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Abstract

Understanding how species composition varies across space and time is fundamental

to ecology. While multiple methods having been created to characterize this variation

through the identification of groups of species that tend to co‐occur, most of these

methods unfortunately are not able to represent gradual variation in species composi-

tion. The Latent Dirichlet Allocation (LDA) model is a mixed‐membership method that

can represent gradual changes in community structure by delineating overlapping

groups of species, but its use has been limited because it requires abundance data

and requires users to a priori set the number of groups. We substantially extend LDA

to accommodate widely available presence/absence data and to simultaneously deter-

mine the optimal number of groups. Using simulated data, we show that this model is

able to accurately determine the true number of groups, estimate the underlying

parameters, and fit with the data. We illustrate this method with data from the North

American Breeding Bird Survey (BBS). Overall, our model identified 18 main bird

groups, revealing striking spatial patterns for each group, many of which were closely

associated with temperature and precipitation gradients. Furthermore, by comparing

the estimated proportion of each group for two time periods (1997–2002 and 2010–
2015), our results indicate that nine (of 18) breeding bird groups exhibited an expan-

sion northward and contraction southward of their ranges, revealing subtle but impor-

tant community‐level biodiversity changes at a continental scale that are consistent

with those expected under climate change. Our proposed method is likely to find

multiple uses in ecology, being a valuable addition to the toolkit of ecologists.
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1 | INTRODUCTION

A major challenge in ecology is to understand how species assem-

blages, often composed by tens, hundreds, or even thousands of

species, change in space and time and are influenced by

environmental variables. Community ecologists rely heavily on a

plethora of methods to analyze these high‐dimensional multivariate

data (e.g., k‐means, hierarchical clustering, network methods, and

model‐based approaches) (Bloomfield, Knerr, & Encinas‐Viso, 2017;
Foster, Hill, & Lyons, 2017; Legendre & Legendre, 2012). Such

approaches attempt to identify groups of species that tend to co‐
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occur in space and time. For example, in a spatial context, these

approaches have attempted to identify geographic areas with similar

taxa, areas that have been variously called “biogeographical regions”
(Gonzales‐Orozco, Thornhill, Knerr, Laffan, & Miller, 2014), “biore-
gions” (Bloomfield et al., 2017), or “biogeographical modules” (Car-

stensen et al., 2012). Such bioregions have been argued to be

important for understanding the role of history on community

assemblages (Carstensen et al., 2012, 2013), interpreting ecological

dynamics (Economo et al., 2015), and developing broad‐scale conser-

vation strategies (Vilhena & Antonelli, 2015).

The Latent Dirichlet Allocation (LDA; not to be confused with

linear discriminant analysis) model is a powerful model‐based method

to decompose species assemblage data into groups of species that

tend to co‐occur in space and/or time. The benefits of using this

model include the ability to adequately represent uncertainty,

accommodate missing data, and, perhaps most importantly, to

describe sampling units as comprised of multiple groups (i.e., mixed‐
membership [MM] units) (Valle, Baiser, Woodall, & Chazdon, 2014).

Conceptually, the ability to describe sampling units as comprised of

multiple groups has rarely been considered in previous methods (i.e.,

prior approaches are typically based on “hard” partitions) but may

better honor community dynamics and may better characterize

impacts of environmental change. For instance, biome transition

zones, ecotones, and habitat edges are locations that are often com-

prised of a mix of species groups, providing sources for potentially

novel species interactions (Gosz, 1993; Ries, Fletcher, Battin, & Sisk,

2004). Similarly, climate change is predicted to cause geographic

shifts in species and communities, leading to the hypothesis of novel

assemblages arising across space as climate and habitat changes

(Urban et al., 2016; Williams & Jackson, 2007). In addition, most par-

titioning methods that delineate biogeographical regions or modules

based on hard boundaries can lead to high uncertainty in boundary

delineation—an issue that can be rectified by allowing groups to

overlap. It is important to note that LDA allows for overlapping

groups, but it does not require it to be present (i.e., if data do not

support overlap, no overlap is estimated).

It is unfortunate that the LDA model, as currently developed, has

been restricted to abundance data, which are often not available

because accurate quantification of abundance can be very challeng-

ing and costly. In the absence of abundance data, researchers often

have to rely on presence/absence data to understand species distri-

butions and biodiversity patterns (Jones, 2011; Joseph, Field, Wilcox,

& Possingham, 2006). Another limitation of the LDA model is that

the number of groups has to be prespecified, requiring researchers

to run LDA multiple times to then use some criterion (e.g., AIC) to

choose the optimal number of groups (e.g., Valle et al., 2014), an

approach that often can be computationally costly.

