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A major ambition of systems science is to uncover the build-
ing blocks of any biological network to decipher how cellular
function emerges from their interactions. Here, we introduce a
graph representation of the information flow in these networks
as a set of input trees, one for each node, which contains all
pathways along which information can be transmitted in the net-
work. In this representation, we find remarkable symmetries in
the input trees that deconstruct the network into functional build-
ing blocks called fibers. Nodes in a fiber have isomorphic input
trees and thus process equivalent dynamics and synchronize their
activity. Each fiber can then be collapsed into a single representa-
tive base node through an information-preserving transformation
called “symmetry fibration,” introduced by Grothendieck in the
context of algebraic geometry. We exemplify the symmetry fibra-
tions in gene regulatory networks and then show that they
universally apply across species and domains from biology to
social and infrastructure networks. The building blocks are clas-
sified into topological classes of input trees characterized by
integer branching ratios and fractal golden ratios of Fibonacci
sequences representing cycles of information. Thus, symmetry
fibrations describe how complex networks are built from the bot-
tom up to process information through the synchronization of
their constitutive building blocks.

complex networks | fibration symmetry | statistical mechanics |
biological networks

A central theme in systems science is to break down the sys-
tem into its fundamental building blocks to then uncover the

principles by which complex collective behavior emerges from
their interactions (1–3). In number theory, every natural number
can be represented by a unique product of primes. Thus, prime
numbers are the building blocks of natural numbers. This mathe-
matical notion of building blocks is extended to the more abstract
notion of group theory since finite groups can also be factored
into simple subgroups (4). The latter example, entirely abstract
as it may be, has important implications for natural systems due
to the fundamental relationship between group theory and the
notion of symmetry that has led to the discovery of the funda-
mental building blocks of matter, such as quarks and leptons
(3, 5). Here we ask whether similar principles of symmetry can
uncover the fundamental building blocks of biological networks
(1, 2, 6, 7). Primary examples of these networks are gene regu-
latory networks that control gene expression in cells (2, 8–10);
as well as metabolic networks, cellular processes and pathways,
neural networks, and ecosystems; and, beyond biology, other
information-processing networks like social and infrastructure
networks (7). Previous studies have identified building blocks or
“network motifs” (2, 6, 8) by looking for patterns in the network
that appear more often than they would by pure chance. The
crux of the matter is to test whether the building blocks of these
networks obey a predictive principle that explains how the cell
functions and whether such a principle can be expressed in the
language of symmetries.

We introduce the use of symmetries in biological networks
by analyzing the transcriptional regulatory network of bacterium
Escherichia coli (11), since this is a well-characterized network.

We find that this network exhibits fibration symmetries (12–14),
first introduced by Grothendieck (12) in the context of algebraic
geometry.

Symmetry fibrations are morphisms between networks that
identify clusters of synchronized genes (called fibers) with iso-
morphic input trees. Genes in a fiber are collapsed by a symmetry
fibration into a single representative gene called the base. The
fibers are then the synchronized building blocks of the genetic
network and symmetry fibrations are transformations that pre-
serve the dynamics of information flow in the network. We use
this symmetry principle to classify the building blocks into topo-
logical classes of input trees characterized by integer branching
ratios and complex topologies with golden ratios of Fibonacci
sequences representing cycles in the network. We then show that
symmetry fibrations explain synchronization patterns of gene
coexpression in cells and universally apply to a range of complex
networks across different species and domains beyond biology.

Results
We search for symmetries in the E. coli transcriptional regulatory
network [most updated compilation at RegulonDB (11)] where
nodes are genes and a directed link represents a transcriptional
regulation (SI Appendix, section III).

A directed link from a source gene i to a target gene j in a
transcriptional regulatory network represents a direct interaction
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Fig. 1. Definition of input tree, symmetry fibration, fiber, and base. (A) The circuit controlled by the cpxR gene regulates a series of fibers as shown by the
different-colored genes. The circuit regulates more genes represented by the dotted lines which are not displayed for simplicity. The full lists of genes and
operons in this circuit are in SI Appendix, Table VI, ID nos. 27, 28, and 54. (B) The input tree of representative genes involved in the cpxR circuit showing
the isomorphisms that define the fibers. For each fiber, we show the number of paths of length i− 1 at every layer of the input tree, ai , and its branching
ratio n. (C) Isomorphism between the input trees of baeR and spy. The input trees are composed of an infinite number of layers due to the autoregulation
loop at baeR and cpxR. How does one prove the equivalence of two input trees when they have an infinite number of levels? A theorem proved by Norris
(26) demonstrates that it suffices to find an isomorphism up to N− 1 levels, where N is the number of nodes in the circuit. Thus, in this case, two levels are
sufficient to prove the isomorphism. (D) Symmetry fibration ψ transforms the cpxR circuit G into its base B by collapsing the genes in the fibers into one.
(E and F) Symmetry fibration of the fadR circuit (E) and its isomorphic input trees (F). Full list of genes in this circuit appears in SI Appendix, Table VI, ID
nos. 3, 4, and 58. (G) Symmetric genes in the fiber synchronize their activity to produce the same activity levels. We use the mathematical model of gene
regulatory kinetics from ref. 8 (sigmoidal interactions lead to qualitatively similar results) to show the synchronization inside the fiber baeR-spy when the
fiber is activated by its regulator cpxR. Note that cpxR does not synchronize with the fiber.
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where gene i encodes for a transcription factor that binds to
the binding site of gene j to regulate (activate or repress) its
expression. Such a link represents a regulatory “message” sent
by the source to the target gene using the transcription factor
as a “messenger.” This process defines the “information flow”
in the system which is not restricted to two interacting genes,
but it is transferred to different regions within the network that
are accessible through the connecting pathways. The information
arriving to a gene contains the entire history transmitted through
all pathways that reach this gene. We formalize this process of
communication between genes with the notion of “input tree”
of the gene. In a network G = (NG ,EG) with NG nodes and EG

