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Abstract
Bats and rodents are recognized to host a great diversity of viruses and several im‐
portant viral zoonoses, but how this viral diversity is structured and how viruses are 
connected, shared and distributed among host networks is not well understood. To 
address this gap in knowledge, we compared the associative capacity of the host–virus 
networks in rodents and bats with the identification of those viruses with zoonotic 
potential. A virus database, detected by molecular methods, was constructed in the 
two taxonomic groups. We compiled 5,484 records: 825 in rodents and 4,659 in bats. 
We identified a total of 173 and 166 viruses, of which 53 and 40 are zoonotic viruses, 
in rodents and bats, respectively. Based on a network theory, a non‐directed bipar‐
tite host–virus network was built for each group. Subsequently, the networks were 
collapsed to represent the connections among hosts and viruses. We identified both 
discrete and connected communities. We observed a greater degree of connectivity 
in bat viruses and more discrete communities in rodents. The Coronaviridae recorded 
in bats have the highest values of degree, betweenness and closeness centralities. In 
rodents, higher degree positions were distributed homogeneously between viruses 
and hosts. At least in our database, a higher proportion of rodent viruses were zo‐
onotic. Rodents should thus not be underestimated as important reservoirs of zo‐
onotic disease. We found that viruses were more frequently shared among bats than 
in rodents. Network theory can reveal some macroecological patterns and identify 
risks that were previously unrecognized. For example, we found that parvovirus in 
megabats and Gbagroube virus in rodents may represent a zoonotic risk due to the 
proximity to humans and other zoonotic viruses. We propose that epidemiological 
surveillance programmes should consider the connectivity of network actors as a 
measure of the risks of dispersion and transmission.
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1  | INTRODUC TION

Bats and rodents are hosts of a significant proportion of zoonoses, 
higher than any other mammalian order. Over 200 viruses belonging 
to 27 viral families have been isolated or detected in bats; however, 
bat–human transmission has only been observed for 11 viruses, be‐
longing to four different viral families: Rhabdoviridae, Filoviridae, 
Coronaviridae and Paramyxoviridae (Allocati et al., 2016). Some 
examples of those viruses are as follows: SARS‐related coronavirus, 
Sosuga rubulavirus, Ebola virus and Marburg virus, rabies lyssavi‐
rus, Nipah henipavirus and Hendra henipavirus (Allocati et al., 2016; 
Calisher, Childs, Field, Holmes, & Schountz, 2006; Hayman, 2016; 
O'Shea et al., 2014; Plowright et al., 2015).

Rodents have similar zoonotic potential to bats and are associ‐
ated with a large number of zoonotic viruses, such as Sin Nombre 
virus, Puumala virus, Crimean‐Congo hemorrhagic fever virus, 
Kyasanur forest virus, tick‐borne encephalitis virus, Lassa fever virus 
and Venezuelan equine encephalitis virus, among others. All of the 
aforementioned bat‐ and rodent‐associated viruses have a large im‐
pact on public health. However, it is important to take into count that 
not all of these viruses are obligate pathogens; some are generally 
commensal.

Previous studies have explored viral associations on relatively re‐
stricted spatial or phylogenetic scales. For example, Hayman (2016) 
propose maps of viral distributions according to the distribution of 
hosts' families, Streicker et al. (2010) explored rabies viruses using a 
phylogenetic approach, and Cui, Tachedjian, and Wang (2015) com‐
pared retrovirus associations between bats and rodents. Anthony et 
al. (2017) explored coronavirus networks at the level of host family, 
and Bordes, Caron, Blasdell, Garine‐Wichatitsky, and Morand (2017) 
analyse the relationships among zoonotic diseases in Southeast Asia. 
Luis et al. (2015) analyse viral networks between rodents and bats at 
global scale identifying several ecology factors to explain virus–host 
associations. Recently, works explored the specificity and frequency 
of sharing DNA and RNA viruses among Carnivores and bats (Wells, 
Morand, Wardeh, & Baylis, 2018) and the importance of the phylog‐
eny to explain the viral richness associated with bats and rodents 
(Guy, Thiagavel, Mideo, & Ratcliffe, 2019). However, there are cur‐
rently no studies at a global level that incorporate the human influ‐
ence in the viral networks.

