
The trafficking of natural killer cells

Summary: Natural killer (NK) cells are large granular lymphocytes of the
innate immune system that participate in the early control of microbial
infections and cancer. NK cells can induce the death of autologous cells
undergoing various forms of stress, recognizing and providing non-
microbial ‘danger’ signals to the immune system. NK cells are widely
distributed in lymphoid and non-lymphoid organs. NK cell precursors
originate from the bone marrow and go through a complex maturation
process that leads to the acquisition of their effector functions, to changes
in their expression of integrins and chemotactic receptors, and to their
redistribution from the bone marrow and lymph nodes to blood, spleen,
liver, and lung. Here, we describe the tissue localization of NK cells, using
NKp46 as an NK cell marker, and review the current knowledge on the
mechanisms that govern their trafficking in humans and in mice.
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Introduction

Natural killer (NK) cells are lymphocytes of the innate immune

system that can induce the death of allogeneic cells and

autologous cells undergoing various forms of stress, such as

upon microbial infection and malignant transformation (1, 2).

NK cells express an array of activating and inhibitory receptors,

whose engagement allows them to discriminate between target

and non-target cells (3–5). The repertoire of NK cell

receptors complements that of other innate sensors, such as

scavanger receptors, Toll-like receptors (TLRs) or nucleotide

oligomerization domain (NOD) proteins. The strategies of NK

cell recognition thus broaden the detection of pathogenic

situations where microbial ‘danger signals’ are missing in vivo,

such as in the case of poorly immunogenic tumors.

Consistent with their role in immune surveillance, NK cells

are widely distributed in the body. It is unclear, however,

whether this wide distribution is due to their recirculation,

due to the existence of NK subsets with different homing

capacities, or due to their development at multiples sites.

NK cells can also be recruited in various tissues

upon inflammation. However, in contrast to B and T cells,

the mechanisms governing NK cell trafficking remain

poorly dissected.
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NK cellwide tissue distribution

It has been long appreciated that NK cells are widely distributed

in mammals (6). However, few studies have precisely addressed

this distribution. An early study in rat showed that the frequency

of large granular lymphocytes (LGLs), including NK and T-cell

subsets, was high in the lung and peripheral blood, superior

to that in the spleen, peritoneal exudates, and lymph nodes.

LGLs were also found to be absent in the thymus and bone

marrow (7). Subsequent studies in the mouse have shown the

presence of NK cells, defined as NK1.11CD3� or DX51CD3� by

flow cytometry, in various organs but never focused on their

distribution (8). We revisited this question and measured the

percentage and number of mouse NK cells in various organs. Our

results confirmed the wide distribution of NK cells in lymphoid

and non-lymphoid organs (Fig. 1). The frequency of NK cells in

lymphocytes was found to be the highest in non-lymphoid

organs such as the lung and liver. A similar phenomenon has

also been observed for effector memory CD81 T cells (9),

suggesting similar mechanisms of trafficking for these two cell

types and the existence of a niche for interleukin-15 (IL-15)-

dependent lymphocytes in non-lymphoid organs. The order for

NK cell frequency is lung4 liver4 peripheral blood mono-

nuclear cells (PBMCs)4 spleen4 bone marrow (BM)4 lymph

node (LN)4 thymus, where NK cells are almost undetectable.

For comparison, NK1.11 T cells predominate in the liver, while

T cells prevail in blood and LN (Fig. 1). Human NK cells also

appear to be frequent in non-lymphoid organs (10, 11).

The largest number of mouse NK cells, 2–3 million, can be

found in the spleen. Significant reservoirs of NK cells may also

be found in all other organs tested excluding the thymus

(Fig. 1). In humans, it was found that lymph node NK cells

outnumber blood NK cells by 10:1 (12), whereas an estimated

1:1 ratio was observed in the mouse. The reason for this

discrepancy could be linked to the expression of CCR7 on a

subset of human but not on mouse NK cells, as discussed later.

The presence of NK cells in epithelial tissues has been poorly

investigated. NK cell numbers are massively increased in the

uterus during pregnancy both in humans and mice (13). In

humans, CD3–CD561 NK cells have been detected in the skin

of healthy donors (14) and in the lymph draining this tissue

(15). An infiltration of NK cells has been reported in lesional

atopic dermatitis skin, in both epidermis and dermis, after

Malassezia exposure (16), and in the inflammatory skin during
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Fig. 1. Tissue distribution of natural killer (NK), NK1.11 T, and T cells. Lymphocyte populations were isolated from the indicated organs of 6-
week-old C57BL/6 female mice, as previously described (33). (A) The percentage of NK1.11CD3� (NK cells), NK1.11CD31 (NK1.11 T cells), and
NK1.1�CD31 (mature T cells) cells was measured by flow cytometry. (B) Cell numbers of the indicated subsets were obtained by multiplying the respective
frequency of each subset by the total number of lymphocytes in the organ. For blood and lymph nodes, we used an estimate number of 10 million cells in
peripheral blood mononuclear cells and 100 million cells in LNs. Results show the mean� standard deviation (SD) of six mice for each organ.
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the elicitation phase of contact hypersensitivity in a mouse

