Fontanilles et al. Acta Neuropathologica Communications (2020) 8:52

https://doi.org/10.1186/s40478-020-00917-6 ACta N eu ropathOIOgica
Communications

METHODOLOGY ARTICLE Open Access

Check for
updates

Simultaneous detection of EGFR
amplification and EGFRvIII variant using
digital PCR-based method in glioblastoma

Maxime Fontanilles'*", Florent Marguet>, Philippe Ruminy?, Carole Basset”, Adrien Noel', Ludivine Beaussire',
Mathieu Viennot®, Pierre-Julien Viailly*, Kevin Cassinari®, Pascal Chambon®, Doriane Richard®, Cristina Alexandru?,
lsabelle Tennevet?, Olivier Langlois’, Frédéric Di Fiore*®, Annie Laquerriére®*, Florian Clatot*" and

Nasrin Sarafan-Vasseur'"

Abstract

Epidermal growth factor receptor (EGFR) amplification and EGFR variant Il (EGFRVIII, deletion of exons 2-7) are of
clinical interest for glioblastoma. The aim was to develop a digital PCR (dPCR)-based method using locked nucleic
acid (LNA)-based hydrolysis probes, allowing the simultaneous detection of the EGFR amplification and EGFRvII
variant. Sixty-two patients were included. An exploratory cohort (n = 19) was used to develop the dPCR assay using
three selected amplicons within the EGFR gene, targeting intron 1 (EGFR1), junction of exon 3 and intron 3 (EGFR2)
and intron 22 (EGFR3). The copy number of EGFR was estimated by the relative quantification of EGFR1, EGFR2 and
EGFR3 amplicon droplets compared to the droplets of a reference gene. EGFRvIIl was identified by comparing the
copy number of the EGFR2 amplicon to either the EGFR1 or EGFR3 amplicon. dPCR results were compared to
fluorescence in situ hybridization (FISH) and next-generation sequencing for amplification; and to RT-PCR-based
method for EGFRVIIl. The dPCR assay was then tested in a validation cohort (n =43). A total of 8/19 EGFR-amplified
and 5/19 EGFRvill-positive tumors were identified in the exploratory cohort. Compared to FISH, the EGFR3 dPCR
assay detected all £EGFR-amplified tumors (8/8, 100%) and had the highest concordance with the copy number
estimation by NGS. The concordance between RT-PCR and dPCR was also 100% for detecting EGFRVII using an
absolute difference of 10.8 for the copy number between EGFR2 and EGFR3 probes. In the validation cohort, the
sensitivity and specificity of dPCR using EGFR3 probes were 100% for the EGFR amplification detection compared to
FISH (19/19). EGFRvIIl was detected by dPCR in 8 £GFR-amplified patients and confirmed by RT-PCR. Compared to
FISH, the EGFR2/EGFR3 dPCR assay was estimated with a one-half cost value. These results highlight that dPCR
allowed the simultaneous detection of £GFR amplification and EGFRVII for glioblastoma.
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Introduction
Glioblastoma is the most frequent primary brain tumor in
adults, with 125,000 to 150,000 new cases per year world-
wide [1]. Despite extensive treatment based on surgery,
radiotherapy and chemotherapy combination, recurrence
remains the rule with a median overall survival of less
than 18-24 months [2]. Diagnosis is commonly based on
histopathological examination and characterization of iso-
citrate dehydrogenase (IDH)1/2 mutations [3]. Recent ad-
vances also highlighted a key role of other molecular
alterations, such as those located on the epidermal growth
factor receptor (EGFR) gene, which is altered in approxi-
mately 57% of cases [4]. EGFR amplification and EGFR
variant III (EGFRvIII), which is characterized by the dele-
tion of exons 2-7, are the two most frequent EGFR alter-
ations in glioblastoma observed in 40-50% and 10% of
patients, respectively [4—7]. Interestingly, it has been re-
ported that the presence of EGFRVIII is associated with
EGFR gene amplification in most cases [8]. In this context,
specific treatments that directly target the EGFR pathway
or activate the immune response against EGFRvII] have
been recently developed using either as a single therapy or
in combination with standard treatment [9-12]. Antibody-
drug conjugates targeting EGFR may improve survival at
the time of recurrence in EGFR-amplified glioblastoma
[13]. In addition, identification of EGFR amplification asso-
ciated with either a telomerase reverse transcriptase pro-
moter (TERTp) mutation or chromosomal alterations
(chromosome 7 gain and chromosome 10 loss) in diffuse or
anaplastic astrocytoma has led to a reclassification proposal
of grade II-III 1pl9q non-codeleted gliomas into
glioblastoma-like tumors [14, 15]. Taken together, these
data support that the detection of EGFR alterations may be
considered relevant in patients treated for glioblastoma.
Until now, EGER alterations have been detected by
separate methods. Indeed, fluorescence in situ
hybridization (FISH) is the gold standard for the detec-
tion of EGFR amplification, and the use of other
methods, such as genomic hybridization (array CGH) or
next-generation sequencing (NGS), has also been re-
ported. On the other hand, the detection of the EGFRvIII
variant, leading to an abnormal expression of ARNm, is
performed commonly using RT-PCR-based methods [9].
The development of a specific molecular method allow-
ing the simultaneous detection of EGFR alterations may
be of interest in glioblastoma. Targeted copy number vari-
ation (CNV) detection by digital PCR (dPCR) using locked
nucleic acid (LNA)-based hydrolysis probes has recently
been shown to be efficient in genetic diseases [16]. LNA-
hydrolysis probes are very short nucleotides, and repeated
sequences across the human genome may be incorporated
in a dPCR amplicon. Gene copy number estimation is
then based on the ratio of detected LNA probes between a
gene of interest and a reference gene.
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In this context, we aimed to develop a novel dPCR assay
using LNA-hydrolysis probes located within and outside
the region spanning from exon 2 to exon 7 to allow the
simultaneous detection of EGFR amplification and EGFR-
vIII variant. First, we used an exploratory cohort of pa-
tients with glioblastoma to develop a dPCR assay in
comparison to FISH for EGFR amplification and to an
RT-PCR-based method for EGFRVIII. In the second step,
we tested the ability of our dPCR assay to simultaneously
detect these two EGER alterations in an independent val-
idation cohort of patients with glioblastoma.