directed edges, for every gene i ∈NG there is a corresponding
input tree, denoted as Ti , which is the tree of all pathways of G
ending at i . More precisely, Ti is a rooted tree with a selected
node i at the root, such that every other node j in the tree rep-
resents the initial node of a path in the network ending at i .

Next, we analyze the input trees in the E. coli subcircuit shown
in Fig. 1A regulated by gene cpxR which regulates its own expres-
sion (via an autoregulation activator loop) and also regulates
other genes as shown in Fig. 1A. Gene cpxR is not regulated by
any other transcription factor in the network, so we say that this
gene forms its own “strongly connected component”; see below.
Therefore, it is an ideal simple circuit to explain the concept of
fibration.

Input Tree Representation. In practice, the input tree of a gene is
constructed as follows (SI Appendix, section IV.A). Consider the
circuit in Fig. 1A. The input tree of gene spy depicted in Fig. 1B
starts with spy at the root (first layer). Since this gene is upregu-
lated by baeR and cpxR, then the second layer of the input tree
contains these two pathways of length 1 starting at both genes.
Gene baeR is further upregulated by cpxR and by itself through
the autoregulation loop and cpxR is also autoregulated. Thus, the
input tree continues to the third layer taking into account these
three possible pathways of length 2 from the source gene to the
spy gene. The procedure now continues, and since there are loops
in the circuit, the input tree has an infinite number of layers.

The input tree formalism is a powerful framework to search
for symmetries in information-processing networks, in that it
replaces the canonical notion of a single trajectory with the set
of all possible “histories” from an initial to a final state of the
network, and this makes, in practice, it reasonably straightfor-
ward to “guess” a type of symmetry which is not apparent in the
classical network framework. Based on results from refs. 13–16,
we show in Symmetry Fibration Leads to Synchronization that if
two input trees have the same “shape,” then the genes at the
root of the input trees synchronize their activity (17–23), even
though their input trees are made of different genes. This infor-
mal notion of equivalence is formalized by isomorphisms. An
isomorphism between two input trees is a bijective map that pre-
serves the topology of the input trees including the type of links.
Specifically, a map τ :T→T ′ is an isomorphism if and only if
for any pair of nodes a and b of T connected by a link, the pair
of nodes τ(a) and τ(b) of T ′ is connected by the same type of
link (SI Appendix, section IV.B). In practice, this means that iso-
morphic input trees are “the same” except for the labeling of
the nodes. Genes with isomorphic input trees are symmetric and
synchronous. We quantify this result, next, by introducing the
concept of symmetry fibration (13).

Symmetry Fibration of a Network. The set of all input tree iso-
morphisms defines the symmetries of the network, which can
be described by a “Grothendieck fibration” (12). The origi-
nal Grothendieck definition of fibration is between categories
(12), so the passage to a definition of fibration between graphs
requires one to associate a category with a graph and rephrase
Grothendieck’s definition in elementary terms. Different cate-

gories may be associated with a graph, giving rise to different
notions of fibrations between graphs. The notion of fibration that
we use henceforth has been introduced in computer science as a
“surjective minimal graph fibration” (13, 15).

In general, a graph fibration G = (NG ,EG) is any morphism

ψ :G→B [1]

that maps G to a graph B = (NB ,EB ) (with NB nodes and EB

edges) called the “base” of the graph fibration ψ (SI Appendix,
section IV.C). In this work we consider a surjective minimal
graph fibration (13) which is a graph fibration ψ that maps all
nodes with isomorphic input trees, comprising a “fiber,” to a
single node in B , thus producing the minimal base of the net-
work. In this case, the base B consists of a graph where all genes
in a fiber have been collapsed into one representative node by
the minimal fibration. Thus, a surjective minimal graph fibra-
tion, hereafter called symmetry fibration for the sake of lexical
convenience, leads to a dimensional reduction of the network
into its irreducible components. Crucially, a symmetry fibration
is a dimensional reduction that preserves the dynamics in the
network as we show next.