While some authors consider bats and rodents to belong to a sim‐
ilar category of high zoonotic risk potential (Han, Schmidt, Bowden, 
& Drake, 2015), other work examines the differences between bats 
and rodents (Luis et al., 2015). Several different distinctive features 
of bats have been hypothesized to explain their particularly high 
viral richness, such as their ability to fly, long migrations, high tro‐
phic diversity and social structure (Brook & Dobson, 2015; Moratelli 
& Calisher, 2015). However, currently the viral diversity and con‐
nectivity among different species of bats are not well understood 
(Moratelli & Calisher, 2015; O'Shea et al., 2014) making it difficult 
to evaluate the implications of those relationships for emerging and 
re‐emerging zoonoses. While the literature does explain why bats 
harbour a particularly high number of viruses, it does not describe 

viral associations at the level of host species or describe direct re‐
lationships (only associations), does not address the whole viral 
species complex and does not describe the statistics or metrics that 
characterize the associations.

Bats and rodents are similar in that both are highly diverse, are 
basal taxa within the mammal phylogeny and have similar life history 
characteristics (Luis et al., 2013). Rodents, like bats, have been rec‐
ognized as reservoirs for several zoonotic viruses (Han et al., 2015), 
such as virus of hantaviridae (Schmaljohn & Hjelle, 1997) and arena‐
viridae families (Charrel & de Lamballerie, 2010). However, there are 
differences in rodent–virus associations that impact their zoonotic 
potential compared with bats.

In disease ecology, analytical tools have been used to holis‐

tically explain the dynamics of infections and provide novel hy‐

pothesis to explain macroecological patterns (Johnson, Roode, & 

Fenton, 2016). One of the theories that helps to predict dynamic 

changes in host–pathogen systems is graph theory, also known as 

network theory (Bordes et al., 2017; Johnson et al., 2016). This 

approach can be used to gain better understanding of how interac‐

tions take place within pathogen communities, how hosts are con‐

nected with pathogens, their preferred association and patterns of 

pathogen transmission (Godfrey, 2013; White, Forester, & Craft, 

2017).
The graphs, better known as networks, focus on the interactions 

between entities (Newman, 2014), and they have the potential to 
infer relationships within a larger framework (Hossain & Feng, 2016; 
Luke & Stamatakis, 2012). A network is capable of emphasizing the 
preferred union as a process (Hartonen & Annila, 2011) and captur‐
ing both the individual elements in a system as well as their relevant 
interconnections (Kolaczyk & Csardi, 2014). In disease ecology, this 
kind of analysis could be applied to describe viral diversity associ‐
ated with different hosts and detect hosts and viruses that share 
associations, and therefore identify groups that share similar charac‐
teristics (White et al., 2017).

In network theory, centrality and dispersion metrics quantify the 
importance of each component member (Martínez‐López, Perez, 
& Sánchez‐Vizcaíno, 2009; Newman, 2014; Opsahl, Agneessens, 
& Skvoretz, 2010). The parameter “betweenness” can be used to 

Impacts
•	 The analysis of virus and host networks (rodents and 
bats) allows us to measure the potential risk of zoonotic 
diseases.

•	 Measuring network connectivity can be a useful tool for 
identifying hosts and viruses of potential importance in 
the transmission dynamic of zoonotic diseases.

•	 Bats presented twice as many connections between virus 
and host as rodents, indicating a higher zoonotic potential 
transmission.
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recognize dispersing hosts and key viruses in the evolution or viral 
transmission (Opsahl et al., 2010; White et al., 2017), while “close‐
ness” can indicate hosts and viruses that may have little direct con‐
nectivity but are surrounded by important highly connected nodes 
(Opsahl et al., 2010; White et al., 2017). In terms of disease ecology, 
we can employ these and other parameters to explore the host–host, 
virus–host and virus–virus interactions by collapsing the networks 
and identifying communities. Network analysis thus offers the op‐
portunity to recognize highly diverse viruses and hosts based on a 
high degree of connectedness. Bats and rodents are excellent taxa in 
which to implement this tool because they harbour a large number of 
highly adaptable viruses and hosts with high resistance.

Therefore, in this study we aimed to compare and recognize the 
differences in the associative capacity of the host–virus networks in 
rodents and bats worldwide, as well as to identify the viruses that may 
shift across species, including humans, suggesting zoonotic potential.

2  | METHODS

2.1 | Database

Data were compiled from several sources. For bats, we retrieved 
data from the DBatVir database (http://www.mgc.ac.cn/DBatV​ir/). 
For rodents, data on viruses in rodents were searched in Web of 
Science (https​://login.webof​knowl​edge.com), Elsevier (https​://www.
elsev​ier.com/advan​ced-search) and World Wide Science (https​://
world​wides​cience.org/).