model of allergic contact dermatitis (17). Furthermore, several

groups have reported an accumulation of cells expressing an

NK cell phenotype in skin psoriatic lesions (18–20). However,

further investigations are required to clearly determine

whether infiltrating cells are ‘true’ NK cells or rather NK-like

T cells. In a normal human intestine, CD3� intraepithelial

leukocytes expressing NK cell markers such as CD122, CD161,

CD2, CD94, CD56, or CD16 have been described (21–24).

Finally, CD3�NK1.11 cells have been recently identified in cell

suspensions prepared from mouse vaginal tissue (25).

Moreover, IL-15� /� and/or RAG2� /�gc
� /� mice are more

sensitive to genital herpes simplex virus 2 (HSV-2) infection,

suggesting a potential implication of NK cells in the control of

infection spreading in mucosal tissues (26, 27).

NK cells in sinuses

In situ visualization of NK cells has been hampered by the lack of

specific reagents. Previous attempts to identify NK cells in situ

were based on adoptive transfers of fluorescently labeled cells

or staining with anti-NK1.1, anti-Ly49G2, or anti-CD49b

(28–32). However, none of the aforementioned antibodies

are NK cell specific (NK1.1, CD49b) or expressed on all NK

cells (Ly49G2, CD49b). We recently described that the cell

surface expression of the activating NK cell receptor NKp46

(CD336) defines at best NK cells across mammalian species,

providing the opportunity to look at NK cells in situ on tissue

sections using anti-NKp46 antibodies (33).

In the spleen, NK cells are mostly found in the red pulp at a

steady state, thus excluded from the T and B lymphocyte-rich

area (defined by CD3 and CD19 staining) (Fig. 2A).

Staining for metallophilic macrophages [sialoadhesin (Sn)]

(Fig. 2B) and marginal zone macrophages (SignR1) (Fig. 2C)

reveals that a few NK cells are also present in the marginal zone

but do not go beyond this zone toward the white pulp.

Antibodies to NKp46 and CD31 [platelet-endothelial cell

adhesion molecule-1 (PECAM-1), an endothelial marker] stain

the same regions, suggesting that most splenic NK cells are in fact

located inside blood sinuses (Fig. 2D). Occasional NKp461 cells

are found in the white pulp, but staining for CD31 suggests that

many of them are in fact located within sinuses or vessels (Fig. 2D).

Many other cell types can be found in the vicinity of the ‘NK cell

zone’. In particular, most CD11bhigh cells (including

macrophages) (Fig. 2E) are found in the red pulp and the

marginal zone, whereas many CD11chigh cells (including

dendritic cells) (Fig. 2F) are found not only in the white pulp but

also in the marginal zone and the red pulp. Cell–cell contacts

between NK cells and macrophages (either of the red pulp or of

the marginal zone) can be seen on these static images. These

observations support the existence of interactions between NK

cells and macrophages, as well as NK cells and dendritic cells. Such

interactions have been extensively documented in vitro (34–37)

and lead to the mutual regulation of these different cell types in

the orchestration of immune responses.

At a steady state, NK cells are also found in the peripheral LN,

mostly excluded from T- and B-cell zones (33, authors’

unpublished data), consistent with previous studies (29). NK

cells are found in perifollicular regions, in the paracortex, and

especially in the medulla zone within lymphatic sinuses (29). In

the perifollicular region, NK cells are found again in sinuses

surrounding the follicles and especially between these follicles,

at the site where presumably dendritic cells migrating from

tissues arrive to the draining LN through an afferent lymph (29).

Within secondary lymphoid organs, the three types of

lymphocytes (T, B, and NK cells) thus localize in distinct

compartments. NK cells are preferentially found inside vessels

or sinuses, either blood or lymphatics. The same conclusion

could also be reached for the liver, as it is known that most

hepatic lymphocytes are present in the sinusoids (38) and are

absent from the parenchymal space.

NK cell development and maturation

Compelling evidence points to the BM as the primary site of NK

cell development in adults at a steady state (6). Moreover,

recent articles suggested that LN and thymus could be

alternative sources of NK cells (39, 40). The relative

contribution of these organs to the pool of NK cells is not

known but is expected to be low at a steady state. Indeed, this

extramedullary ‘NK-poiesis’ appears to produce phenotypically

distinct NK cells, expressing the a chain of the IL-7 receptor

(40). Such NK cells make up o 5% of the total NK cells.