Patients and methods

Patients and tumor samples

The present study is ancillary to the ongoing prospective
GLIOPLAK  trial (registered in  ClinicalTrials.gov,
NCT02617745), which is investigating predictive markers of
chemo-induced toxicities. A total of 62 patients were re-
cruited from November 2015 to November 2017. Eligible pa-
tients were at least 18 years old and had a newly diagnosed
and histologically confirmed supratentorial glioblastoma, ac-
cording to the 2016 WHO classification [3]. Patients received
concomitant radiotherapy with temozolomide followed by
sequential temozolomide treatment [2]. Tumor samples were
obtained during surgery (biopsy, gross-total or partial resec-
tion) and processed for routine histopathology, immunohis-
tochemistry and molecular biology experiments. Tumor
DNA was extracted from formalin-fixed paraffin-embedded
FEPE samples using the Maxwell 16 FFPE Plus LEV DNA
Purification® Kit on a Maxwell 16 Instrument’ (Promega’,
Fitchburg, Wisconsin, United States). [DH1/2 mutations
within exon 4 were analyzed using the ABI PRIM SNaPshot*
Multiplex Kit (ThermoFisher Scientific’, Waltham, Massa-
chusetts, USA); MGMT promoter (MGMTp) methylation
was analyzed with the pyrosequencing method (therascreen
MGMT Pyro®, Qiagen’, ThermoFisher Scientific).

For the purpose of the present study, the population
was divided into two groups: an exploratory cohort, which
included the first 19 patients, and a validation cohort,
which was based on the next 43 consecutive patients. The
exploratory cohort was used to develop the dPCR assay by
selecting amplicons and allowing the simultaneous detec-
tion of EGFR amplification and EGFRVIII, according to the
standard methods of FISH or NGS and RT-PCR-based
methods, respectively. In the second step, we used an in-
dependent validation cohort to evaluate the ability of the
dPCR assay to detect both EGFR alterations.