In each of the aforementioned databases, we searched the key‐
words: rodent, virus, PCR, wild and zoonotic. We then constructed 
two separate large databases of viruses isolated from rodents and 
bats. When the taxonomic classification of the virus was not clear, 
we searched the ICTV database (https​://talk.ictvo​nline.org/) to 
confirm. In the case of Coronaviridae and Paramyxoviridae families, 
we assigned as bat coronavirus and bat Paramyxovirus all unclas‐
sified coronaviruses and paramyxoviruses. Because bat astrovirus 
does not exist in the ICTV classification, we assigned all reports 
from Astroviridae family as astrovirus. To increase the certainty of 

identification of the viruses, only studies that used molecular meth‐
ods to detect viruses were included in the database we compiled. 
Subsequently, each of the viruses identified in rodents or bats was 
classified as direct zoonotic or non‐zoonotic pathogens (Allocati et 
al., 2016; Calisher et al., 2006; Han et al., 2015).

2.2 | Overall networks analyses

An independent undirected bipartite network was built for each 
of the orders of Rodentia and Chiroptera. That is to say, each net‐
work included two types of nodes—viruses and hosts. Viral nodes 
were connected to host nodes when the virus indicated by the node 
has been detected in the species indicated by the host node. We 
included a human host node, which was connected to viruses that 
have been classified as zoonotic. This helped us to group and iden‐
tify zoonotic viruses and viruses close to them (which could have 
zoonotic potential).

2.3 | Collapsed networks

Then, host‐to‐host and virus‐to‐virus networks were constructed 
in order to explore these networks in different dimensions. The 
“bipartite.projection” function in the igraph package implemented 
in r software version 3.4.2 (R Core Team, 2017) was used to col‐
lapse the bipartite network. Basically, in the collapsed networks 
a host was connected to another host when they shared a com‐
mon virus and a virus to a virus when they shared a common host 
(Figure 1).

In each host–host collapsed network, the host nodes were con‐
served and the virus nodes were transformed using the weight of 
corresponding links in order to illustrate the relationships among 
different hosts (Figure 1a,b). In each virus–virus network (one 
for bats and one for rodents), the virus–virus relationship was 
highlighted by collapsing the host nodes into the weighted links 
(Figure 1c).

2.4 | Network measurements

We measured the networks on two levels: individual node and the 
entire network. At the node level, we measured different central‐
ity values including: degree (number of links that a node has), be‐
tweenness (number of times a node is an intermediary to connect 
each possible pair of nodes) and closeness (the degrees of average 
separation in relation to other nodes) (Martínez‐López et al., 2009; 
Newman, 2014). At the network level, we measured density and di‐
ameter. Network density is the proportion of links that are actually 
observed in the network divided by those that could possibly occur 
and network diameter is the length of the longest geodesic distance 
(Newman, 2014).

Network level measurements were useful for summarizing the 
“big picture” of the network and identify the key nodes that are 
closely related to humans. Network level measurements were gen‐
erated using the algorithms provided in the packages “igraph” (Csárdi 

F I G U R E  1  Collapsed networks. (a) Bipartite network, (b) 
Collapsed host–host network and (c) Collapsed virus–virus network 
[Colour figure can be viewed at wileyonlinelibrary.com]

http://www.mgc.ac.cn/DBatVir/
https://login.webofknowledge.com
https://www.elsevier.com/advanced-search
https://www.elsevier.com/advanced-search
https://worldwidescience.org/
https://worldwidescience.org/
https://talk.ictvonline.org/
www.wileyonlinelibrary.com
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& Nepusz, 2006) and “network” (Butts, 2008; Table 1), and plots 
were produced using the packages “igraph” and “ggplot2” (Gómez‐
Rubio, 2017) in r (R Development Core Team, 2011).

2.5 | Community detection

Communities were detected using the Maximization of Modularity 
method (Newman, 2016), which recognize nodes with dense and 
weak connections between groups. We used the function “cluster_
edge_betweenness” (Girvan, Girvan, Newman, & Newman, 2002; 
Newman & Girvan, 2003) in the “igraph” package (Csárdi & Nepusz, 
2006) to identify the nodes with dense connections with humans, 
which is based on the following equation:

where m denotes the total number of links in the network, Aij refers to 
the actual number of links between nodes i and node j, γ is a parameter 
calculated by the algorithm; K, degree of i; δgigj is a randomized number 
of links between a pair of nodes. Community detection facilitates the 
recognition of groups of hosts that share viruses and viruses that share 
hosts, and which therefore may continue to enter in contact with each 
other because they share similar characteristics.

2.6 | Subnetwork

A subnetwork was built by choosing communities with more than 
four host–virus pairs, which is above the minimum number accepted 
in statistical normality samples (n  =  3) (Hammer, Harper, & Ryan, 
2001; Royston, 1982). These subnetworks were illustrated to gain 
better community visualization and recognize the most relevant 
communities for the detection of potentially zoonotic viruses.