Moreover, a careful examination of thymic NK cells reveals that

many of them express CD3 intracellularly and share phenotypic

and functional features with NK1.11 T cells, suggesting that

they are in fact NK-like T cells (41). However, in mice where T-

cell development is blocked by genetic means, a very high

number of NK cells develop in the thymus, showing the ability

of T-cell precursors to develop into NK cells under particular

conditions (40). Furthermore, the normal liver contains a

substantial number of immature NK cells, suggesting that NK

cell precursors originating in the BM could seed the periphery

and develop in situ (42). Thus, it is possible that extramedullary

NK cell development may take place under lymphopenic or

other conditions that remain to be dissected.
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Upon commitment to the NK cell lineage, NK cells go

through a complex maturation process that leads to the

gradual acquisition of effector functions. Three stages of NK

cell maturation can be defined in the mouse based on the

expression of CD11b and CD27: CD27highCD11bdull (abbre-

viated as CD11bdull, the most immature), double-positive

NKp46  CD3 CD19 NKp46 CD3 Sn

NKp46 CD3 SIGN-R1 NKp46 CD3 CD31

NKp46 CD3 CD11b NKp46 CD3 CD11c

A B

C D

E F

Fig. 2. Localization of natural killer (NK) cells in the spleen. Frozen sections of spleen were fixed with acetone and stained with fluorescently
coupled antibodies or biotinylated antibodies revealed with fluorochrome-coupled streptavidin. Anti-CD3 (145-2C11), anti-CD19 (1D3), anti-CD31
(MEC13-3), anti-CD11b (M1/70), and anti-CD11c (HL3) monoclonal antibodies were from BD Pharmingen (San Diego, CA, USA). Anti-sialoadhesin
(MOMA-1 for metallophilic macrophages) and anti-Sign-R1 (ER-TR9 for marginal zone macrophages) monoclonal antibodies were obtained from
AbD Serotec (Raleigh, NC, USA) and BMA Biomedicals (Augst, Switzerland), respectively. Polyclonal goat anti-NKp46 (R&D Systems, Minneapolis,
MN, USA) was revealed with donkey-anti-goat antibody (Invitrogen, Carlsbad, CA, USA), Sections were visualized by confocal microscopy (Zeiss LSM
510 META, Iena, Germany). Panels A–F show representative images for the indicated staining.
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CD11bhighCD27high (abbreviated as DP), and CD11bhigh

CD27dull (abbreviated as CD27dull, the most mature) (43–45).

DP and CD27dull NK cells display stronger effector functions

than CD11bdull NK cells (113). The repartition of the three NK

cell subsets varies with the tissue distribution. Whereas CD11bdull

NK cells predominate in BM and LN, DP and especially CD27dull

NK cells prevail in the blood, liver, spleen, and lung (44). As

discussed later, the expression of different chemotactic receptors

participates in the distinct homing capabilities of the NK cell

subsets. In human, two subsets of NK cells have been described,

CD56dim and CD56bright NK cells, that share many characteristics

with CD11bdull and DP/CD27dull NK cells, respectively (45). This

resemblance and other observations (12, 46) suggest that

CD56bright could be precursors of CD56dim NK cells. Like their

mouse counterparts, human CD56bright NK cells are

preferentially found in the LN, whereas CD56dim cells are more

abundant in the blood and spleen (12).

It is still unknown how and where NK cells complete their

maturation. As the three NK cell subsets are found in all organs,

it is likely that NK cell precursors or immature NK cells

(CD11bdull stage) are seeded from the BM to the periphery,

where they further develop in situ under the influence of micro-

environmental factors.

NK cell recirculation

Few data are available on the recirculation of NK cells between

organs. Do NK cells traffic through peripheral organs? Do they

exit lymphoid and non-lymphoid organs, or do they reside in

tissues? An early study (47) showed that upon intravenous

transfer into recipient rats, radiolabeled LGLs preferentially

homed into the alveolar walls of the lung and the red pulp of

the spleen. LGLs were found, however, to be absent from the

thoracic duct and LN (47). Later, adoptive transfer experiments

in mouse showed that splenic NK cells can home to the spleen,

liver, and BM of recipient mice (48–50). To gain an insight into

NK cell trafficking, we performed an intravenous adoptive

transfer of carboxyfluorescein succinimidyl ester (CFSE)-

labeled splenocytes into syngeneic, non-irradiated recipient

mice. Twenty-four hours post-transfer, the percentage of NK

cells within lymphocytes was measured in the blood, spleen,

LN, BM, lung, and liver. The results showed that the distribution

of transferred NK cells paralleled that of recipient NK cells (Fig.