Symmetry Fibration Leads to Synchronization. Next, we explain the
connection between fibration and synchrony in a generality that
is needed to justify our results following refs. 15 and 16. To
describe the dynamical state of each gene in the transcriptional
regulatory network, we first attach a phase space to each node
in G = (NG ,EG) by considering a map P :NG→M that assigns
each node i ∈NG to the phase space of the node denoted by
the manifold M . For example, in a transcriptional regulatory
network we assign to each gene i ∈NG the phase space of real
numbers M =R. Then, the state of each gene is described by
xi(t)∈R, representing the expression level of the gene i at time
t , which is typically measured by mRNA concentration of gene
product. We then obtain the total phase space of G as the
product PG =

∏
i∈NG

P(i).
The fibers partition the graph G into unique and nonover-

lapping sets Π = {Π1, . . . , Πr}, such that Π1 ∪ · · · ∪Πr =G and
Πk ∩Πl = ∅ if k 6=l (24). We denote i ∼Π j when the input trees
of i and j are isomorphic and belong to the same fiber Πk . That
is, ∃k | i , j ∈Πk and there exists a symmetry fibration that sends
both nodes to the same node in the base, ψ(i) =ψ(j ). DeVille
and Lerman (15) showed that symmetry fibrations induce robust
synchronization in the system (theorem 4.3.1 in ref. 15). In par-
ticular, it was shown that if ψ is a symmetry fibration, then—by
proposition 2.1.12 in ref. 15—there exists a map Pψ :PB→PG
that maps the total phase space of the base B , named PB , to the
total phase space of the graph G . This map creates a polysyn-
chronous subspace of synchronized solutions in fibers: ∆Π =
{x ∈PG | xi(t) = xj (t) whenever ψ(i) =ψ(j )}, where each set
of synchronous components of this subspace corresponds to a
fiber in Π (lemma 5.1.1 in ref. 15; see also ref. 16). In other words,
∆Π is a polysynchronous subspace of PG , such that components
xi , xj ∈ x synchronize (i.e., xi(t) = xj (t)) whenever the symmetry
fibration ψ sends them to the same node in B .

According to these results, we interpret synchronous genes
to process the same information received through isomorphic
pathways in the network, and, accordingly, we interpret a sym-
metry fibration as a transformation that preserves the dynamics
of information flow since it collapses synchronous nodes in fibers
(redundant from the point of view of dynamics) into a common
base with identical dynamics to those of the fiber.

Synchronous nodes in a fiber induced by symmetry fibra-
tion correspond to the “minimal balanced coloring” in ref. 14.
A balanced coloring assigns two nodes the same color only if
their inputs, self-consistently, receive the same content of col-
ored nodes, whence the term “balanced.” Thus, the flow of
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information arriving to genes in a fiber is analogous to a process
of assigning a color to each gene such that each gene “receives”
the colors from adjacent genes via incoming links and “sends”
its color to the adjacent genes via its outgoing links. The nodes
in a fiber have the same color symbolizing the fact that they
synchronize. The nodes with the same color in the balanced col-
oring partition (14) correspond to fibers induced by symmetry
fibrations (15). We use the minimal balanced coloring algorithm
proposed in ref. 25 for the computation of minimal bases (24) to
find fibers (SI Appendix, section V).

Strongly Connected Components of the E. coli Network. The input
trees in the E. coli cpxR circuit are displayed in Fig. 1B. The input
trees of baeR and spy are isomorphic and define the baeR-spy fiber
(Fig. 1C). We call this circuit a feedforward fiber (FFF). The input
tree of cpxR is not isomorphic to either baeR or spy, and there-
fore cpxR is not symmetric with these genes, but it is isomorphic
to bacA, slt, and yebE forming another fiber. Likewise, genes ung,
tsr, and psd are all isomorphic, composing another fiber (Fig. 1B).
Fig. 1D shows the symmetry fibrationψ :G→B that collapses the
genes in the fibers to the base B . Fig. 1E shows another exam-
ple (of many) of a single connected component, fadR, and its
corresponding isomorphic input trees (Fig. 1F), fibers, and base.

The dynamical state of a gene is encoded in the topology of
the input tree. In turn, this topology is encoded by a sequence,
ai , defined as the number of genes in each i th layer of the
input tree (Fig. 1B). The sequence ai represents the number
of paths of length i − 1 that reach the gene at the root. This
sequence is characterized by the branching ratio n of the input
tree defined as ai+1/ai −−−→

i→∞
n , which represents the multiplica-

tive growth of the number of paths across the network reaching
the gene at the root. For instance, the input trees of genes
baeR-spy (Fig. 1B) encode a sequence ai = i with branching ratio
n = 1 representing the single (n = 1) autoregulation loop inside
the fiber.