2.7 | Subcommunities

From the subnetwork, the most important communities were cho‐
sen using to the measures of the members (top five nodes) and the 
number of zoonotic viruses (80%) as selection criteria. Then, a socio‐
gram representing the preferential unions and the complex interac‐
tion on the largest communities was constructed using the package 
“visNetwork” (Almende, Thieurmel, & Robert, 2016) in r. This choice 
of subnetworks helps us to focus and observe in more detail the in‐
teractions within these important communities.

3  | RESULTS

3.1 | Database

The rodent database contained 825 records including 172 rodent 
species and 123 viruses, of which 53 are zoonotic viruses. The bat 
database contained 4,659 records, consisting of 220 bats species 
associated with 166 viruses, of which 40 viruses were classified as 
zoonotic. Both databases are detailed in Appendix S1.

3.2 | Rodentia network

3.2.1 | Overall network analyses

The bipartite Rodentia network contained 269 nodes (172 rodents, 
123 viruses, human node) and 323 links (Figure 2a). The diameter of 
the network was nine, and the density was 0.0044. Mus musculus 
was the host with the highest degree and betweenness values, at 
17 and 2,496, respectively. The top five nodes based on centrality 
values are shown in Table 2, and centrality values are in Appendix 
S2. 78.06% of the nodes had a degree value of 1 or 2, making them 
uninformative in terms of epidemiological information, though they 
may be involved in co‐evolutionary processes.

3.2.2 | Community detection

Thirty‐nine different communities were detected. Sixteen communi‐
ties included only two members, while the largest group consisted 
of 32 members. This particular group included humans, as shown in 
Appendix S2.

3.2.3 | Subnetwork

Ten communities with at least eight members were selected in the 
subnetwork (Figure 2b). We excluded communities 1 and 9 despite 
fulfilling the inclusion criteria because they are linear, with a single 
virus that influences the whole.

(1)Q(�)=
1

2m

∑

ij

(

Aij−�
kikj

2m

)

�gigj,

TA B L E  1  Formulas applied to calculate networks parameters

Measure Formula Reference

Degree centrality (D)
D=

n
∑

i=1

a(pi ,pk)
Freeman (1978)

Betweenness central‐
ity (B)

B=
n
∑

i

n
∑

<j

gij (pk )

gij

Freeman (1978)

Closeness central‐
ity (C)

C=
n−1

∑n

i=1
nd (pi ,pk )

Freeman (1978)

Density (ρ) �
2E

n(n−1)
Martínez‐López et 
al. (2009)

Diameter (Ø) maxik d(i, k) West Douglas 
(2001)

F I G U R E  2  Rodentia networks. (a) Whole Rodentia network. (b) Subnetwork, with 10 selected communities, renamed with a consecutive 
number. Lines were added to separate the communities. (c) Subcommunities selected to show the host–species interactions; (d) Sociogram to 
facilitate the visualization of the interactions [Colour figure can be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.2.4 | Subcommunities

Communities 3, 4 and 5 satisfied our selection criteria. Community 
3 included 23 hosts and 11 viruses. This community was considered 
a dense network because the number of links greatly exceeds the 
number of nodes (34 nodes and 55 links). In this community, only 
two viruses are non‐zoonotic: herpesvirus 1 and cytomegalovirus 
(CMV3). Figure 2c3 shows the gradient representing the number 
of viruses associated with each host within that community. It was 
noteworthy that Myodes glareolus is linked with the highest number 
of associated viruses (eight), and all of which are zoonotic. In the 
fourth community, 32 nodes and 33 links were observed. Within this 
subcommunity, 16 rodent species were recognized along with 16 
viruses, and of which, only one virus was not zoonotic, Gbagroube 
virus, proposed as Arenaviridae virus (Coulibaly‐N'Golo et al., 2011). 
Figure 2c4 highlights the proximity of Peromyscus maniculatus to the 
human node, indicating a large number of shared viruses. On the 
other hand, community 5 consisted of 20 nodes and 19 links, rep‐
resenting six rodent species and 14 viruses. Only two viruses in this 
community were zoonotic: lymphocytic choriomeningitis virus (LCV) 
and California encephalitis virus. In this subcommunity, most viruses 
linked only with M. musculus.

3.3 | Host–host Rodentia network

This network contained 147 nodes of rodent species with 502 links. 
The diameter of the network was 5, and the density was 0.0627 
(Figure 3a). The top five nodes in terms of degree, betweenness 
and closeness are shown in Table 2, and the remaining values are in 
Appendix S3. Thirty‐five different communities were detected, and 
the largest of which contained 43 members, followed by a group of 
21 members (Appendix S3).