In this article, we substantially develop the LDA model to be able

to fit the much more commonly available presence/absence data and

to automatically determine the optimal number of groups. We start

by describing our statistical model. Then, using simulated data, we

show how our method automatically detects the optimal number of

groups in the data, reliably estimates the underlying parameters, and

better fits the data, outperforming other approaches. At last, we

illustrate the novel insights gained using our method by analyzing a

long‐term dataset collected on breeding birds in the United States

and Canada (Breeding Bird Survey [BBS];Pardieck, Ziolkowski, Lut-

merding, Campbell, & Hudson, 2017) to determine how environmen-

tal variables influence bird assemblages across the continent and

how these assemblages are changing through time.

2 | MATERIALS AND METHODS

2.1 | Model description

The overall goal of our method is to identify the major patterns of

species co‐occurrence in the data, each of which we define to be a

distinct species group. We adopt the term species group (instead of

“bioregion” or other related terms) because these major co‐occurrence
patterns do not have to have a strong spatial pattern (although they

often do), these groups can overlap in space, and proportion of groups

can change through time. More specifically, our method characterizes

each sampling unit l in terms of the proportion of the different groups

(parameter vector θl) and characterizes each group k in terms of the

probability of the different species (parameter vector ϕk). For exam-

ple, θl ¼ 0:1; 0:8; 0:1; 0½ � indicates that the second group dominates

unit l and that the fourth group is absent. This example also illustrates

that a given sampling unit can be comprised of multiple groups, which

explains why these types of models are called mixed‐membership

models. In the same way, ϕk ¼ 0; 0:8; 0:8½ � indicates that species 2

and 3 (but not species 1) are important species of group k. Note that

a given species can have a high probability in more than one group. A

more formal description of the statistical model is given below.

The data consist of a matrix filled with binary variables xisl (i.e.,

equal to one if species s was present in observation i and unit l and

equal to zero otherwise). Notice that we assume that multiple obser-

vations might have been made for each species s and unit l, possibly

due to temporally repeated measures or because multiple subsam-

ples were measured within each unit l (e.g., a forest plot comprised

of four subplots). Each of these binary variables has an associated

latent group membership status zisl. This variable indicates to which

group species s in sampling unit l during observation i comes from.

We assume that each observation xisl comes from the following

distribution, given that species s in unit l during observation i comes

from group k (zisl ¼ k):

xisljzisl ¼ k ∼ Bernoulli ϕskð Þ;

where ϕsk is the probability of observing species s if this species

came from group k. Notice that zisl influences the distribution for xisl

by determining the k subscript of the parameter ϕ. Next, we assume

that the latent variable zisl comes from a multinomial distribution:

zisl ∼ Multinomial n ¼ 1; p ¼ θlð Þ;

where θl is a vector of probabilities that sum to one, and each ele-

ment θlk consists of the probability of a species in unit l to have

come from group k.
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In relation to the priors for our parameters, we adopt a conjugate

beta prior for ϕsk:

ϕsk ∼ Beta a; bð Þ:

Throughout this article, we assume vague priors by setting a and

b to 1. Building on the work of Dunson (2010) and Valle et al.

(2017), we adopt a truncated stick‐breaking prior for θl. This prior

assumes that:

Vlk ∼ Beta 1; γð Þ

for k = 1,…,K−1 and γ > 0. We set the parameter for the last group

to 1 (i.e., VlK ¼ 1). With these parameters, we calculate θlk using the

equation θlk ¼ Vlk
Qk�1

p¼1
1� Vlp

� �
. Under this prior, θlk is a priori

stochastically exponentially decreasing as long as γ < 1 and smaller γ

tend to enforce greater sparseness (i.e., the existence of fewer

groups). For most of the examples in this article, γ was set to 0.1,

which we have found to work well for multiple datasets. More

details regarding this prior can be found in Supporting Information

Appendix S1.

The benefit of this prior is that, if the data support fewer

groups than specified by the user, it will tend to force these super-

fluous additional groups to be empty or to have very few latent

variables zisl assigned to them, as illustrated in the simulation sec-

tion below. This prior also helps to avoid label switching, a common

problem in mixed‐membership and mixture models. Bayesian Mar-

kov chain Monte Carlo (MCMC) algorithms applied to these types

of models sometimes mix poorly and can lead to nonsensical results

if posterior distributions of parameters are summarized by their

averages (Stephens, 2000). The label switching problem refers to

the fact that the labels of the different groups can change (e.g.,

groups 1 and 2 can become groups 2 and 1, respectively) without

changing the likelihood (i.e., the group labels are unidentifiable). Our

truncated stick‐breaking prior helps to avoid the label switching

problem by enforcing an ordering of the groups according to their

overall proportions.

We fit the LDA using a Gibbs sampler. A more complete descrip-

tion of this model and the derivation of the full conditional distribu-

tions used within this Gibbs sampler are provided in Supporting

Information Appendix S1. Supporting Information Appendix S2 con-

tains a short tutorial describing how to fit the model using the code

that we make publicly available, reproducing some of the simulated

data results.