Development of dPCR assay

According to recently published methods of dPCR using
universal LNA-hydrolysis probes from the 96 Universal
Probe Library® (UPL, Sigma-Aldrich®, St. Louis, Missouri,
USA), three dPCR assays were performed for each tumor
sample [16]. These assays used a duplex PCR: one PCR
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amplicon within the EGFR gene and one reference PCR
amplicon located in the hydroxymethylbilane synthase
(HMBS) gene, a housekeeping gene located in 11q23.
Three different amplicons of the EGFR gene were de-
signed: the EGFRI amplicon located within intron 1 with
UPL® probe #1 (reference: 04684974001), the EGFR2
amplicon located between exon 3 and intron 3 with UPL®
probe #44 (reference: 04688040001) and the EGFR3
amplicon located within intron 22 with UPL® probe #11
(reference: 04685105001) (Fig. 1a). The reference HMBS
amplicon is located in intron 1 using the forward primer
(5'-GGGACAGTGTACCCAAGGTC-3’), the reverse pri-
mer (5'-CTGAGGTAAACGGATCTGACG-3') and a
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custom trichloro-phenylcarboxyfluorescein oligonucleotide
(VIC)-labeled probe (5'-CCAAGAGGCTGAGCAGGA
CT-3’, ThermoFisher Scientific®). dPCR experiments were
performed using a Qx200° droplet digital PCR (ddPCR)
System (Biorad®, Hercules, California, USA). ddPCR was
run in a final volume of 22 pL with tumor DNA, 10 pl
ddPCR Supermix for probes (no dUTP), primers for the
EGFR- and HMBS-targeted amplicons (0.9 uM), 6-
carboxyfluorescein (FAM)-labeled LNA-based hydrolysis
probe for the EGFR-targeted sequence (0.18 uM), and VIC-
labeled probe for the HMBS amplicon (0.18 uM). Thermal
cycling was performed, according to the manufacturer’s in-
structions: 10 min at 95 °C; then 40 cycles at 94°C for 30's
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Fig. 1 Design of the dPCR assay using LNA-hydrolysis probes for detecting the EGFR amplification and EGFRvIIl variant. a Three amplicons were
designed within the EGFR gene from Universal Probe Library® (Sigma-Aldrich). EGFR1, EGFR2 and EGFR3 are located within three different regions
in the gene. EGFR2 is inserted into the deleted region of the EGFRVII variant (deletion of exons 2-7). b Two-dimensional cluster plot representing
the 6-carboxyfluorescein (FAM)-labeled LNA-based hydrolysis probe for the EGFR-targeted sequence (EGFR1, EGFR2 or EGFR3) against the
trichloro-phenylcarboxyfluorescein oligonucleotide (VIC)-labeled hydrolysis probe for the HMBS amplicon. Droplets are grouped as clusters: FAM/
VIC-negative (double-negative droplets, blue), FAM-positive/VIC-negative (green), FAM-negative/VIC-positive (pink), and FAM/VIC-positive (double-
positive droplets, orange). The EGFR copy number was determined by calculating the ratio of EGFR FAM-labeled droplets over the HMBS VIC-
labeled droplets multiplied by the number of HMBS copies (x 2 in the human genome)
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and 56 °C for 1 min; and a final step of 10 min at 98 °C. The
software QuantaSoft® was used for the interpretation of the
profiles. The EGFR copy number was determined by calcu-
lating the ratio of EGFR FAM-labeled droplets over the
HMBS VIC-labeled droplets multiplied by the number of
HMBS copies (x 2 in the human genome) (Fig. 1b). CNV
assessment was then based on comparisons to the EGFR
copy number estimation from FFPE control tissues (normal
copy number, 1.66-2.46). According to molecular analyses
from INTELLANCE trials, glioblastoma was considered to
be EGFR-amplified if the copy number was greater than or
equal to 5 [7]. For EGFRvIII identification, we hypothesized
that the copy number estimated by the EGFR2 amplicon
would be lower than the copy number estimated by
EGFR1/EGEFRS3 for the same sample. The optimal amount
of DNA for one dPCR experiment was set at 30 ng.

EGFR amplification detection by fluorescence in situ
hybridization

FISH was performed on FFPE tumor samples. After the
selection of an area containing more than 70% tumor
cells, 4-pum sections were deparaffinized, dehydrated with
ethanol and pretreated with Vysis Paraffin Pretreatment
IV (Abbott®, Illinois, USA). Hybridization was performed
using the EGFR/CEP7 FISH Probe Kit® (Abbott®), ac-
cording to the manufacturer’s instructions. The probes
used covers 303 kb located in the 7pll region, which
contains the EGFR gene. The reference probe was lo-
cated on the centromere of chromosome 7. The post-
hybridization step was performed with a Wash Buffer
Kit (Abbott®). Samples were considered EGFR-amplified
when the quantity of fluorescence of the EGFR-targeting
probe (red fluorescence) was greater than twofold per
nucleus than the number of centromere-targeting probes
(green fluorescence) and only when at least 15% of
tumor cell nuclei were EGFR-amplified [7].

