Table 2.
Multivariate logistics regression analysis in TCM groups.
TCM groups | Independent variables | RR | SE | z | P |
---|---|---|---|---|---|
NON | (Base outcome) | ||||
SSDH | Hp | 66.360∗ | 71.22943 | 3.91 | 0.0001 |
Gender | 0.797 | 0.5363312 | −0.34 | 0.737 | |
Age | |||||
<55 | 1.103 | 0.7698166 | 0.14 | 0.889 | |
<65 | 2528084 | 2.19E + 09 | 0.02 | 0.986 | |
≧65 | 1.338 | 1.55997 | 0.25 | 0.803 | |
LQIS | Hp | 68.114∗ | 73.09308 | 3.93 | 0.0001 |
Gender | 0.532 | 0.3566124 | −0.94 | 0.346 | |
Age | |||||
<55 | 1.014 | 0.7049037 | 0.02 | 0.984 | |
<65 | 1477533 | 1.28E + 09 | 0.02 | 0.987 | |
≧65 | 0.583 | 0.687404 | −0.46 | 0.647 | |
IBSB | Hp | 72.048∗ | 80.58746 | 3.82 | 0.0001 |
Gender | 0.714 | 0.5035651 | −0.48 | 0.633 | |
Age | |||||
<55 | 1.504 | 1.123849 | 0.55 | 0.585 | |
<65 | 3083635 | 2.67E + 09 | 0.02 | 0.986 | |
≧65 | 1.673 | 2.022528 | 0.43 | 0.670 | |
SQD | Hp | 41.117∗ | 44.61288 | 3.43 | 0.001 |
Gender | 0.507 | 0.3472169 | −0.99 | 0.321 | |
Age | |||||
<55 | 1.871 | 1.344472 | 0.87 | 0.384 | |
<65 | 3893661 | 3.37E + 09 | 0.02 | 0.986 | |
≧65 | 1.892 | 2.242295 | 0.54 | 0.591 |
∗ P < 0.05. RR: relative risk; SE: standard error. Hp: Hp (−) as a reference; Gender: female as a reference; Age: <45 as a reference.