There are three important points regarding LDA that need to be

emphasized. First, the proposed model can accommodate negative

and positive correlations between species. To illustrate this, assume

that there are just two species groups and two species, s and s’.
Negative correlation between these species is captured by our

model if, for example, ϕ̂s ¼ 1
0

� �
and ϕ̂s0 ¼ 0

1

� �
. These parameter

estimates indicate that, whenever a site has a high proportion of

group 1, species s will have a high probability of occurring, whereas

species s’ will tend to be absent. In the same way, whenever a site

has a high proportion of group 2, species s’ will have a high proba-

bility of occurring but species s will tend to be absent, resulting in

negative correlation. Positive correlation between these species is

captured by our model if, for example, ϕ̂s ¼ 0:95
0:1

� �
and

ϕ̂s0 ¼ 0:8
0:05

� �
. These parameter estimates imply that, whenever a site

has a high proportion of group 1, both species s and s’ will have a

high probability of occurring. In the same way, whenever a site has a

high proportion of group 2, both species s and s’ will have a high

probability of being absent, inducing positive correlation.

Second, hard clustering methods that group locations with similar

species composition (e.g., Kreft & Jetz, 2010) correspond in our

model to vectors θl comprised of zeroes except for a single element

which is equal to 1. In the same way, hard clustering methods that

group species that tend to co‐occur (e.g., Azeria et al., 2009) corre-

spond to vectors ϕs comprised of zeroes except for a single element

which is equal to 1. In other words, LDA can generate hard cluster-

ing results for locations and/or species if its parameters take on cer-

tain values but it can also represent mixed‐membership patterns, as

illustrated with our simulations.

Third, there are two extreme situations for which the LDA

parameters are not identifiable. If two groups have very similar spe-

cies composition (i.e., similar ϕks), then the model will have a hard

time distinguishing these groups and not merging them into a single

one. Similarly, if all locations have similar proportions of the different

groups (i.e., similar θlk ), then all locations will have very similar spe-

cies composition, regardless of how different the species groups are

from a species composition perspective. This is due to the fact that

the probability of observing species s for two locations p and q is

given by E xisp
� � ¼ θTpϕs and E xisq

� � ¼ θTqϕs, respectively. If θTp ≈ θTq ,

then E xisp
� �

≈E xisq
� �

(see Supporting Information Appendix S1 for

details). In this scenario, the algorithm might determine that a single

species group dominates all locations instead of distinguishing the

different species groups.

2.2 | Simulated data and comparison of methods

We simulate data to evaluate the performance of the proposed

model and to compare its results to those from other clustering

methods. To avoid the identifiability problems described above, we

generate parameters for all simulations such that each group com-

pletely dominates at least one location and that each group has at

least one species that is never present in the other groups (ensuring

distinct species composition of these groups).

2.2.1 | Simulation set 1

We illustrate with simulated data how the truncated stick‐breaking
prior can identify the optimal number of groups and how our algo-

rithm can retrieve the true parameter values under a wide range of

conditions. More specifically, the true number of groups K* was set

to 3 and 10; the number of sampling units (i.e., locations) was set to

100 and 1000; the number of species was set to 50 and 200; and

the number of observations per location was set to 5. Param-

eters were drawn randomly (i.e., ϕsk ∼ Beta 0:5;0:5ð Þ and

θl ∼ Dirichlet 0:1ð Þ), and the identifiability assumptions described
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above were then imposed. We adopted a Beta 0:5;0:5ð Þ distribution

for ϕsk because this distribution is likely to generate species groups

that are more dissimilar in terms of species composition given that it

is a U‐shaped symmetric distribution. We generated 10 datasets for

each combination of these settings, totaling 80 datasets.

To fit these data, we assume a maximum of 20 groups (K = 20)

and estimate the true number of groups K* by determining the num-

ber of groups that are not superfluous. Superfluous groups are

defined to be those groups that are very uncommon across the

entire region (i.e., �θlk<0:5 for 99% of the locations, where �θlk is the

mean of the posterior distribution). At last, we test the sensitivity of

the modeling results to the prior by fitting these data with γ set to

0.1 and 1.

2.2.2 | Simulation set 2

We also compare LDA to other methods using simulated data. In

these simulations, we assume data are available on 200 species over

1,000 locations, with five repeated observations per location. Fur-

thermore, 3, 5, and 7 groups were used to generate these data.

Because the goal is to compare inference from different methods,

we set the parameters θlk in such a way that it allows for a straight-

forward visual appraisal of the advantages and limitations of the dif-

ferent methods. On the other hand, the parameters ϕks were

randomly drawn from Beta 0:5;0:5ð Þ; and subsequently, the assump-

tion regarding groups with distinct species composition was

imposed.