NGS experiments and EGFRvIIl detection

An Ion Torrent Personal Genome Machine (PGM, Life
Technologies®, Carlsbad, California, United States of Amer-
ica) was used for EGFR somatic point mutations and EGFR
amplification detection. Tumor DNA was sequenced using
a custom EGFR-targeted panel dedicated to highly recur-
rent altered region of the gene (Additional File: Table S1)
[4]. Amplified libraries (Ion AmpliSeq® Library Kit 2.0) were
submitted to emulsion PCR using the Ion OneTouch® 200
Template Kit (Life Technologies®) with the Ion OneTouch®
System (Life Technologies®). Data analysis was performed
using Torrent Suite version 5.4 software (ThermoFisher
Scientific’). Reads were mapped to the human hgl9 refer-
ence genome. Copy-number was estimated using the
ONCOCNV algorithm compared to control DNA from
healthy subjects [17].
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EGFRvIII identification was performed using ligation-
dependent reverse transcription polymerase chain reac-
tion (LD-RT-PCR), which allows the detection of fusion
transcripts and exon skipping [18-20]. RNA was ex-
tracted from FFPE tumor samples using the Maxwell® 16
LEV RNA FFPE Purification Kit (reference AS1260, Pro-
mega®) and following manufacturer instructions. RNA
was converted into complementary DNA (cDNA) using
reverse transcription probes located on the end of EGFR
exon 1 and the start of EGFR exon 8; the cDNA was
then hybridized. In the case of EGFRvIII (deletion of
exons 2-7), by adding DNA ligase, a covalent link be-
tween the two probes was formed, allowing PCR amplifi-
cation and subsequent identification by NGS on MiSeq®
(Illumina®, San Diego, California, USA).

Cost-effectiveness estimation

An exploratory cost-effectiveness study was conducted
to compare the cost of EGFR amplification detection
with dPCR with the reference method (FISH). Total
costs per patient included reagent costs and medical/
technician times.

Standard protocol approvals, registrations and patient
consent

Informed written consent to participate in the study was
obtained from all patients. The French National Com-
mittee for the Protection of Persons approved the study
(RCB ID 2015-A00377-42).

Statistical analyses

In the exploratory cohort, to assess the equivalence of
the EGFR copy number estimation between NGS and
dPCR, a correlation matrix plot was performed. The sen-
sitivity, specificity and positive and negative predictive
values were calculated to assess the diagnostic perform-
ance. The gold standard was the FISH results. The copy
number difference and its threshold between the EGFR2
assay and the two other techniques to predict the EGFR-
vIII variant were determined using receiver operating
characteristic (ROC) curves. In the validation cohort, the
sensitivity and specificity of the dPCR assay for detecting
EGFR amplification was compared to those of FISH. All
dPCR and FISH analyses were carried out in a double-
blind manner. Statistical analyses and figures were per-
formed using R software (R version 3.5.1, 2018, Vienna,
Austria) [21].

Results

Baseline characteristics

The characteristics of all patients are detailed in Table 1.
Among them, 59 (95%) had wild-type IDH (IDH-wt)
glioblastoma, and 3 had IDH-mutated glioblastoma.
Overall, EGFR amplification was identified in 27 tumors
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Table 1 Clinical and Tumor characteristics
Characteristics Entire cohort Exploratory cohort Validation
N=62 N=19 cohort
N=43
Age (years), mean [min. — max] 56.9 [21-76] 55.5 [28-76] 57.7 [21-72]
Sex Female 28 (45%) 7 (37%) 21 (49%)
Male 34 (55%) 12 (63%) 22 (51%)
Surgery Biopsy 25 (40%) 8 (42%) 17 (40%)
Resection 37 (60%) 11 (58%) 26 (60%)
Glioblastoma IDH wild type 59 (95%) 18 (95%) 47 (95%)
Giant cell glioblastoma 1 (2%) 1 (5%) 0
Gliosarcoma 2 (3%) 0 2 (5%)
Glioblastoma IDH mutant 3 (5%) 1 (5%) 2 (5%)
EGFR amplification by FISH 27 (43%) 8 (42%) 19 (44%)
MGMTp methylation Non-methylated 37 (60%) 13 (68%) 24 (56%)
Methylated 17 27%) 6 (32%) 11 (26%)
Unknown 8 (13%) 0 8 (18%)
TERTp mutation C228T 41 (66%) 14 (74%) 27 (63%)
C250T 14 (23%) 4 (21%) 10 (23%)
Wild-type 7 (11%) 1 (5%) 6 (14%)