3), as did the distribution of NK1.11 T cells. Moreover, the

relative proportion of NK cell subsets (CD11bdull to CD27dull)

was similar between recipient and donor NK cells in every

organ (data not shown). This simple experiment shows that (i)

splenic NK cells are not programmed to home to the spleen but

instead recirculate through all NK cell-containing organs and

(ii) NK cell recirculation appears to be subset-specific: LN and

BM are preferentially repopulated by CD11bdull NK cells and the

blood, spleen and lung by CD27dull NK cells.

The relative contribution of the factors that regulate tissue

homing and egress, such as chemotactic receptors or

homeostatic mechanisms, in the distribution of NK cells,

remains to be addressed. Nevertheless, multiple approaches
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Fig. 3. Recirculation of natural killer (NK) cells. C57BL/6 spleen cells were labeled with 3mM 5-(and 6-)-carboxyfluorescein succinimidyl ester
(CFSE) and injected retro-orbitally to C57BL/6 recipient mice. One day after transfer, lymphocyte populations were isolated from the indicated organs.
The percentage of NK1.11CD3� (NK cells) and NK1.11CD31 (NK1.11 T cells) in gated CFSE1 (transferred) and CFSE� (recipient) cells was
measured by flow cytometry. Results are the mean of six transferred mice in two independent experiments.
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have been used to address the expression of chemotactic

receptors in NK cells. First, several studies have measured the

expression of chemotactic receptors on NK cells by flow

cytometry, when antibodies were available (51–57). Second,

several strains of mice were created in which a green

fluorescent protein cDNA was knocked in to genes encoding

chemokine receptors (58, 59). Using such mice, we found that

CXCR6 is only expressed by a fraction of CD11bdull NK cells,

whereas CX3CR1 is acquired with maturation, almost

selectively expressed by CD27dull NK cells (Fig. 4).

Third, microarray experiments have been performed to

measure gene expression at the pan-genomic level in human

(60, 61) and mouse NK cell subsets (Table 1). The findings

obtained with these different approaches reveal several

trends (Fig. 5).

First, a strong similarity in the expression pattern of

chemokine receptors on human and mouse NK cell subsets

emphasizes the homology between mouse CD11bdull NK cells

and CD56bright NK cells, on the one hand, and mouse DP/

CD27dull and human CD56dim NK cells on the other. There are,

however, important differences. In particular, CCR7 is

expressed by human CD56bright NK cells, but no Ccr7

transcripts are detected in mouse CD11bdull NK cells. This

difference might account for the distinct representation of NK

cells in LN in humans (5% of lymphocytes) and in mice (0.5%

of lymphocytes). Second, NK cells are poised to be rapidly

recruited on sites of inflammation, as they express receptors for

a broad range of inflammatory chemokines (CCR2, CCR5,

CXCR6-GFP CX3CR1-GFP

27 6

134

2 58

CD11b−

CD27−
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CD11b

C
D

27

Fig. 4. Expression of CXCR6 and CX3CR1 by mouse natural killer (NK) cell subsets. Spleen cells from CXCR6gfp/gfp and CX3CR1gfp/gfp knockin
mice were stained for CD3, NK1.1, CD11b, and CD27 and analyzed by flow cytometry. Left panel shows the representative expression of CD11b and
CD27 in gated NK1.11CD3� NK cells. NK cell subsets were gated as indicated and CXCR6-GFP or CX3CR1-GFP was measured. Results shown are
representative of three mice in each group.

Table 1. Relative levels of selectin and integrin transcripts in mouse
natural killer (NK) cell subsets

other name CD11b� DP CD27�

Integrin subunits
Itga1 CD49a 111 111 111
Itga2 CD49b (DX5) 11 111 111
Itga3 CD49c 111 111 111
Itga4 CD49d 11 111 111
Itga5 CD49e 111 111 111
Itga6 CD49f 11 11 111
Itga7 111 111 111
Itgae CD103 11 11 111
Itgal CD11a 111 111 111

Itgam CD11b 1 11 111
Itgav CD51 111 11 11
Itgax CD11c 111 111 11
Itgb1 VLA-4 b 11 111 111
Itgb2 CD18 11 11 111