Beyond several single-gene strongly connected components
like those shown in Fig. 1, we find that the E. coli network
has other strongly connected components (in a strongly con-
nected component, each gene is reachable from every other
gene; SI Appendix, section VI), three in total, which regu-
late more involved topologies of fibers. We find 1) a two-
gene strongly connected component composed of master reg-
ulators crp-fis involved in a myriad of functions like carbon
utilization (Fig. 2 A, Top), 2) a five-gene strongly con-
nected component involved in the stress response system (SI
Appendix, Fig. S7), and 3) the largest strongly connected

Fig. 2. Strongly connected components of the genetic network and synchronization of gene coexpression in the fibers in E. coli. (A, Top) Two-gene
connected component of crp-fis. This component controls a rich set of fibers as shown. We also show the symmetry fibration collapsing the graph to
the base. We highlight the fiber uxuR-lgoR which sends information to its regulator exuR and forms a 2-Fibonacci fiber |ϕ2 = 1.6180.., `= 2〉, as well
as the double-layer composite |add− oxyS〉= |0, 1〉⊕ | 1, 1〉. (A, Bottom) Coexpression correlation matrix calculated from the Pearson coefficient between
the expression levels of each pair of genes in A, Top. Synchronization of the genes in the respective fibers is corroborated as the block structure of the matrix.
(B) The core of the E. coli network is the strongly connected component formed by genes involved in the pH system as shown. This component supports two
Fibonacci fibers: 3-FF and 4-FF and fibers as shown. Open colored circles indicate genes that are in fibers and also belong to the pH component.
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component at the core of the network which is composed
of genes involved in the pH system that regulate hydrogen
concentration (Fig. 2B). Each of these three components reg-
ulates a rich variety of fiber topologies which are collapsed
into the base by the symmetry fibration ψ :G→B , as shown
in Fig. 2B.

Fiber Building Blocks. We find that the transcriptional regulatory
network of E. coli is organized in 91 different fibers. The com-
plete list of fibers in E. coli is shown in SI Appendix, section VII
and Table VI and the statistics are shown in SI Appendix, Table
I. Plots of each fiber are shown in Dataset S1. We find a rich
variety of topologies of the input trees. Despite this diversity,
the input trees present common topological features that allow
us to classify all fibers into concise classes of fundamental “fiber
building blocks” (Fig. 3 A and B). We associate a building block
to a fiber by considering the genes in the fiber plus the external
incoming regulators of the fiber plus the minimal number of their
regulators in turn that are needed to establish the isomorphism

in the fiber. When the fiber is connected to any external regu-
lator, either via a direct link or through a path in the strongly
connected component forming a cycle, then the genes in this
cycle are considered part of the building block of the fiber, since
such a cycle is crucial to establish the dynamical synchronization
state (when there is more than one cycle, the shortest cycle is
considered).

We find that the most basic input tree topologies can be clas-
sified by integer “fiber numbers” |n, `〉 reflecting two features:
1) infinite n-ary trees with branching ratio n representing the
infinite pathways going through n loops inside the base of the
fiber and 2) finite trees representing finite pathways starting at `
external regulators of the fiber. The most basic fibers in E. coli
have three values of n = 0, 1, 2 (Fig. 3A): 1) fibers with n = 0
loops, called star fibers (SF); 2) fibers with n = 1 loop, called
chain fibers (CF); and 3) fibers with n = 2 loops, called binary-
tree fibers (BTF). This classification does not take into account
the types of repressor or activator links in the building blocks,
which lead to further subclasses of fibers that determine the type

Fig. 3. Classification of building blocks in E. coli. (A) Basic fiber building blocks. These building blocks are characterized by a fiber that does not send back
information to its regulator. They are characterized by two integer fiber numbers: | n, `〉. We show selected examples of circuits and input trees and bases.
The full list of fibers appears in SI Appendix, Table VI and Dataset S1. The statistical count of every class is in SI Appendix, Table I. Bottom example shows a
generic building block for a general n-ary tree | n, `〉 with ` regulators. (B) Complex Fibonacci and multilayer building blocks. These building blocks are more
complex and characterized by an autoregulated fiber that sends back information to its regulator. This creates a fractal input tree that encodes a Fibonacci
sequence with golden branching ratio in the number of paths ai versus path length, i− 1. When the information is sent to the connected component that
includes the regulator, then a cycle of length d is formed and the topology is a generalized Fibonacci block with golden ratio ϕd as indicated. We find three
such building blocks: 2-FF, 3-FF, and 4-FF. Bottom panel shows a multilayer composite fiber with a feedforward structure.
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of synchronization (fixed point, limit cycles, etc.) and thus the
functionality of the fibers.

