN model

RMSE 11.40 ± 6.46 13.23 ± 7.73 7.07 ± 2.59

PSNR [dB] 36.15 ± 1.32 35.36 ± 1.71 39.41 ± 1.37

SSIM 0.995 ± 0.004 0.993 ± 0.003 0.998 ± 0.001

egami NNCegami ICB

Fig. 3 Comparison of the constructed images with 1024 × 1024 pixels fromWHCMRA images with 512 × 512 pixels using BCI and the proposed CNN
model
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CNN model improved the image resolution with less blurring
than BCI. Two radiologists confirmed that no obvious artifacts
had been generated in the 1024 × 1024 super-resolution im-
ages. This result demonstrates the potential for generating
high-resolution images by the proposed CNN model in clini-
cal practice. However, it is necessary to clarify the beneficial
and detrimental effects of enhancing image resolution using
the proposed CNNmodel. In future study, we plan to compre-
hensively evaluate the usefulness of enhancing image resolu-
tion using this approach in an observer study.

This study has some limitations. One limitation is that the
hyper-parameters such as the number of layers, number of
filters, kernel size, learning rate, mini-batch size, and maxi-
mum number of epochs in our CNN model may not be the
best combination for improving the resolution of WHCMRA
images. Although 12 combinations of hyper-parameters were
evaluated in this study, the number of combinations of hyper-
parameters in a CNN is infinite. Thus, the results in this study
might be improved by applying a more optimal combination
of hyper-parameters. Another limitation is that WHCMRA
images with a resolution larger than 512 × 512 pixels could
not be used for training the CNN. Therefore, low- and high-
resolution images with resolutions that were different from the
testing resolution were used when training the CNN.
However, these CNN images could be useful for identifying
artery stenosis and for reducing the interpretation time because
the fidelities for the images without blurring obtained using
the proposed CNN were significantly better than those obtain-
ed by the BCI images.

Conclusion

The CNN-based approach developed in this study is able to
yield high-resolution WHCMRA images with higher accura-
cy than those of BCI and SRCNN. The high-resolution
WHCMRA images constructed using the proposed CNN
model are expected to be useful for identifying artery stenosis
and for reducing interpretation time.
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