Itgb3 CD61 111 11 1
Itgb5 111 111 11
Itgb7 11 11 111

Selectins
L-selectin CD62L 111 111 111
P-selectin ligand PSGL1 111 111 111

Spleen cells from C57BL/6 mice were stained for NK1.1, CD3, CD27 and
CD11b expression. NK cell subsets were sorted by flow cytometry, and
total RNA was extracted using Qiagen RNAmicro kit (Valencia, CA, USA).
The quality of total RNA was assessed using an Agilent Bioanalyzer (Santa
Clara, CA, USA). Biotinylated antisense cRNA was prepared by using two
cycles of in vitro amplification according to the Affymetrix Small Sample
Labeling Protocol II (Affymetrix, Santa Clara, CA, USA). Biotinylated cRNA
(15mg) was fragmented and hybridized to Affymetrix GeneChip Mouse
Genome 430 2.0 arrays. All data analyses were performed by using
Bioconductor version 1.5 for the statistical software R. Expression values
were background corrected, normalized, and summarized by using the
default settings of the gcrma package. Accession numbers: The complete
microarray data set is available on the CIML website (Vivier lab: http://
www.ciml.univ-mrs.fr/Lab/Vivier/Resource.htm). Changes in the level of
expression between subsets are highlighted in bold.
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CXCR3, CX3CR1). Third, the expression of chemotactic

receptors switches over maturation in NK cells. In particular,

CD27dull/CD56dim NK cells lose CXCR3 (and also CXCR4

in mouse) but acquire CX3CR1 (and also ChemR23 in

human) expression, an array of receptors that are anticipated

to influence their recirculation and their recruitment

upon inflammation.

NK cell trafficking at a steady state

How do NK cells leave the bone marrow?

A role for CXCR4 in human NK cell homing to the BM of

reconstituted NOD (nonobese diabetic)/SCID (severe

combined immunodeficient) mice was reported (62),

suggesting that loss of CXCR4 could contribute to the export

of newly produced NK cells. However, CXCR4 seems to be

uniformly expressed by NK cells from all organs. Moreover, a

recent study showed that mouse treatment with a selective

inhibitor of CXCR4 did not induce NK cell mobilization from

the BM (63). Another study showed that NK cells were virtually

absent from the periphery of CXCR3 knockout mice (64).

However, three other studies did not report any defect in the

distribution of NK cells in these mice (65–67), questioning the

role of CXCR3 in the emigration of NK cells from BM. More

recently, we found that NK cell maturation correlated with the

acquisition of S1P5, one of the five sphingosine-phosphate

(S1P) G-protein-coupled receptors (113). S1P is a secreted

lysophospholipid bound extensively to albumin and other

plasma proteins. Coordinated activities of biosynthetic

(sphingosine kinases) and biodegradative (sphingosine lyase

and phosphatases) enzymes maintain S1P gradients in vivo, with

high S1P concentrations in extracellular fluids and low S1P

concentrations in tissues (68, 69). In S1p5-deficient mice, a

drastic decrease in peripheral NK cell counts is observed in the

blood, spleen, and lung. This defective homing is NK cell-

intrinsic and correlates with an increased number of NK cells in

the BM and LN. S1P5 operates in NK cells as a chemotactic

receptor for S1P in vitro, promoting NK cell homing in the

blood, spleen, and lung in vivo. The extent of NK cell

accumulation in BM and LN correlates with the level of S1P5

expression (113). Altogether, these observations suggest that

S1P5 provides an egress signal to NK cells, allowing both their

export from the BM and their exit from LN (Fig. 6). Interestingly,

Id2� /� E2a� /� mice have normal BM NK cells but very few

mature NK cells in the spleen (70), prompting an investigation
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Fig. 5. Expression of chemotactic receptors by natural killer (NK) cells. The pattern of expression of chemotactic receptors displayed by human
(top) and mouse (bottom) NK cell subsets is based on the reported expression at the protein level by flow cytometry or at the mRNA level using microarray
experiments (see references in text). Chemokine aliases: CCL19: ELC, CCL21: SLC, CCL3: MIP1-a, CCL4: MIP1-b, CCL5: RANTES, CCL2: MCP1, CCL8:
MCP2, CCL7: MCP3, CCL13: MCP4, CXCL12: SDF1, CXCL9: MIG, CXCL10: IP10, CXCL11: I-TAC, CXCL8: IL-8, CXCL6: GCP-2, CX3CL1: fractalkine.
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of whether these transcription factors control S1P5 expression

and/or function.

How do NK cells reach lymphoid organs?

Like other lymphocytes, NK cells enter LNs through high

endothelial venules (HEVs) and the spleen through the

marginal sinus. CD56bright human NK cells express L-selectin

(CD62L) that allows interaction with glycosylated L-selectin

ligands on HEVs (71). CD62L is expressed at a similar level on

mouse NK cell subsets isolated from the LN (44) and is

required for mouse NK cell entry in LNs (72) (Fig. 6).