(44%) using FISH; a total of 8 (42%) and 19 (44%) were
in the exploratory and validation cohorts, respectively.
In the group of patients with an IDH-wt glioblastoma,
three had a rare histological subtype (1 with giant cell
glioblastoma and 2 with gliosarcoma), and none of the
three tumors had EGFR amplification.

Development of a dPCR assay for detecting EGFR
alterations in the exploratory cohort

Among the 19 patients in the exploratory cohort, EGFR amp-
lification was identified in eight (8/19, 42%) patients using
FISH. EGFR1 and EGFR3 assays strictly correlated with FISH
results, making it possible to distinguish all EGFR-amplified
(8/8) and EGFR-non-amplified glioblastoma (11/11), with
sensitivity, specificity, positive and negative predictive values
of 100%. Overall, the mean copy number estimation by dPCR
was 25 (range 2-76) using EGFR1 and 294 (range 2-98)
using EGFR3. Using a threshold of copy number amplifica-
tion greater than or equal to 5, the mean EGFR1 copy num-
ber amplification was 47.5 (range 12.3-76.3), and the mean
EGFR3 copy number amplification was 56.1 (14.5-98.3)
(Fig. 2a). Using FISH, seven out of the 8 EGFR-amplified glio-
blastomas contained at least 90% cell nuclei with EGFR amp-
lification. Interestingly, the remaining EGFR-amplified
glioblastoma patient (patient #23) had 30% amplified cell nu-
clei and concordant copy number estimation by dPCR of
12.3 for EGFR1 and 14.5 for EGFR3. The diagnostic perform-
ance of EGFR2 was lower with one discordant case; the EGFR
was not amplified by dPCR but was amplified using FISH
(sensitivity of 87.5% and specificity of 100%).

NGS experiments were performed in 16 out of the 19 tu-
mors, and three patients had a tumor DNA quantity that
was too low to be analyzed. The 8/16 patients with an EGFR
amplification detected by NGS were the same as those iden-
tified with dPCR assay or FISH. Notably, the correlation co-
efficient between the copy number calculated by dPCR
assays (EGFR1, EGFR2 and EGFR3) and by NGS was higher
than 0.8 (Fig. 2b). The copy number estimated by the EGFR3
assay had the highest correlation coefficient with NGS values
(correlation coefficient of 0.9 and R-squared of 0.81) (Fig. 2c).
The copy number estimation by the EGFR2 assay had the
lowest correlation with the EGFR1/EGFR3 dPCR assays and
with NGS. Moreover, the mean copy number by the EGFR2
assay was significantly lower than that estimated by the
EGFR3 assay (18.8 vs 294, P =0.023). Five EGFR-amplified
glioblastomas had a lower estimated copy number by EGFR2
than those by EGFR1/EGFR3 assays; in one patient (patient
#07), an EGFR2 copy number was estimated as 3.3, which
was below the established cutoff.

A total of 19 patients were tested for the EGFRvIII vari-
ant. Among them, five patients were positive for an EGFR-
vIII variant using LD-RT-PCR. The dPCR assays detected
a total of 5/19 patients with the EGFRVIII variant, all of
which were identical to those detected by the LD-RT-PCR
method (Fig. 2a and Additional File: Fig. S2). We observed
that the most predictive copy number differences between
dPCR assays for detecting the EGFRvIII variant was be-
tween the EGFR3 and EGFR?2 assays, rather than between
the EGFR1 and EGFR2 assays, with a copy number abso-
lute difference of 10.8 (AUC 1) (Fig. 3).
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Taken together, using these results, the EGFR3 assay
and the EGFR2/EGFR3 assay were selected to detect
EGFR-amplified glioblastoma and to identify the EGFR-
vIII variant in the validation cohort (Fig. 4).