Fig. 3A shows a sample of dissimilar circuits that can be con-
cisely classified by |n, `〉 (full list in Dataset S1). For instance, the
n = 0 SF class includes dissimilar circuits like |arcZ− ydeA〉=
|0, 1〉, |dcuC− ackA〉= |0, 2〉, which is a bifan network motif (2),
and generalizations with `= 3 regulators like |dcuR− aspA〉=
|0, 3〉 (Fig. 3 A, Top). The main feature of these building blocks is
that they do not contain loops and therefore the input trees are
finite. The CF class contains n = 1 loop in the fiber and therefore
an infinite chain in the input tree, like the autoregulated loop
in the fiber |ttdR〉= |1, 0〉. We note that while the input tree is
infinite, the topological class is characterized by a single number
n = 1 concisely represented in the base. Furthermore, a theorem
proved by Norris (26) demonstrates that it suffices to test NG − 1
layers of the input trees to prove isomorphism, even though the
input tree may contain an infinite number of layers. Adding one
external regulator (`= 1) to this circuit converts it to the purine
fiber |purR〉= |1, 1〉 which is an example of a FFF, like the baeR
circuit in Fig. 1A. This circuit resembles a feedforward loop motif
(2), but it differs in the crucial addition of the autoregulator loop
at purR that allows genes purR and pyrC to synchronize. When
another external regulator is added, we find the idonate fiber
|idnR〉= |1, 2〉. More elaborated circuits contain two autoregu-
lated loops and feedback loops featuring trees with branching
ratio n = 2.

Fibonacci Fibers. So far we have analyzed building blocks that
receive information from the external regulators in their respec-
tive strongly connected components, but do not send back
information to the external regulators. These topologies are
characterized by integer branching ratios, n = 0, 1, 2, as shown
in Fig. 3A. We find, however, more interesting building blocks
that also send information back to their regulators. These circuits
contain additional cycles in the building blocks that transform the
input trees into fractal trees characterized by noninteger fractal
branching ratios. Notably, the building block of the fiber uxuR-
lgoR that is regulated by the connected component crp-fis (Fig. 2)
forms an intricate input tree (Fig. 3 B, Top) where the number
of paths of length i − 1 is encoded in a Fibonacci sequence ai=
1, 3, 4, 7, 11, 18, 29, . . . characterized by the Fibonacci recur-
ring relation a1 = 1, a2 = 3, and ai = ai−1 + ai−2 for i > 2. This
sequence leads to the noninteger branching ratio known as the
golden ratio: ai+1/ai −−−→

i→∞
ϕ= (1 +

√
5)/2 = 1.6180...

This topology arises in the genetic network due to the combi-
nation of two cycles of information flow. First, the autoregulation
loop inside the fiber at uxuR creates a cycle of length d = 1 which
contributes to the input tree with an infinite chain with branch-
ing ratio n = 1. This sequence is reflected in the Fibonacci series
by the term ai = ai−1. The important addition to the building
block is a second cycle of length d = 2 between uxuR in the
fiber and its regulator exuR: uxuR → exuR → uxuR. This cycle
sends information from the fiber to the regulator and back to the
fiber by traversing a path of length d = 2 that creates a “delay”
of d = 2 steps in the information that arrives back to the fiber
(Fig. 3 B, Top). This short-term “memory” effect is captured by
the second term ai = ai−2 in the Fibonacci sequence leading to
ai = ai−1 + ai−2 and the golden ratio. We call this topology a
Fibonacci fiber (FF).

This argument implies that an autoregulated fiber that fur-
ther regulates itself by connecting to its connected component
via a cycle of length d encodes a generalized Fibonacci sequence
of order d defined as ai = ai−1 + ai−d with generalized golden
ratio ϕd (Fig. 3 B, Top, fourth row). We find such a Fibonacci
sequence in the evgA-nhaR fiber building block linked to the pH
strongly connected components shown in Fig. 2B. This fiber con-
tains an autoregulation cycle inside the fiber and also an external

cycle of length d = 4 through the pH strongly connected com-
ponent: evgA → gad E → gadX → hns → evgA (Fig. 3 B, Top,
third row). This topology forms a fractal input tree with sequence
ai = ai−1 + ai−4 (sequence A003269 in ref. 27) and branching
golden ratio ϕ4 = 1.38028... We call this topology 4-Fibonacci
fiber, 4-FF. Generalized Fibonaccis appear inside strongly con-
nected components, like the rcsB-adiY 3-FF in the pH system
(Fig. 3 B, Top, second row). Likewise, if the network contains
many cycles of varying length up to a maximum d , the Fibonacci
sequence generalizes to ai = ai−1 + ai−2 + · · ·+ ai−1−d + ai−d ,
and the branching ratio satisfies d =− log(2−ϕd )

logϕd
(28).