When fitting LDA, we set the maximum number of groups to 20

and rely on the truncated stick‐breaking prior with γ ¼ 0:1 to

uncover the correct number of groups. We compare and contrast

inference from our model to that from competing approaches,

including traditional hard clustering methods (i.e., hierarchical and k‐
mean clustering) and mixture models (i.e., region of common profile

(RCP) model; Foster et al., 2017; Lyons, Foster, & Keith, 2017). In

particular, we compare how well LDA and these other clustering

approaches estimate the true proportion of the different species

groups and fit the data. Additional details regarding how these dif-

ferent methods were fit and how model fit was assessed are avail-

able in Supporting Information Appendix S3.

2.3 | Breeding bird case study

2.3.1 | Breeding Bird Survey (BBS) dataset

The Breeding Bird Survey is a long‐term program that monitors the

status and trend of bird populations in North America. In brief, data

are collected annually in June by trained participants along randomly

established roadside routes approximately 39 km long with stops

0.8 km apart. At each stop, a 3‐min point count is conducted (Par-

dieck et al., 2017).

Because we were interested in spatial mapping of groups over

time, we subset the data to the period 1997–2015, which had the

greatest consistency in route surveys. Furthermore, we eliminated

data from very rare and very common species, defined here as spe-

cies that are present in <1% or more than 50% of the transect‐by‐
year combinations, respectively. This resulted in the exclusion of

48% (rare species) and 3% (common species such as American Robin,

Mourning Dove, and American Crow) of the species. The rationale

for this decision is that species that are too rare tend to convey little

information on groups while species that are common everywhere

are likely to be important species in almost all groups, contributing

little to discriminate between these groups. Similar decisions are

made when other clustering methods are used in ecology (e.g., Aze-

ria et al., 2009) and when the standard LDA is used for text‐mining,

where both low‐ and high‐frequency words are often removed prior

to running the model (Boyd‐Graber, Mimno, & Newman, 2014).

Finally, the BBS actually records count data (rather than presence/

absence) per stop in each route. However, because these counts

may include the same individual observed multiple times and bird

detection may vary by species and environmental conditions (e.g.,

weather or traffic noise), we decided to convert these data into

presence/absence of each species per route. In total, the final data-

set used for analysis contained information on 354 species and

4,397 routes, spread throughout Canada and the United States.

To determine whether these breeding bird groups have been

shifting their spatial distribution over time, we divided our study per-

iod into two 6‐year periods: 1997–2002 and 2010–2015. Each

route × period combination resulted in a distinct “sampling unit” (i.e.,

distinct row in our data matrix), and data from individual years within

each time period were treated as repeated observations.

2.3.2 | Climate datasets

To relate the spatial distribution of the identified groups to potential

environmental drivers, we relied on freely available precipitation and

temperature data from WorldClim version 2 (available at

http://worldclim.org/version2) (Fick & Hijmans, 2017). These data

consist of the 30‐years average climate information (from 1970 to

2000) for the month of June, covering the entire world.

2.3.3 | Detecting the effect of climate change on
breeding bird species composition

In an era of global change, an important feature of our method is that

it is able to detect relatively subtle temporal changes in species com-

position. More specifically, we assessed whether group ranges had

expanded north and contracted south. These are the patterns we a

priori expected given warming temperatures and the strong influence

of temperature on the spatial distribution of a range of taxonomic

groups, including birds (Chen, Hill, Ohlemuller, Roy, & Thomas, 2011;

Hitch & Leberg, 2007; Moritz et al., 2008; Parmesan & Yohe, 2003).

To detect these patterns, we fit the model once to data from both

time periods (instead of fitting the model separately for each time

period). This enables the estimation of distinct sets of θlk for each

time period (i.e., θ 1997�2002ð Þ
lk and θ 2010�2015ð Þ

lk ) but a single set of ϕks. A

group's range was defined to be the locations in which a focal group

VALLE ET AL. | 5563

http://worldclim.org/version2


was present with a relatively high probability in 1997–2002 or 2010–
2015 (i.e., θ 1997�2002ð Þ

lk >0:05 or θ 2010�2015ð Þ
lk >0:05). Based on parame-

ter estimates from these locations, we estimated the Spearman corre-

lation of the difference between current and past proportions of the

focus group (i.e., θ 2010�2015ð Þ
lk ‐θ 1997�2002ð Þ

lk ) and latitude.

2.4 | Additional analyses and software details

We set the maximum number of groups to 20 for our case study. To

interpolate the estimates of the proportion of different groups to

unsampled areas, we relied on the inverse distance weighted (IDW)

algorithm implemented in the package “gstat” (Graler, Pebesma, &

Heuvelink, 2016; Pebesma, 2004). Interpolations were restricted to

locations within one degree of a BBS route. Finally, our algorithm

was programmed using a combination of C++ (through the Rcpp

package; Eddelbuettel & Francois, 2011) and R code (R Core Team

2013). We provide a tutorial in the Supporting Information

Appendix S2 for fitting this model.