Results of the dPCR assays in the validation cohort

A total of 43 patients were included in the validation cohort.
Among them, 19/43 (44%) were EGFR-amplified IDH-wt
glioblastomas using FISH (19/43, 44%). Using the dPCR
assay, based on the EGFR3 assay, the same 19 patients with
an EGFR amplification were identified, leading to a sensitiv-
ity, specificity, positive and negative predictive values of
100%. The mean estimated copy number was 56.9 (range
13.6-196.5), and the median was 48.7. The EGFR3 assay
allowed for the identification of EGFR copy gain in 16
EGFR-non-amplified glioblastomas with a mean copy num-
ber of 3.3 (range 2.6-3.9). A single patient harbored an EGFR

amplification in 5% of tumor cell nuclei (Additional File: Fig.
S3), and this was considered non-amplified both by FISH
and by dPCR. Among the 19 EGFR-amplified glioblastomas,
EGFRvIII was identified in 8 patients by dPCR EGFR2/
EGFR3 assay, and all were confirmed using LD-RT-PCR.
Interestingly, two EGFR-amplified glioblastomas, iden-
tified by dPCR and confirmed by FISH, had very low
amount of DNA (2ng and 6 ng). One tumor had con-
comitant EGFRvIII variant confirmed by LD-RT-PCR,
highlighting the value of the dPCR-based method for
glioblastoma samples with small amount of DNA.

Cost estimation of dPCR

The estimated cost for one patient (CNV detected in
EGFR1, EGFR2 and EGFR3) was 43% lower using dPCR
than FISH (60.88€: 30.33€ for reagents and 30.55€ for
working time) for dPCR and 106.01€ for FISH)



Fontanilles et al. Acta Neuropathologica Communications

(2020) 8:52

Page 7 of 10

Copy ber EGFR1 - Copy EGFR2 Copy-number EGFR3 - Copy-number EGFR2 Copy-number mean(EGFR1/3) - Copy-number EGFR2
1.0 7.3, 11, 03 03, 02 01 10] 108,30 12 02, 02 01 1.0 67, 08, 04 02, 02 0
0.9 0.9 0.9
0.8 & 0.8 0.8 =
0.7 0.7 0.7
06| 8 06] e 0e] 27
2 2 2
> 2 2
=05 505 505
< < c
@ @ 3
n n n
04| 7 04l 3 04 40
0.3 0.3 0.3
AUC =0.96 AUC =1 AUC =0.98
0.2 0.2 0.2
0.1 0.1 0.1
0.0 Inf, 0.0 Inf, 0.0 Inf,

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1 - Specificity

0.0 0.1 0.2 0.3 04 0.5 06 0.7 0.8 09 1.0
1 - Specificity

Fig. 3 ROC curves of the copy number differences between the three dPCR assays for the prediction of the EGFRVII variant. The three ROC curves

represent the identification of the best diagnostic test to identify EGFRVII using the absolute copy number differences between EGFR2 and the

other dPCR assays, namely, EGFR1, EGFR3 and mean (EGFR1 + EGFR3). The best predictive test was selected using the highest AUC (difference of

EGFR3 and EGFR2) and the threshold of the copy number difference that maximizes the sensitivity and specificity (10.8)

0.0 0.1 0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1.0
1 - Specificity

(Additional File: Table S4). The total cost of dPCR de-
creased to 50.77€ when only EGFR2 and EGFR3 assays
were used. Moreover, dPCR assays with EGFR2/EGFR3
detect both the EGFR amplification and EGFRVIII vari-
ant, whereas the FISH assay can only identify an EGFR
amplification.

Discussion

This study shows that the specific dPCR assay using
LNA-hydrolysis probes from UPL’ is a reliable and sim-
ple method to simultaneously detect an EGFR amplifica-
tion and EGFRvIII variant, and this can be used in
clinical practice in glioblastoma. Indeed, using an
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experimental design based on two independent cohorts,
we showed that the dPCR assay was better than standard
methods and was able to detect the main somatic EGFR
alterations in DNA extracted from FFPE tumor samples
with a diagnostic performance of 100%.