Multilayer Composite Fibers. Building blocks can also be com-
bined to make composite fibers, like prime numbers or quarks
can be combined to form natural numbers or composite particles
like protons and neutrons, respectively. The ability to assem-
ble fiber building blocks to make larger composites is important
in that it helps to understand systematically higher-order func-
tions of biological systems composed of many genetic elements.
We discover a particular type of composite made up of two
elementary building blocks that we name multilayer composite
fiber. For instance, the double-layer add-oxyS fiber in the crp-
fis connected component (Figs. 2A and 3 B, Bottom and ID 7 in
SI Appendix, Table VI and Dataset S1) is a composite |add −
oxyS〉= |0, 1〉⊕ |1, 1〉made of a series of genes composing a sin-
gle fiber of type |0, 1〉= |add, dsbG, gor, grxA, hemH, oxyS, trxC〉
that are regulated by two different transcription factors rbsR and
oxyR that form another fiber of type |1, 1〉= |rbsR, oxyR〉. This
composite is of importance since it allows for information to be
shared between two genes, for instance add and oxyS, which are
not directly connected (in this case, separated by a distance in
the network of length 2 from crp).

Composite fibers satisfy a simple engineering “sum rule”:
elementary fibers are composed in series of fibers in a pre-
defined order where the first layer is represented by an entry
fiber (carrying transcription factors), and the last layer is formed
by a terminator fiber of output genes (encoding enzymes), as
shown in Fig. 3 B, Bottom. This multilayer composite fiber is
biologically significant because genes in the output layer syn-
chronize a genetic module that implements the same function
even though the genes in the module are not directly con-
nected and, indeed, can be at far distances in the network. Such
functionally related modules could not be identified by modu-
larity algorithms (29) which cluster nodes in modules of highly
connected nodes.

We find that composite fibers are dominant in eukaryotes
(yeast, mice, humans; see Fibration Landscape across Biologi-
cal Networks, Species, and System Domains). They resemble the
building blocks of multilayered deep neural networks where each
subsequent gene in the layer synchronizes despite the fact that
nodes can be distant in the network. More generally, compos-
ite fibers with multiple layers streamline the construction of
larger aggregates of fibration building blocks, performing more
complex function in a coordinated fashion. These composite
topologies complete the classification of input trees.

Fibration Landscape across Biological Networks, Species, and
System Domains. To study the applicability of fibration symme-
tries across domains of complex networks we have analyzed
373 publicly available datasets (SI Appendix, section VIII). Full
details of each network and results can be accessed on GitHub at
https://github.com/makselab/fibrationData/blob/master/datasets.
xlsx. The codes to reproduce this analysis are on GitHub at
https://github.com/makselab (SI Appendix, section V). The
full datasets are on GitHub at https://github.com/makselab/
fibrationData/blob/master/rawData.zip. We analyze biological
networks spanning from transcriptional regulatory networks,
metabolic networks, cellular processes networks and signaling
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pathways, disease networks, and neural networks. We span
different species ranging from Arabidopsis thaliana, E. coli,
Bacillus subtilis, Salmonella enterica, Mycobacterium tuberculosis,
Drosophila melanogaster, Saccharomyces cerevisiae (yeast),
and Mus musculus (mouse) to Homo sapiens (human). The
topological fiber numbers |n, `〉 allow us to systematically
classify fibers across the different domains in a unifying
way. We find that fibration symmetries are found across all
biological processes and domains. The fiber distributions for
each type of biological network calculated by summing over
the studied species are displayed in Fig. 4A and the fiber
distributions for each species calculated over the type of
biological networks are shown in Fig. 4B. Our analysis allows
us to investigate the specific attributes and commonalities of
the fiber building blocks inside and across biological domains.
We find a varied set of fibers that characterize the biological
landscape. Certain features of the fiber number distribution
are visible in the transcriptional networks in Fig. 4A. For
instance, a tail with ` is seen in the n = 0 class as well as in
the n = 1 class. Across species (Fig. 4B), bacteria like E. coli
or B. subtilus display a majority of n = 0 building blocks, while
higher-level organisms like yeast, mice, and humans display a

majority of more complex building blocks like multilayers and
Fibonaccis.

To test the existence of symmetry fibrations across other
domains we extend our studies to complex networks beyond
biology ranging from social, infrastructure, internet, software,
and economic networks to ecosystems (details of datasets
in SI Appendix, section VIII). Fig. 4C shows the obtained
fiber distributions for each domain. A normalized compar-
ison across domains is visualized in Fig. 4D, showing the
cumulative number of fibers over all domains and species per
network size of 104 nodes. The results support the appli-
cability of the concept of symmetry fibration beyond biol-
ogy to describe the building blocks of networks across all
domains.