3.4 | Virus–virus Rodentia network

In virus–virus network, there were 122 nodes and 1,661 links. The 
diameter and density were 4 and 0.3494, respectively (Figure 3b). 

The five viruses with the highest centrality values are all zoonoses 
(Table 3). Fifty‐three different communities were detected, the larg‐
est of which contained 52 members, and the second largest had only 
12 members. Centrality values and community detection are given 
in Appendix S3.

3.5 | Chiroptera network

3.5.1 | Overall networks analyses

A total of 387 nodes (220 bat species, 166 viruses, human node) and 
736 links were contained in the bipartite bat network. The network 
diameter was 10, and the density was 0.0049 (Figure 4a). Three 
zoonotic viruses had the highest degree and betweenness values; 
these were bat coronavirus, rabies lyssavirus and bat paramyxovi‐
rus (Table 4). 65.71% of the nodes had degrees of 1 or 2, so they 
do not provide much information to the network but they may be 
involved in co‐evolutionary processes. All centrality values are given 
in Appendix S2.

3.5.2 | Community detection

Twenty‐nine different communities were detected; four of those 
had only two members, and the largest community contained 38 
members (Appendix S2).

TA B L E  2  Rodent network. The top five nodes with the highest 
centrality values

Node

Centrality values

Degree Betweenness Closeness

Homo sapiens 53 18,475.0 6.4 × 10−5

Mus musculus 17 2,496.5 6.3 × 10−5

Andes virus 13 2003.5 6.3 × 10−5

Rattus norvegicus 13 1,362.6 6.3 × 10−5

Cowpox virus 11 1869.2 6.3 × 10−5

F I G U R E  3  Collapsed networks (a) 
host–host rodentia network; (b) virus–
virus rodentia network [Colour figure can 
be viewed at wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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3.5.3 | Subnetwork

Eleven communities contained eight or more members (Figure 4b). 
Communities 1, 3 and 4 were linear and possessed simple edges, 
with a virus that influenced the whole community. Community 7 was 
a homogeneous community with rich ecological interactions, but 
which was not highly related to zoonotic viruses. The last commu‐
nity was associated with humans had the highest number of zoonotic 
viruses involved (Figure 4c,d, details below).

3.5.4 | Subcommunities

A low number of zoonotic viruses were found in homogeneous bat 
network communities. We focused only on the community that 
included the human node. In Figure 4a, three red lines represent‐
ing the three highly connected viruses in the network followed 
by a homogeneous community and later in green the human node 
connections.

The community that included humans (Figure 4c,d) has 13 host 
nodes (including human) and 23 virus nodes with 45 links. Fruit 
bat parvovirus was the only non‐zoonotic virus in that community. 
Miniopterus, Mormopterus and Saccolaimus were the only bat gen‐
era that directly shared viruses with humans.

3.5.5 | Host–host Chiroptera network

The host–host Chiroptera network contained 221 nodes and 6,949 
links. The diameter and density of the network were 5 and 0.2911, 
respectively (Figure 5a). The five nodes with the highest centrality 
values are shown in Table 5, and detailed results are in Appendix S4. 
Sixty‐seven different communities were detected; the largest had 69 
members. The second largest community consisted of 56 members 
including humans (Appendix S4).

3.5.6 | Virus–virus Chiroptera network

The virus–virus network contained 164 nodes and 2,132 links. 
The diameter of the network was 4, and the density was 0.1655 
(Figure 5b). The three highest centrality viruses were coronaviruses 
(Bat coronavirus, alphacoronavirus and betacoronavirus), and all of 
which are zoonotic (Appendix S4). Ninety‐seven communities were 
detected, the largest of which contained 35 viruses, and all of the 
zoonotic (Appendix S4).

4  | DISCUSSION

Bats are well‐known as excellent reservoirs for zoonotic viruses that 
usually result in high public health impact (Gay et al., 2014; Luis et al., 
2013, 2015; Plowright et al., 2015). Nevertheless, in our database, 
53 of 123 (43%) rodent viruses are zoonotic, nearly twice the pro‐
portion of bat viruses, 40 of 166 (24%). Rodents should thus not be 
overlooked as potential hosts of zoonotic viruses. However, bats are 
more linked to more cosmopolitan viruses with broad distributions 
of their hosts.