Whether CD62L is sufficient for the entry is not known. As

discussed previously, most mouse NK cells localize in the

sinusoids around T and B-cell areas, a location reminiscent of

that in spleen where NK cells are found in the red pulp

surrounding the white pulp. One possibility is that this area is

reached by default, in the absence of CCR7 expression.

Consistent with this model, human LN CD56 bright NK cells

that do express CCR7 are localized, at least in part, in the T-cell

cortex (73). Recently, it was shown that CCR7 is induced on

CD56dim cells by IL-18 in vitro (74), suggesting that under

certain conditions, these cells could also traffic to LN.

Transfer experiments have shown that peripheral NK cells

may also return to the BM. Central memory T cells

preferentially home in this tissue by a mechanism that

depends both on CXCL12 (CXCR4 ligand) and on E/P/L

selectins (75). Whether this is also the case for NK cells

requires further investigation.

How do NK cells reach non-lymphoid organs?

The distribution of NK cell subsets in the blood, spleen, liver,

and lung is very similar, with a majority of CD27dull NK cells.

S1P5 deficiency affects NK cells from these compartments in

the same way (113). This finding suggests, after their

S1P5-dependent export to the periphery, that NK cells are

carried by the blood flow in a S1P5-independent manner

(Fig. 6). A fraction of CD11bdull NK cells expressing CXCR6

is enriched in the liver. Similar to what was shown for NKT

cells, these CXCR6 NK cells could patrol hepatic sinusoids

through the interaction of CXCR6 with endothelium-bound

CXCL16 (58).

NK cell trafficking under inflammatory conditions

Upon inflammation, NK mouse cells may be recruited in

various organs such as the LN, lung, liver, or central nervous

system (CNS), and can then extravasate in the parenchyma or

cavities (6). The migration of leukocytes from the vascular

lumen to tissues depends on a series of sequential molecular

interactions between leukocytes and endothelial cells,

involving selectins, integrins, and chemokine receptors.

Selectins

In the mouse, L-selectin and P-selectin glycoprotein ligand-1

(PSGL-1) are expressed at similar levels on NK cell subsets (Table

1). L-selectin is required for mouse NK cell homing and

recruitment to the LN (72). In human, CD56bright but not

mature CD56dimCD161 NK cells also express L-selectin (71,

76). Sialyl stage-specific embryonic antigen 1 and an

uncharacterized sLex-bearing receptor may serve as E-selectin

ligands (77, 78). Although PSGL-1 is expressed on freshly

isolated human NK cells, only a minor population of NK cells

binds P-selectin-immunoglobulin (Ig) (78, 79). Human NK

cell differentiation is accompanied by the cell surface

expression of a mucin-like glycoprotein bearing an NK cell-

restricted keratan sulfate-related lactosamine, the PEN5 epitope

(80). The PEN5 carbohydrate decorates PSGL-1, creating a

unique binding site for L-selectin, which is independent of

PSGL-1 tyrosine sulfation (76). By analogy to the ability of

rolling neutrophils to capture free-flowing neutrophils in a

PSGL-1:L-selectin-dependent manner (81), the PEN5 epitope

CD11bdull

DP

CD27dull

bone marrow
lymph nodes

lymph
blood

spleen
liver, lung

CD62L

S1P

?

Fig. 6. Model of mouse natural killer (NK) cell circulation at steady
state. NK cells develop mostly in the bone marrow (BM) and, for the
CD1271 fraction, also in lymph node (LN) and thymus. NK cells mature
from the CD11bdull stage to the double positive CD11bhighCD27high (DP)
and further to the CD27dull stage in all organs, starting in the BM (vertical
dotted arrows). Upon maturation, they acquire S1P5 expression and exit
the BM in a S1P5-dependent manner. In this model, the more NK cells
express S1P5, the more they exit the BM. Once in the periphery, they may
return to BM and LN, through a CD62L-dependent mechanism for the LN.
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might allow NK cells to interact with other L-selectin1

leukocytes (e.g. neutrophils, monocytes, or T/B lymphocytes)

attached to the inflammatory endothelium to amplify the

immune response.

Chemotaxis

The role of chemokine receptors in mouse NK cell recruitment

to inflammatory sites has been studied using knockout strains

and blocking antibodies (25, 64–67, 82–92). In humans, the

expression of chemokines and their receptors at inflammatory

sites has also provided some information (20, 57, 74, 93–96)

(Table 2).