Gene Coexpression and Synchronization via Symmetry Fibration.
We have shown in Symmetry Fibration Leads to Synchronization
that fibers in networks determine cluster synchronization in the
dynamical system. In a gene regulatory network, symmetric genes
in a fiber synchronize their activity to produce gene coexpression
levels that sustain cellular functions. We corroborate this result
numerically in Fig. 1G in the particular example of the baeR-spy

Fig. 4. Fibration landscape across domains and species. (A) Fibration landscape for biological networks. Shown is the total number of fiber building blocks
across five types of biological networks analyzed in the present work. The count includes the total number of fibers in the networks of each biological type
considering all species analyzed for each type (SI Appendix, Table IV). (B) Fibration landscape across species. Shown is the count of fibers across each analyzed
species. Each panel shows the count over the different types of biological networks (E. coli contains only the transcriptional network; see SI Appendix, Table
IV). (C) Fibration landscape across domains. Shown is the count of fibers across the major domains studied. The biological domain panel is calculated over all
networks and species in A and B. (D) Global fibration landscape. Shown is the cumulative count of fibers in all domains in C. The cumulative count represents
the total number of fibers per network of 104 nodes. Specifically, the quantity is calculated as the total number of fibers divided by the total number of
nodes in all networks per domain multiplied by 104.
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FFF in E. coli, and this result applies to all fibers, irrespective of
the dynamical system law.

To exemplify the synchronization in fibers, we consider the
dynamics in the composite fiber |add − oxyS〉= |0, 1〉⊕ | 1, 1〉
depicted in Figs. 2A and 3 B, Bottom, which is composed of
autoregulator 1 = crp, and two layers of fibers: 2 = rbsR, 3 =
oxyR and 4 = add , 5 = oxyS (we consider here a reduced fiber
for simplicity, and we add the autoregulator to crp to the building
block for completeness). Graph G = {NG ,EG} consists of NG =
{1, 2, 3, 4, 5}, EG = {1→ 1, 1→ 2, 1→ 3, 2a 2, 3a 3, 2→ 4, 3→
5} (a refers to repressor and → to activation), and a five-
dimensional total phase space PG =R5 with state vector X (t) =
{x1(t), x2(t), x3(t), x4(t), x5(t)} describing the expression levels
of each gene’s product (e.g., mRNA concentration).

The symmetry fibration ψ :G→B collapses the graph G
into the base B = {NB ,GB}, where NB = {a, b, c} and EB =
{a→ a, a→ b, b a b, b→ c}. The symmetry fibration acts on
the nodes ψ(1) = a , ψ(2) =ψ(3) = b, and ψ(4) =ψ(5) = c and
on the edges ψ(1→ 1) = a→ a , ψ(1→ 2) =ψ(1→ 3) = a→ b,
ψ(2a 2) =ψ(3a 3) = b a b, and ψ(2→ 4) =ψ(3→ 5) = b→ c.
Thus, the fibers partition the graph G as Π = {Πa , Πb , Πc},
where Πa = {1}, Πb = {2, 3}, and Πc = {4, 5}.

We represent the dynamics by two functions k(x ) and g(x )
modeling degradation and synthesis of gene product, respectively
(9, 10). For example, k(x ) can be modeled as a linear degrada-
tion term and gi(x ) as a Hill function (i =A,R, activation or
repression) (9). We consider that multiple inputs are combined
by multiplying functions g(x ), but any other way of combining
inputs can be used. Then, the dynamics of the expression levels
of the genes in the circuit are described by ref. 14:

dx1
dt

=−k(x1) + gA(x1)
dx2
dt

=−k(x2) + gA(x1) ∗ gR(x2)
dx3
dt

=−k(x3) + gA(x1) ∗ gR(x3)
dx4
dt

=−k(x4) + gA(x2)
dx5
dt

=−k(x5) + gA(x3).

[2]

The dynamics of the base are described by the state vector of the
base: (ya(t), yb(t), yc(t)) with dynamical equations (16):

dya
dt

=−k(ya) + gA(ya)
dyb
dt

=−k(yb) + gA(ya) ∗ gR(yb)
dyc
dt

=−k(yc) + gA(yb).

[3]

If (ya(t), yb(t), yc(t)) is a solution for the base Eq. 3, then the
map Pψ sends the phase space of this base to the phase space of
the solutions in the graph G (16):

(x1(t), x2(t), x3(t), x4(t), x5(t))

=Pψ [ya(t), yb(t), yc(t)]= (ya(t), yb(t), yb(t), yc(t), yc(t)).
[4]

Therefore, the graph G sustains a polysynchronous subspace (see
for instance motivating example 1.4 in ref. 15):

∆Π =
{

(x1, x2, x3, x4, x5)∈R5 | x1(t), x2(t) = x3(t), x4(t)

= x5(t)}. [5]

This result can be corroborated by simply plugging
(x1(t), x2(t), x3(t) = x2(t), x4(t), x5(t) = x4(t)) into Eq. 2
to obtain a solution of the dynamics, implying the synchrony
x2(t) = x3(t) in fiber Πb and x4(t) = x5(t) in fiber Πc . We
note that the concept of sheaves and stacks might be useful
to generalize the symmetry fibration framework to multiplex
networks.