3 | RESULTS

3.1 | Results from simulation set 1

Despite assuming the potential existence of a much higher number

of groups (K = 20), our results reveal that the proposed model was

generally able to estimate well the true number of groups (boxplots

in Figure 1), except for datasets with few species and locations but

many groups (i.e., 100 locations, 50 species, and 10 groups; Fig-

ure 1f). We also find a good correspondence between the true and

estimated parameter values for most of the scenarios explored (scat-

terplots in Figure 1), with a slightly worse performance for data with

few species but many groups (i.e., 50 species and 10 groups; Fig-

ure 1g,h). Taken together, these results suggest that, when the ratio

of the number of species to the number of groups is small, there is

likely to be less distinction between groups from a species composi-

tion perspective, making it a harder task to untangle these groups.

Finally, in relation to the prior, we find that our results are broadly

similar for γ ¼ 0:1 and γ ¼ 1. The main difference is that parameter

estimates tended to be slightly worse when the true number of

groups is 3 and γ ¼ 1 and when the true number of groups is 10

and γ ¼ 0:1 (results not shown), agreeing with our expectations.

Because smaller γ values induce greater sparseness, parameters are

better estimated with γ ¼ 0:1 when simulations are based on sparse

assumptions (i.e., simulations with three groups) versus when this is

not true (i.e., simulations with 10 groups).

3.2 | Results from simulation set 2

Our results reveal that the algorithm accurately estimates the pro-

portion of the different groups in each location, regardless if MM

units are present or not (left most and right most panels, respec-

tively, in Figure 2). These results corroborate the observation that

LDA encompasses hard clustering of sites and/or species as special

cases. On the other hand, Figure 2 clearly reveals that hard cluster-

ing methods cannot represent these MM locations (k‐means and

hierarchical clustering [HC] panels in Figure 2). Mixture model

approaches such as RCP are sometimes perceived to be able to rep-

resent these gradual changes in the proportion of groups. However,

F IGURE 1 The Latent Dirichlet Allocation (LDA) estimates well the true number of groups (boxplots) and the θlk parameter values
(scatterplots). Results from all 10 datasets in each simulation setting are displayed simultaneously, based on LDA with γ set to 0.1. Top and
bottom panels display results for three and 10 groups, respectively. Boxplots in panels (a) and (f) show the estimated number of groups (i.e.,
the number of groups deemed not to be superfluous), revealing that LDA can estimate well the true number of groups (K*) except for datasets
with few locations (L), few species (S) but many groups (i.e., 100L 50S 10K*). Scatterplots (panels b–e and g–j) reveal that the θlk parameters
can also be well estimated but there is considerable noise for datasets with few species but many groups (panels g and h). A 1:1 line and a
linear regression line were added for reference (blue and red lines, respectively) [Colour figure can be viewed at wileyonlinelibrary.com]
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our results reveal that, when applied to our simulated data, RCP

tended to give transition regions that were too narrow (RCP panels

in Figure 2). These model comparison results are particularly striking

given that LDA was fitted assuming 20 potential groups, whereas

results for the other methods were based on the assumption that

the true number of groups was known. Notice that these figures

illustrate how LDA can capture gradual changes in species composi-

tion associated with global change phenomena depending on what is

being represented in the x‐axis. For instance, the x‐axis can represent

a spatial gradient of anthropogenic forest disturbance (e.g., timber

logging intensity or distance to forest edge) or can represent time

(i.e., the same location sampled repeatedly through time, perhaps

revealing the impact of climate change on species composition).

Recall that the simulated data were generated with 3, 5, and 7

groups, but that the maximum number of groups when fitting LDA

was set to 20. Our results suggest that the truncated stick‐breaking
prior was able to correctly estimate the underlying true number of

groups (boxplots in Figure 3) given that the estimated θlk 's were

shrunk toward zero for the superfluous groups (red boxes in Fig-

ure 3). We also find that all the other alternative methods required a

much greater number of groups to fit the data as well as LDA when

MM locations are present (line graphs in Figure 3). These results

reveal that LDA achieves a much sparser representation of the data

(based on the number of groups) without losing the ability to repre-

sent the inherent variability in the data. Although these results are

expected, given the larger number of parameters in LDA, the ability

to fit the data well with fewer groups is highly desirable from the

user's perspective as the primary role of these methods is to reduce

the dimensionality of biodiversity data. It is important to note that

even in the absence of MM sampling units, LDA can still estimate

well the true number of groups and has similar fit to the data as the

other clustering approaches (results not shown). Finally, although

Figures 2 and 3 are based on a single dataset, qualitatively similar

results were found for multiple simulated datasets (a total of 10

datasets were simulated for each setting), revealing that these results

were robust to variations in the simulated data.