Four receptors appear to play a key role in mouse NK cell

recruitment following an inflammatory stimulus: CCR2, CCR5,

CXCR3, and CX3CR1. These receptors allow NK cells to

respond to a large array of inflammatory chemokines such as

CCL2, CCL3, CCL5, CCL7, CCL8, CCL9, CCL11, CCL13,

CXCL9-11 and CX3CL1. This broad responsiveness could

warrant NK cell recruitment in situations where limited sets

of chemokines are expressed. Thus, NK cell recruitment in the

same tissue can be mediated by different chemokine receptors.

For example, human NK cell recruitment to the epithelia

appears to be dependent on CCR2, CCR5, CXCR3, or

ChemR23, depending on the inflammatory conditions (20,

57, 93). Not only may NK cells respond to different

chemokines, but it also seems that chemokines may act in

concert to recruit them. CCR2 and CCR5 are both required for

NK cell recruitment to the liver of mouse cytomegalovirus

(MCMV)-infected mice (83, 89). A similar phenomenon had

been observed previously for monocytes (97). Importantly, NK

cell subsets could also be differentially recruited, depending on

the stimulus. Indeed, CX3CR1 but not CXCR3 is required for

NK cell recruitment in the CNS in a model of experimental

autoimmune encephalomyelitis (67, 84). Conversely, CXCR3

has a central role in NK cell recruitment to the inflammatory

LN (87). As CXCR3 and CX3CR1 are expressed in a quasi-

mutually exclusive fashion on NK cell subsets (Fig. 5), this

finding suggests that different NK cell subsets may be

independently recruited in distinct inflammatory settings.

Such a division of labor has already been shown for other

types of leukocytes, including monocytes (98) and memory

CD81 T cells (99). Besides chemokines, NK cells have been

shown to respond to various other chemotactic compounds that

are either induced or augmented upon inflammation. These

include lysophosphatidic acid (100), N-formyl-methionyl-

leucyl-phenylalanine (f-MLP) (101), leukotrienes (102), and

Table 2. Experimental models of natural killer (NK) cell trafficking

Stimulus
Organ where NK cells
are recruited Mechanisms Reference

Human
Granulomas in TAP2-deficient patients Skin lung CCR2? Hanna et al. (93)
Oral lichen planus Oral mucosa ChemR23 Parolini et al. (57)
Hemolytic uremic syndrome Kidney CX3CR1 Ramos et al. (95)
Psoriasis Skin CXCR3/CCR5 Ottaviani et al. (20)
Menstruation Uterus CXCR3? Sentman et al. (96)
Invasive trophoblasts Decidua CXCL12/CXCR4 Hanna et al. (94)
IL-18 LN? CCR7 Mailliard et al. (74)

Mouse
TLR7/8 ligands, injection sc Draining LN CXCR3 Martin-Fontecha et al. (87)
ConA-induced hepatitis Blood, mobilization

from spleen
CXCR3 Wald et al. (65)

ConA-induced hepatitis Liver CCR1 Wald et al. (91)
MCMV, i.p. Liver MCP1/CCR2 Hokeness et al. (83)
MCMV or poly(I:C), i.p. Liver MIP1-a/CCR5? Salazar Mather et al. (89)
Toxoplasma gondii Liver, spleen CCR5 Khan et al. (85)
Dengue virus Liver CXCL10/CXCR3? Chen et al. (82)
Bordetella bronchiseptica Lung CXCR3 Widney et al. (66)
Bleomycin-induced lung fibrosis Lung CXCR3 Jiang et al. (64)
Intracerebral coronavirus infection CNS CXCL10/CXCR3? Stiles et al. (90)
MOG (s.c.)-induced EAE CNS CX3CR1 not CXCR3 Huang et al., Liu et al. (84, 67)
None Lung CX3CR1 Yu et al. (92)
B16-F10 Lung CX3CR1 Yu et al. (92)
Invasive aspergillosis Lung MCP1/CCR2 Morrison et al. (88)
EL4 tumor cells, s.c. Tumor site CX3CR1 Lavergne et al. (86)
HSV2 genital infection CNS CCR5 Thapa et al. (25)

Compilation of data from the literature describing the recruitment of NK cells in various organs in response to the indicated stimuli. In each case, the
receptor involved is indicated in bold.
HSV, herpes simplex virus; CNS, central nervous system; MCMV, mouse cytomegalovirus; LN, lymph node.
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C5a (103). The roles of these inflammatory mediators and of

their receptors in NK cell recruitment in vivo remain to be

thoroughly investigated.

Integrins

Upon activation by chemokines, NK cells interact firmly with

the endothelium through integrins. The role of LFA1

(leukocyte function-associated antigen-1), as for other

leukocytes, has been shown to be central in NK cell

extravasation (104). Interestingly, NK cells sequentially

express different integrins over development and maturation

(43). To gain an insight into this phenomenon, we examined

integrin expression at the mRNA level in sorted NK cells

subsets, using microarrays. All NK cells express many

transcripts of integrins involved in extravasation (Table 1). As

reported previously, we found that CD49b and CD11b were

acquired while CD51 was decreased upon NK cell maturation.