The current molecular findings in our work were similar
to those previously published using larger cohorts of glio-
blastoma patients eligible for Stupp treatment [22, 23]. In-
deed, the overall proportion of EGFR-amplified tumors is
similar to that reported in the TCGA (43%) [4], especially
when accounting for the criteria recently suggested by
French et al. to classify tumors as EGFR amplified (EGFR
copy number higher than 5 and more than 50% of the nu-
clei were amplified) [7]. Moreover, it has also been re-
cently confirmed that the proportion of patients with
EGFR-amplified glioblastoma using NGS, FFPE-based or
CGH-array techniques is between 35 and 45% [24, 25].
One of the major strengths of our study is that, in addition
to the qualitative assessment of EGFR amplification, the
dPCR assay using LNA-hydrolysis probes also provides a
reliable quantitative copy number estimation compared to
NGS. We also confirmed the high number of EGFR copy
number amplicons in glioblastoma, including 13% of tu-
mors (n=38) with greater than 50 copy gains. Although
the therapeutic impact of high EGFR-amplified tumors re-
mains to be evaluated, our results clearly showed that our
dPCR assay may be used to screen the EGFR copy number
for decision making, particularly in further studies focus-
ing on therapies targeting this molecular alteration.

One of the other benefits of the dPCR assay developed
in our work is its potential economic cost compared to
FISH. For one patient, the cost decreases from 40 to
50% when using only the EGFR2/EGFR3 assay. More-
over, in contrast to FISH, dPCR allows the simultaneous
detection of the EGFRvIII variant, which has been shown
to be a potential therapeutic target [26]. Lower copy
number values observed between EGFR2 and EGFR3
amplicons are very likely explained by the presence of
the EGFRvIII variant. The EGFR3 amplicon is not lo-
cated in a specific gene region affected by recurrent spli-
cing variants or deletions but is located between exon 25
and the C-terminal region. The qualitative discrepancy
between EGFR1 and EGFR2 amplicons for detecting the
gene copy number from the same tumor is probably due
to breakpoint variability of the EGFRvIII variant. The
EGFR1 amplicon is located at the start of intron 1 in an
area containing various breakpoints for the EGFRvIII
splicing variant [27]. The EGFR1 amplicon may there-
fore match with tumor DNA if the breakpoint is closer
to exon 2 but may mismatch with the tumor DNA if the
breakpoint is closer to exon 1. As shown in our results,
the value of using EGFR2 resides in its location within
the spliced area, regardless of the breakpoint. Therefore,
the comparison of the copy number estimation using

(2020) 8:52
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EGFR2 and EGFR3 assays should be a more sensitive
method than dPCR using an amplicon located at the end
of exon 1 [27, 28].

NGS-based CNV identification using panels dedicated
to glioblastoma has been demonstrated to be as sensitive
as FISH or CGH array [25, 29]. In our exploratory co-
hort, the diagnostic performance for the detection of
EGFR amplification was 100% when comparing dPCR
and EGFR-targeted NGS. The major advantage of NGS
resides in the fact that a single assay may detect somatic
point mutations and multiple CNVs. However, the cost
of a single NGS assay remains high, which currently
hampers its routine use. Moreover, it has also been re-
ported that multiple CNVs may be easily detected with
the LNA-probe hydrolysis dPCR method without any
proportional cost increase, for example, the concomitant
detection of other amplicons located on MET, PDGFRA,
KIT, AKTI or CDKN2A homozygous deletion [30].
Moreover, the quantity of tumor DNA necessary is
lower for dPCR than for NGS, making this technique
more suitable for small tumor fragments, including those
derived from biopsies or fragments containing low
amounts of tumor DNA, notably in the case of tumor
necrosis. Detection of CNV by NGS requires the com-
parison between patient-matched and unmatched
normal tissue. In the specific situation of EGFR amplifi-
cation detection in glioblastoma sample, the ideal com-
parison tissue should have been healthy brain tissue,
which is virtually impossible to obtain in daily practice
[31, 32]. The major advantage of dPCR use is that there
is no need for healthy brain tissue since HMBS reference
gene is not altered in tumor samples.

At last, our results are based on experiments using
LNA-probes provided by Roche®. The experimental pro-
cedure is not restricted to specific manufacturer’s probes
and could easily be used with other manufacturers’
LNA-probes provided that these probes are designed to
be used at a hybridization temperature of 56 °C.

In conclusion, our results highlight that the dPCR assay
using LNA-hydrolysis probes allowed the simultaneous
detection of the EGFR amplification and EGFRVIII variant
and may be used routinely in patients treated for
glioblastoma.
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