In the bipartite network of bats, the main actors (top values of 
degree, betweenness and closeness) are all viruses, including bat 
coronavirus, rabies lyssavirus, bat paramyxovirus and astrovirus 
(Table 4). In the rodent bipartite network, in contrast, the main ac‐
tors are two host species (M.  musculus and Rattus norvegicus) and 
two viruses (Andes virus and Cowpox virus) (Table 2). Hence, the bat 
viruses have a higher degree of connectivity with a large number of 
bat hosts.

The ratio of nodes to edges in the bat–virus network was 1:1.9 
and in rodents was 1:1.2. In other words, each bat species on av‐
erage interacts with nearly two viruses and vice versa, while in ro‐
dents, on average there is a near one‐to‐one host–virus interaction, 
leading to the rodent network having more divisions. This is similar 

Network Node

Centrality values

Degree Betweenness Closeness

Host–host Homo sapiens 105 4,932.8 2.1 × 10−4

Rattus rattus 35 443.7 2.1 × 10−4

Rattus norvegicus 30 293.6 2.1 × 10−4

Myodes glareolus 26 111.8 2.1 × 10−4

Apodemus sylvaticus 21 75.3 2.1 × 10−4

Virus–virus Venezuelan equine encepha‐
litis Virus

76 516.6 3.0 × 10−4

Encephalomyocarditis virus 70 181.2 3.0 × 10−4

Severe Fever With thrombo‐
cytopenia syndrome

69 203.1 3.0 × 10−4

Eastern equine encephalitis 
virus

68 202.8 3.0 × 10−4

Lymphocytic choriomeningitis 
virus

65 171.5 3.0 × 10−4

TA B L E  3  Rodent collapsed network. 
Top five nodes with the highest centrality 
values
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to results found by Luis et al. (2015) when building viral association 
networks in Rodentia and Chiroptera, who then used the central‐
ity metrics as a response variable in a generalized linear model to 
determine the phylogenetic, functional and ecological character‐
istics that are responsible for this high connectivity in bats. This 
pattern of higher host diversity among bat viruses than rodent vi‐
ruses has been observed in viral metacommunities using analyses 
at different spatial scales (Nieto‐Rabiela, Suzán, Wiratsudakul, & 
Rico‐Chávez, 2018), and it has been suggested that this is due to 
their higher dispersal ability compared with rodents (Wang, Walker, 
& Poon, 2011). However, since studies on viruses detected in others 
mammals have not yet been carried out at a similarly large scale, it is 
not clear whether bats' level of host–virus connectivity is atypically 
high among mammals; we can only conclude that it is higher than in 
rodents.

In collapsed host–host networks in both bats and rodents, the 
human node is closely linked with the species that host zoonotic 
viruses. The largest community including the human node is sur‐
rounded by three to four smaller groups in both networks. We can 

F I G U R E  4  Chiroptera networks 
(a) Chiroptera host–virus network, (b) 
Subnetwork, with 11 communities 
selected. Lines were added to separate 
the different communities to observe 
their composition and detect the relevant 
communities; (c) Human subcommunity 
selected to show the host–species 
interactions; (d) Sociogram to facilitate the 
visualization of the interactions [Colour 
figure can be viewed at wileyonlinelibrary.
com]

TA B L E  4  Top five nodes of Chiroptera network with the highest 
centrality network

Node

Centrality values

Degree Betweenness Closeness

Bat coronavirus 80 26,930.5 2.8 × 10−4

Rabies 56 15,539.7 2.6 × 10−4

Bat paramyxovirus 55 13,920.7 2.7 × 10−4

Homo sapiens 39 13,233.5 2.7 × 10−4

Astrovirus 31 4,857.4 2.6 × 10−4

www.wileyonlinelibrary.com
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highlight that in the largest community where the human is embed‐
ded, the bats and rodent hosts have a high adaptability, wide dis‐
tribution and low phylogenetic distinction. Also, the closest hosts 
to the human node are the main reservoirs of viral diseases with 
worldwide distribution like hantaviridae viruses, rabies‐related virus 
and dengue virus (Tables 3 and 5). However, the clusters in the bat 
network are four times denser compared with rodents; this makes 
it easier to continue sharing the viruses. In addition, they can act 
as virus mixers, allowing the viruses to acquire characteristics that 
allow them to infect other host species, including humans. In addi‐
tion, the human node is more closely connected to bats. It shows 
that viruses are shared to a greater degree among bats as discussed 
earlier (Figures 3a and 5a). One plausible explanation is that many 
species of bats live in high‐density populations, with many individu‐
als in close proximity to each other, such as in caves and roosts sites. 
Indeed, there are always a larger number of bat species than rodent 
species in a given area (Kerth, Perony, & Schweitzer, 2011).