LDA HC RCPK-means
With MM locations Without MM locations

LDA
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op
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Locations Locations
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n 
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(a)

(f)

(k)

(b)

(g)

(l)

(c)

(h)

(m)

(d)

(i)

(n)

(e)

(j)

(o)

F IGURE 2 The extended Latent Dirichlet Allocation (LDA) method estimates well the true proportion of groups in each location (black
lines) using simulated data with and without mixed‐membership (MM) locations. Results are shown separately for simulated data with 3, 5, and
7 groups (top to bottom). Left (panels a–d, f–i, k–n) and right (panels e, j, o) set of panels show results for simulated data with and without
MM locations, respectively. Left to right panels for data with MM locations depict the results for LDA, k‐means clustering, hierarchical
clustering (HC), and regions of common profile (RCP), respectively. For LDA, the proportion of groups corresponds to the θlk parameters. In all
panels, the true proportion of each group is shown with thick black lines and the estimated proportions of each groups are shown with
different colors and semitransparent vertical lines. For example, in the top set of panels with MM locations, the true proportion of each group
for location 400 is equal to [0.54,0.46,0] whereas the estimated proportions were equal to [0.52,0.45,0.03] (LDA; a), [0,1,0] (K‐means; b),
[0,1,0] (HC; c), and [0.2,0.8,0] (RCP; d)
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3.3 | BBS case study

Overall, we identified 18 main breeding bird groups (of a maximum

of 20) after eliminating groups that were very uncommon through-

out the region (defined here as those for which �θlk was smaller than

0.5 for 99% of the locations, where �θlk denotes the posterior mean).

An important test for any unsupervised method is if it is able to

retrieve patterns that are widely acknowledged to exist by experts.

Using the estimated group proportion for each location for the

2010–2015 period, we find striking spatial patterns (maps in Fig-

ure 4). Importantly, these spatial patterns generally agree well with

other maps of bird communities (e.g., Bird Conservation

Regions [BCR]; http://www.nabci.net/International/English/bird_c

onservation_regions.html), although we do not rely on other biotic

(e.g., plants) and abiotic (e.g., soils, temperature, precipitation) data

to fit the model. Despite these similarities, an important advantage

of LDA is that, differently from BCR, it does not assume a sharp spa-

tial delimitation of each bird group, a feature that may have poten-

tially important implications for conservation.

When examining more closely the spatial distribution of the

breeding bird groups along the East coast, it is clear that groups 2,

9, 12, 14, 15, and 19 form rough latitudinal bands. To better illus-

trate this latitudinal pattern along the East coast, we interpolated

the distribution of groups and plotted each group with a different

color, revealing the regions that are dominated by each group as well

as transition areas (Figure 5a). We find that the species that best

F IGURE 3 The extended Latent
Dirichlet Allocation (LDA) method
identifies the true number of groups (left
panels) and fits the data better than other
clustering approaches for data with MM
locations (right panels). Results are shown
separately for simulated data with 3, 5,
and 7 groups (top to bottom). Boxplots
depict the estimated proportion θlk of each
group k for all locations l = 1,…,L. These
boxplots emphasize how θlk for the
irrelevant extra groups (red boxes) are
shrunk to zero for all locations. Line graphs
show the log likelihood, a measure of
model fit for which larger values indicate
better fit. These graphs reveal how other
clustering approaches require a much
greater number of groups to fit the data as
well as LDA with fewer groups. Model fit
results for LDA correspond to the
posterior mean of the log likelihood. LDA
results are shown with a single symbol
because, differently from the other
methods that were fitted multiple times
with different number of groups, LDA was
fitted just once using a maximum of 20
groups and the true number of groups was
estimated (see corresponding boxplots).
Details regarding how the log likelihood
was calculated for the different methods
are provided in Supporting Information
Appendix S3 [Colour figure can be viewed
at wileyonlinelibrary.com]
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distinguish these groups fall largely in line with the latitudinal varia-

tion in breeding ranges of common forest birds in the eastern United

States, such as the least flycatchers and veeries in the northern

group 9 and white‐eyed vireos and Carolina wrens in the southern

group 15. Finally, group 12 captured wetland species common in

Florida and the Gulf Coast such as the great egret.