We test this gene synchronization with publicly available tran-
scription profile experiments available from the literature. We
use gene expression data profiles in E. coli compiled at Ecomics:
http://prokaryomics.com (30). This portal collects microarray
and RNA-seq experiments from different sources such as the
NCBI Gene Expression Omnibus (GEO) public database (31)
and ArrayExpress (32) under different experimental growth con-
ditions. The data are also compiled at the Colombos web portal
(33). The database contains transcriptome experiments measur-
ing the expression level of 4,096 genes in E. coli strains over 3,579
experimental conditions which are described as strain, medium,
stress, and perturbation. Raw data are preprocessed to obtain
expression levels by using noise reduction and bias correction to
normalize data across different platforms (30).

E. coli can adapt its growth to the different conditions that it
finds in the medium. This adaptation is made by sensing extra
and intracellular molecules and using them as effectors to acti-
vate or repress transcription factors. This implies that the differ-
ent fibers are activated by specific experimental conditions. The
Ecomics portal allows one to obtain those experimental condi-
tions where a set of genes has been significantly expressed under
a particular set of conditions. We perform standard gene expres-
sion analysis (http://colombos.net and ref. 33) of the expression
levels in E. coli obtained under these conditions.

For a given set of genes in a fiber, we find the experimental
conditions for which the genes have been significantly expressed
by comparing the expression samples over the 1,576 different
WT growth conditions. Following ref. 33, the experimental con-
ditions are ranked with the inverse coefficient of variation (ICV)
defined as ICVk = |µk |/σk , where µk is the average expression
level of the genes in the condition k and σk is the SD. Follow-
ing ref. 33, we select those conditions with ICVk > 〈 ICVk 〉, i.e.,
where the average expression levels in the particular condition
k are significantly higher than the SD. This score reflects the
fact that, in a relevant condition, the genes show an increment
of their expression above the individual variations caused by ran-
dom noise. Details on the expression analysis can be found in ref.
33 and https://doi.org/10.1371/journal.pone.0020938.s001. Thus,
we obtain expression levels organized by the relevant experimen-
tal conditions which are labeled according to the GEO database
(31). From these data, we calculate the coexpression matrix using
the Pearson correlation coefficient between the expression lev-
els of two genes i and j in the relevant conditions for genes in
a fiber. For off-diagonal correlations between genes in different
fibers, we use the combined sets of conditions of both genes.

Results for the correlation matrix are shown in Fig. 2 A,
Bottom for fibers regulated by the crp-fis strongly connected com-
ponent. Gene expression is obtained for every gene, so we plot
the correlation matrix calculated over each pair of genes. Genes
that belong to the same operon are transcribed as a single unit
by the same mRNA molecule, so these genes are expected to
trivially synchronize (variations exist due to attenuators inside
the operon). Thus, we group together these genes as operons
in Fig. 2A to indicate this trivial synchronization. To test the
existence of fiber synchronization we compare gene coexpres-
sion belonging to different operons. Fig. 2 A, Bottom shows
that expression levels of the genes that belong to a fiber are
highly correlated as predicted by the symmetry fibration. Genes
that belong to different fibers show no significant correlations
among them. In particular, there is no significant correlation
between the expression of genes in a given fiber and the two
master regulators crp and fis. This result is consistent with the
fibration symmetry and occurs despite the fact that both crp
and fis directly regulate all genes in the studied fibers. We find
some off-diagonal weak correlations between fibers (e.g., malI),
probably indicating missing links or missing regulatory processes
that produce extra synchronizations. Some genes present weak
correlations inside fibers (e.g., cirA), indicating weak symmetry
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breaking probably from asymmetries in the strength of binding
rate of transcription factors or input functions, effects that are
not considered in the topological view of the input trees and can
lead to desynchronization inside the fiber.

Discussion
Fibration symmetries make sure that genes are turned on and
off at the right amount to ensure the synchronization of expres-
sion levels in the fiber needed to execute cellular functions. In
the fibration framework, network function can be pictured as
an orchestra in which each instrument is a gene in the net-
work. When the instruments play coherently, with structured
temporal patterns, the network is functional. Here we have con-
centrated on the simplest temporal organization, one in which
some units (instruments) act synchronously in time, a ubiquitous
pattern observed in all biological networks. Our findings iden-
tify the symmetries that predict this synchronization and give rise
to functionally related genes from the fibrations of the genetic
network.

Unlike network motifs which are identified by statistical over-
representation (2), fibers in biology arise from principles of

symmetries following the tradition of how the building blocks of
elementary particles have being discovered in physics and geom-
etry (5). Our first principle approach to identify building blocks
is based on the circuit’s theoretical and practical (rather than sta-
tistical) significance to serve minimal forms of coherent function
and logic computation.

Further results shown in ref. 34 indicate that symme-
tries also describe the structure of neural connectomes and
these symmetries factorize according to function. Thus, sym-
metries can be used to systematically organize biological
diversity into building blocks using invariances in the infor-
mation flow encoded in the topologies of the input trees.
Genes related by symmetries are coexpressed, thus provid-
ing a functional rationale for the biological existence of these
symmetries.
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