The difference in connectivity between the bat and rodent host–
virus networks has implications for the zoonotic potential of each 
taxon. High connectivity facilitates viral transmission within and be‐
tween species, and so, bats are expected to have higher zoonotic po‐
tential than rodents. For example, the nectarivorous bat Glossophaga 

soricina had the highest closeness value in the host–host network 
despite the fact that only three viruses have been isolated in this spe‐
cies: bat coronavirus, bat paramyxovirus and rabies lyssavirus. This is 
because these three viruses have a high viral diversity and when the 
network is collapsed G. soricina connects directly with 155 hosts; it 
is the central node, even more central than humans. This suggests 
that this species is prone to harbour several viruses. However, we 
most considered the biological characteristic of the host that could 
prevent an efficient transmission to the human. In both the bat and 
rodent virus–virus networks, there are some large groups that in‐
clude all of the zoonotic viruses. The grouping of zoonotic viruses 
suggests a high capacity for mutation and adaptability to different 
hosts. For that reason, the viruses are shared among different hosts 
and thus intricate communities are presented (Woolhouse, 2001). In 
bats, these clusters are disordered and close together resulting in a 
broad viral exchange among bats. In contrast, a closer relationship 
was observed in rodent viral–viral network indicating smaller groups 
around zoonotic viruses. It is difficult though to compare our virus–
virus network with other works, since most studies focus on hosts. 
Moreover, we faced a lack of knowledge on the organization of the 
viral communities, assembly rules, co‐occurrences or even cross‐an‐
tigenicity. These issues directly affect our network architectures. 

F I G U R E  5  Collapsed networks (a) 
host–host rodentia network; (b) virus–
virus rodentia network [Colour figure can 
be viewed at wileyonlinelibrary.com]

Network Node

Centrality values

Degree Betweenness Closeness

Host–host Homo sapiens 181 1556.6 8.2 × 10−4

Myotis daubentonii 174 767.5 8.2 × 10−4

Glossophaga soricina 155 610.8 8.3 × 10−4

Rhinolophus 
ferrumequinum

146 484.6 8.0 × 10−4

Desmodus rotundus 138 873.4 8. 2 × 10−4

Virus–virus Bat coronavirus 138 2,402.0 1.3 × 10−3

Bat paramyxovirus 110 917.9 1.2 × 10−3

European bat lyssavirus 90 376.8 1.2 × 10−3

Betacoronavirus 85 581.9 1.2 × 10−3

Alphacoronavirus 77 358.7 1.2 × 10−3

TA B L E  5  Collapsed Chiroptera 
network. Top five nodes with the highest 
centrality values

www.wileyonlinelibrary.com


664  |     NIETO‐RABIELA et al.

For that reason, deeper comprehension is required to unravel this 
entanglement.

One of the objectives covered in this work was to recognize 
non‐zoonotic viruses that may be strongly connected with humans 
and therefore have zoonotic potential. The bat–virus community 
that contained humans was composed of bats distributed in Africa 
and Australia may be explained by high rates of human‐bat contact 
(Allocati et al., 2016; Rupprecht, 2009).

One non‐zoonotic virus that was included in the bat–virus com‐
munity that included humans is fruit bat parvovirus. The parvoviri‐
dae family were transmitted from bats to other mammals by a viral 
ancestor suggesting their zoonotic capacity, and groups of genes in 
their genome denote this potential (Canuti et al., 2011). Even though 
the virus currently infects only bats (Canuti et al., 2011), it is firmly 
connected with the human node in our network by Pteropus polio‐
cephalus, a species endemic to Eastern Australia (Lunney, Richards, 
& Dickman, 2008). Future studies are recommended to elucidate its 
potential for zoonosis.

Andes viruses (rodents), cowpox (rodents) and rabies lyssavi‐
rus (bats) were defined as main actors (high values of degree, be‐
tweenness and closeness) in the bipartite networks. However, 
their importance disappeared when the network was collapsed to 
virus–virus interactions, likely because their geographical restric‐
tion may limit their viral connectivity. Andes virus is only distrib‐
uted in South America (Martinez et al., 2005), cowpox in Europe 
(Vorou, Papavassiliou, & Pierroutsakos, 2008) and rabies lyssavirus 
in America (Moratelli & Calisher, 2015). Therefore, these viruses 
were less important in the virus–virus networks compared with the 
worldwide distributed ones, so subsequent at geographical scales 
are important.

Coronaviruses in bats stood out throughout our study in both 
bipartite and collapsed networks in terms of connectivity, with high 
values of degree, betweenness and closeness. In this case, the three 
most prominent coronaviruses are bat coronavirus, alphacoronavi‐
rus and betacoronavirus. Also, each virus is a protagonist in their 
own community. These are RNA viruses with high mutation rates, 
and the viruses possess great plasticity allowing them to horizontally 
transfer accessory genes which facilitate new host and niche estab‐
lishment (de Groot et al., 2011; Guy et al., 2019).