F IGURE 4 Breeding bird groups identified by LDA have a strong biogeographical pattern. Each panel depicts the interpolated proportion of
each bird group (�θlk) based on the 2010–2015 parameter estimates. Species group identifiers are provided in the lower left corner [Colour
figure can be viewed at wileyonlinelibrary.com]
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Another interesting biogeographical pattern refers to groups 8

and 10 (Figure 5c), which seem to be divided along the middle of

Texas, with several sites in this divide being characterized as transi-

tion areas comprised of mixed‐membership locations. This divide

might be associated with the transition from Eastern Temperate For-

ests to the Great Plains. From a species composition perspective, we

find that group 10 identifies species associated with desert environ-

ments (e.g., cactus wren and ash‐throated flycatcher), while group 8

identifies a mixture of short‐grass prairie birds (e.g., dickcissel) and

species associated with open country environments with scattered

trees and shrubs (e.g., eastern phoebe).

Besides these biogeographical patterns, we also highlight the

ability of our algorithm in depicting how environmental gradients are

linked to the proportion of each group. For instance, we display how

the main East Coast groups (groups 2, 9, 12, 14, 15, and 19) are

strongly constrained by average June temperatures (Figure 5b) and

how the groups in Texas (groups 8 and 10) are constrained by aver-

age June precipitation (Figure 5d). These figures highlight that transi-

tion areas, either relative to precipitation or temperature, are often

comprised of mixtures of groups. This pattern might arise because

these areas are comprised of heterogeneous habitats and/or these

areas are relatively homogeneous but with intermediate characteris-

tics in comparison with sites with higher/lower precipitation or tem-

perature. Regardless of the reason for this pattern, these areas are

clearly suitable for multiple groups, an important characteristic that

unfortunately cannot be captured with hard clustering methods.

3.3.1 | Temporal patterns based on a comparison of
θ 1997�2002ð Þ
lk and θ 2010�2015ð Þ

lk

Although our results indicate that breeding bird groups have

fairly consistent spatial distributions in both time periods (1997–
2002 and 2010–2015; data not shown), we find statistically sig-

nificant positive associations between latitude and changes in

proportion between these two periods (θ 2010�2015ð Þ
lk ‐θ 1997�2002ð Þ

lk ) for

nine groups (out of 18) using data from routes sampled during

both of these time periods. This positive association reveals that

increases in proportion tend to occur at higher latitudes whereas

decreases are more likely at lower latitudes (Figure 6), supporting

the hypothesis that breeding bird groups are increasingly expand-

ing their range toward northern areas while contracting their

range at southern boundaries. The remaining nine groups did not

have a statistically significant association between latitude and

changes in proportion. Although this analysis ignores uncertainty

in parameter estimates for θ 2010�2015ð Þ
lk ‐θ 1997�2002ð Þ

lk , it is neverthe-

less useful in highlighting relatively subtle but important trends.

In particular, these results agree with the patterns we a priori

expected based on the warming environment, being robust to

the threshold used to define a group's range (i.e., changing

this threshold from 0.05 to 0.1 or 0.5 yielded several groups

with statistically significant positive association with latitude,

with the remaining groups having no statistically significant

association).

(a) (b)

(c) (d)

F IGURE 5 Biogeographical patterns of
a subset of the species groups identified
by LDA. The proportion of individual
groups (given by the posterior mean �θlk) is
depicted in these panels. (a) displays the
latitudinal bands formed by groups 2, 9,
12, 14, 15, and 19 along the East coast. (c)
displays the spatial pattern of groups 8 and
10. In both (a) and (c), higher proportion of
individual groups is depicted using more
opaque (i.e., less transparent) colors and
different groups are depicted with
different colors. (b, d) reveals that average
June temperature and precipitation
gradients seem to strongly constrain the
spatial distribution of these breeding bird
groups, respectively. Circles represent the
estimated proportion for each location and
group while lines depict suitability
envelopes. These envelopes were created
by first defining equally spaced intervals on
the x‐axis and then calculating the median
x value and the 99% percentile of y within
each interval and connecting these results.
Notice that the same color scheme is used
for right and left panels
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4 | DISCUSSION

The Latent Dirichlet Allocation (LDA) model is a useful model for

ecologists because it can more faithfully represent community

dynamics and the impact of environmental change through the esti-

mation of mixed‐membership sites (Valle et al., 2014). The standard

LDA requires abundance data but, for many taxa, reliably estimating

abundance is often very hard and costly (Ashelford, Chuzhanova,

Fry, Jones, & Weightman, 2006; Joseph et al., 2006; Kembel, Wu,

Eisen, & Green, 2012; Royle, 2004; Schloss, Gevers, & Westcott,

2011). For these reasons, presence/absence data are typically much

more ubiquitous than abundance data, often enabling analysis at

F IGURE 6 Species groups with a statistically significant association between latitude and change in group proportion
(θ 2010�2015ð Þ � θ 1997�2002ð Þ). Numbers in the title of each panel correspond to species group identifiers. Spearman's correlation coefficients
between latitude and changes in proportion of each group between 1997–2002 and 2010–2015 are given in the upper right corner of each
panel, and level of significance is indicated by asterisk (* 0.01 < p < 0.05, ** 0.001 < p < 0.01, *** p < 0.001). Trend lines were created by
dividing the latitude range into 10 equally spaced bins and calculating the median (thick black line) and lower and upper quartiles (dashed black
lines) for each bin. Bins with <10 observations were excluded. Results are based only on BBS routes within the range of each group, defined
as locations for which θ 1997�2002ð Þ