Our data also show that CD11c and especially CD61 (b3

integrin) are decreased upon maturation. The significance of

this observation is unclear, but different sets of integrins may

contribute to the differential recruitment of NK cell subsets

upon inflammation. Besides integrins, NK cell adhesion to the

endothelium could also be mediated by CX3CR1. Indeed, it was

reported previously that CX3CL1 mediates the rapid capture,

integrin-independent firm adhesion, and activation of

circulating leukocytes under flowthrough CX3CR1 (105).

Recruitment of NK cells to the inflammatory liver

NK cells migrate to the liver in response to a variety of stimuli,

such as injection of maleic anhydride divinyl ether (MVE-2),

Corynebacterium parvum (106), poly(I:C) (89, 107, 108), MCMV

(109), hepatitis B (110), or concanavalin-A (Con-A) (111).

Concomitant to the increase in liver NK cells, NK cell counts

decrease in the spleen and BM, suggesting that these organs

serve as reservoirs of NK cells in case of inflammation (65).

Various chemokine receptors may orchestrate this recruitment.

CXCR3 is partly required in the mobilization of spleen NK

cells, while CCR1 is required for the accumulation of NK cells

in the liver (65). To gain an insight into the mechanism of

spleen NK cell mobilization, we performed immuno-

fluorescence experiments on frozen sections of spleens

obtained from mice intravenously injected with lipopoly-

NKp46 CD3 CD19 NKp46    CD31

LP
S

 8
h

C
on

A
 8

h

A B

C D

Fig. 7. Relocalization of natural killer (NK) cells in the spleen in response to Con-A injection. C57BL/6 mice were treated with indicated stimuli
[Con-A, Sigma (St. Louis, MO, USA): 300mg i.v., lipopolysaccharide (LPS), Sigma (St. Louis, MO, USA), 25mg i.v.] for the indicated times. Frozen
sections of spleen were fixed with acetone and stained with anti-CD3, anti-CD19, (panel A, C) or anti-CD31 and goat anti-NKp46 antibodies (panel B,
D), and goat anti-NKp46 antibodies, as described in Fig. 2. Sections were visualized by confocal microscopy.
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saccharide (LPS) or Con-A. A redistribution of splenic NK cells

was observed in response to Con-A injection (Fig. 7).

NK cells appear to migrate from the red pulp to the marginal

zone. This relocalization of NK cells was not observed when

mice were treated with LPS, although this stimulus induces a

massive redistribution of dendritic cells (Fig. 7A and data not

shown). After Con-A injection, NK cells are thus found in close

contact with marginal zone macrophages (Fig. 8). It will be of

interest to test whether CXCR3 is involved in this process. This

phenomenon is transient, as 48 h after Con-A injection, NK cell

distribution in the spleen is normal (Fig. 8).

Recruitment of NK cells to the inflammatory LN

A massive recruitment of NK cells is observed in the draining

LN in response to a footpad injection of Leishmania major (29),

TLR 7/8 ligands, or LPS-activated dendritic cells (87). This

recruitment is dependent on CXCR3 (87). CXCR3 ligands such

as CXCL9 are expressed on the surface of inflammatory HEVs

(112). Under inflammatory conditions, most NK cells are

recruited preferentially to the T-cell zone of the LN, near

HEVs, in close proximity to dendritic cells (29). NK cell

recruitment is required for T-helper 1 cell polarization of

naive T cells activated within the LN (87). In another system,

it was found that CD62L was also required for the recruitment

on the inflammatory LN in response to a subcutaneous

injection of tumor cells (72).

Concluding remarks

The precise knowledge of the anatomy of the immune system

is obviously critical for our understanding of immunity. In

contrast to T, B, and dendritic cells, the trafficking of NK cells in

normal and disease conditions is poorly characterized.

Nevertheless, it appears that NK cells patrol lymphoid and

non-lymphoid organs. At a steady state, NK cells are present at a

high frequency in the circulation, ready to extravasate to tissues

under inflammatory conditions. Besides the roles of S1P5 and

chemokine receptors, the set of molecules that govern NK cells

trafficking in vivo remain to be identified. The dissection of the

mechanisms that regulate NK cell migration may likely provide

new perspectives for the manipulation of these cells for

therapeutic purposes, as exemplified by the use of the S1P

agonist, FTY720, as a T- and B-cell immunosuppressant.
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Grégoire et al � The trafficking of NK cells