In the rodent community selected, community 3 has members 
with predominantly European distribution. Further, two non‐zoo‐
notic viruses are included among the nine zoonotic viruses, but we 
do not think they are likely to have zoonotic potential because they 
do not have direct contact with the human node. Therefore, in this 
community we do not find viruses with zoonotic potential.

In the rodent community 5, M. musculus has high values of con‐
nectivity but in the sociogram (Figure 2d), it is evident that the 
connectivity is with non‐zoonotic viruses. This host species thus is 
likely less important in public health terms, but highly relevant for 
disease ecology. In addition, two zoonotic viruses are included in the 
community 5, and while they can transfer their zoonotic potential 
to other non‐zoonotic viruses using M. musculus as a virus mixer, we 
consider this unlikely because the proportion of zoonotic viruses is 

low, adding the specificity of rodents' viruses and the associative 
characteristics founding in the rodents. Thus, the one‐to‐one virus–
host species relationship suggested by the node‐to‐edge ratio sug‐
gests that spillover is unlikely, though not impossible.

In the human–rodent community, Gbagroube virus is noteworthy 
because it is the only non‐zoonotic virus found in the community. 
However, the genetics of Gbagroube virus is similar to Lassa virus 
which is deadly in humans (Coulibaly‐N'Golo et al., 2011). Gbagroube 
virus could potentially adapt to infect humans because it is geneti‐
cally similar to Lassa virus (Coulibaly‐N'Golo et al., 2011) and has 
strong connections with other zoonotic viruses and with humans. 
Gbagroube virus should be closely monitored along with its host, 
Mus setulosus, found in Central Africa (Granjon, 2016).

In our study, the human is the most relevant and largest node 
connected in both groups. The relevance of the human in the net‐
work is explained by several factors. First, humans' enormous 
population and globalization push human populations to nearly ev‐
erywhere on earth and greatly increases the probability of contact 
with innumerable organisms, resulting in the emergence of zoo‐
notic diseases (Kock, 2014). Secondly, because zoonotic diseases 
have clear social implications, once detected in one species, they 
are much more likely to be tested for, and thus detected, in others 
(Oliver‐Morales & Abarca García, 2016). It is therefore possible that 
the high apparent importance of humans in the networks is more 
due to the over‐representation of zoonotic viruses in the literature 
than to humans actually being particularly highly.

In the database, we do not have Ebola virus reports because 
in the database the DBATVIR database did not identify the host 
species from which the virus was isolated. Similarly, we found that 
78.06% of rodent nodes and 65.71% of bats nodes were poorly con‐
nected (1–2 degree). Surely, bats have associations that we do not 
recognize. In addition, there are associations that could occur but do 
not, but these cannot be identified because cases in which viruses 
were tested for and not detected are not often reported. We there‐
fore think it is important to report negative samples and the number 
of animals tested in meticulous reports.

A future study may complement and compare our study with 
models where the influence of humans is omitted. We must take into 
account that the human node influences the network structure, and 
the ecological relationships must be analysed without this influence. 
Surely, laxer networks will be observed when the connective force 
of humans is removed. However, our study does need to include 
both to identify potentially zoonotic viruses.

It is pertinent that, in future investigations, different character‐
istics of the viruses must be considered simultaneously and not only 
by their connectivity in the network such as gene sequence, type 
of transmission and virulence. In the present study, we focus only 
on viral host capability, not on the symbionts and their associative 
nature. Spatial analysis may help to further explain how our findings 
apply among different regions of the world.

Graph theory, beyond allowing the visualization of complex in‐
teractions, allows the quantification of many aspects of connectivity 
and structure.
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Rodents should be taken into account as important reservoirs 
for zoonotic viruses, since in our database, a greater proportion of 
the total viruses reported were zoonotic viruses in rodents than in 
bats. Fruit bat parvovirus in bats and Gbagroube virus in rodents 
should be monitored to elucidate their zoonotic potential. In the 
present study, we only assessed their network proximity to humans 
and other zoonotic viruses, and molecular genetic approaches may 
help to confirm our results. Counting the number of zoonotic sym‐
bionts associated with each order is not a conclusive estimate of 
their zoonotic potential. Our findings reveal that viruses were more 
frequently shared among bats than rodents. For that reason, bats 
have more zoonotic potential that the rodents. However, potential 
emerging zoonotic diseases may arise from both taxonomic groups.
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