lk >0:05 or θ 2010�2015ð Þ
lk >0:05 [Colour figure can be viewed at wileyonlinelibrary.com]
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much larger spatial and temporal scales than that afforded by abun-

dance data. Here, we have substantially developed the standard LDA

model to enable the analysis of presence/absence data and we have

demonstrated that novel insights can be gained using our method

when applied to a continental‐scale wildlife dataset, with important

implications for global change science.

Using the Breeding Bird Survey (BBS) dataset as a case study,

we have shown how our method is able to uncover striking spatial

and temporal patterns in bird groups. For example, we illustrate how

these groups gradually change along a temperature gradient in the

East Coast and a precipitation gradient in Texas. It has long been

known that many bird species have strong relationships with abiotic

gradients (Bowen, 1933), but how these gradients can explain entire

groups of species has remained elusive. Furthermore, we find subtle

but pervasive changes in bird group proportions, changes which fol-

low the expected patterns based on climate change (e.g., Parmesan

& Yohe, 2003). Half of the species groups (nine of 18) have

expanded their northern range and shrunken their southern range.

This pattern is consistent with species‐specific models of changes in

bird distribution with climate change in the United States (e.g., Hitch

& Leberg, 2007; La Sorte & Thompson, 2007). Our results expand

on these findings by illustrating how entire groups are shifting their

spatial distribution. Nevertheless, a more formal test that accounts

for the multiple factors that influence the spatial distribution of birds

will be required to ultimately confirm whether climate change is driv-

ing the spatial distribution shifts that we have detected.

An important limitation of the method that we have presented is

that the identified groups do not change over time, even though

their spatial distribution may vary. In other words, θlk may change

with time but ϕks does not. This is particularly relevant in the con-

text of climate change, where it is possible that the species composi-

tion of the groups themselves might be changing (Lurgi, Lopez, &

Montoya, 2012; Stralberg et al., 2009; Urban et al., 2016). Another

important limitation in this study is that the proposed model does

not take into account imperfect detection, a pervasive issue for wild-

life sampling (MacKenzie et al., 2002; Royle, 2004). This shortcoming

can be partially attributed to inherent limitations in the BBS dataset,

given that the estimation of detection probabilities requires very

specific data types (e.g., repeated visits in occupancy models). It is

also critical to highlight the importance of repeated observations per

location given the relatively low information content in binary pres-

ence/absence data. Determining all the parameters in the proposed

model, including the optimal number of groups, can be challenging in

the absence of these repeated observations. Finally, although impor-

tant broad‐scale patterns can be identified and novel insights gained

from post hoc analysis of LDA model parameters, as illustrated with

our case study, these results rely on a two‐stage analysis that does

not take into uncertainty in the estimated parameters. Our ongoing

work is focused on extending LDA to accommodate covariates

through regression models built‐in to LDA so that uncertainty can be

coherently propagated when performing more formal statistical tests

and when making spatial and temporal predictions.

Community ecologists have traditionally relied on fitting cluster-

ing models with different numbers of clusters and choosing the opti-

mal number of clusters using metrics such as AIC and BIC (Fraley &

Raftery, 2007; Xu & Wunsch, 2005). Using simulated data, we have

shown how the truncated stick‐breaking prior can aid the determina-

tion of the true number of groups. We acknowledge, however, that

the modeler still has to specify the hyperparameter γ and the maxi-

mum number of groups K. Using simulated data, we have found that

setting γ to 0.1 often works well and that our model often identifies

K groups if the true number of groups is equal or larger than K.

While this may be seen as an indication that K has to be increased

when using real data, an extremely large number of groups defeats

the purpose of dimension reduction, making it increasingly harder to

visualize and interpret model outputs. Ultimately, we believe that

the decision regarding the maximum number of groups K is a bal-

ance between what the data suggest and pragmatic considerations

regarding how the results will be displayed and interpreted.

Our empirical example focused on large‐scale biogeographical

patterns. Nevertheless, this method could also be applied in a land-

scape‐scale context, identifying spatial variation in community struc-

ture within general habitat types and across patches, or to analyze

long‐term temporal changes in time‐series data of species composi-

tion (e.g., Christensen, Harris, & Ernest, 2018). Given the ubiquity of

presence/absence data in community ecology, we believe that the

extension of the Latent Dirichlet Allocation model developed here

will see a much wider use, becoming an important addition to the

toolkit of community ecologists.
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