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Summary: Innate sensors of viral infection detect viral products and
initiate the signal cascades that lead to the antiviral response. Several
proteins have been identified to play a role in this process, mostly
members of the Toll-like receptor and retinoic acid-inducible gene I-like
receptor families. These receptors have been demonstrated to function in
part by recognizing a diverse yet unique repertoire of nucleic acid sub-
strates. Upon recognition of their ligands, these sensors activate distinct
signaling pathways that lead to the secretion of type I interferon and
inflammatory cytokines. It remains to be seen, however, if these sensors
are redundant or whether each serves a unique function. In this work, we
review the current knowledge of viral sensors, speculate on how they
may function in vivo, and explore the potential reasons for their diversity.

Keywords: innate immunity, Toll-like receptor, RIG-I-like receptor, pattern recognition
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Introduction

Viral pathogens have been discovered in all species from

single-cell bacteria to the most complex of mammals. To

protect themselves from pathogenic effects of these invaders,

organisms have been required to develop mechanisms to

detect and prevent viral infection. In higher mammals, this

requirement has evolved the adaptive immune system, which

is able to generate highly specific antibodies and T cells that

recognize specific viral proteins and peptides that either block

infection or target infected cells for destruction. Initiation of

the adaptive immune response, however, is a slow process

that requires days to weeks for maximum effect. To provide

protection during the initial hours and days of infection, we

have maintained a system of pattern recognition receptors

(PRRs) first seen in lower organisms that recognize broad

motifs common to viral pathogens and thus serve as the initial

sensors of viral infection. These sensors serve to initiate and

maintain an antiviral response while the more specific

adaptive response develops.

There are a wide variety of viral pathogens that are known

to infect humans. Viruses can have genomes composed of

double-stranded RNA (dsRNA), single-stranded RNA

(ssRNA), or DNA and can replicate at different locations in the



cell through different mechanisms that proceed through

unique intermediates. Designing a system that can broadly

detect all of these possibilities is challenging to say the least.

To accomplish this, organisms use a variety of sensors from

two main classes: Toll-like receptors (TLRs) and retinoic acid-

inducible gene I (RIG-I)-like receptors (RLRs). These sensors

protect different cellular compartments and signal through

different adaptors to activate an antiviral response.

RLRs

RLRs are cytoplasmic proteins that recognize viral products

that have gained access to the cytosol. There are currently

three known members of this family: RIG-I, melanoma

differentiation-associated gene 5 (MDA5), and laboratory of

genetics and physiology-2 (LGP2) (1). Both RIG-I and MDA5

contain a DExD ⁄H box helicase domain that binds dsRNA

and two N-terminal caspase recruitment (CARD) domains

involved in signaling (2–5). LGP2 contains the helicase

domain but lacks the CARD domains and is thought to be a

negative regulator (6, 7). Both RIG-I and LGP2 also contain a

C-terminal repressor domain that blocks signaling in the

absence of ligand binding (5). RIG-I binds preferentially to

ssRNAs that are phosphorylated at the 5¢-end (8, 9) and

contain homopolyuridine or homopolyriboadenine motifs as

well as short dsRNA (10–12). MDA5 recognizes long dsRNAs

and does not require 5¢-phosphorylation (11–14). The

differences in ligand preferences of the two proteins result in

specificity for the recognition of individual viruses, which is

discussed later.

The pathways by which RLHs signal are shown in Fig. 1.

Both MDA5 and RIG-I signal through CARD–CARD inter-

actions with interferon-b (IFN-b) promoter stimulator 1 (IPS-1)

[also known as mitochondrial antiviral signaling (MAVS),

virus-induced signaling adapter (VISA), or CARD adapter-

Fig. 1. Cytoplasmic and endosomal sensors of viral nucleic acids. This figure illustrates the detection of viral products by retinoic acid-inducible
gene I (RIG-I)-like receptor (RLR) and Toll-like receptor (TLR) family members. TLR3, TLR7 ⁄ 8, and TLR9 are located on endosomal compartments
in which they sense their double-stranded RNA (dsRNA), single-stranded RNA (ssRNA), and CpG DNA ligands, respectively. TLR3 signals through the
adapter protein Toll ⁄ interleukin-1 (IL-1) receptor (TIR) domain-containing adapter-inducing interferon-b (TRIF), which activates tumor necrosis
factor (TNF) receptor-associated factor 3 (TRAF3) (not shown) and the TANK-binding kinase 1 (TBK-1) complex leading to interferon (IFN) regula-
tory factor 7 (IRF-7) activation and IFN signaling. TRIF also signals through TRAF6, which leads to nuclear factor jB (NF-jB) activation and inflam-
matory cytokine production. TLR7, TLR8, and TLR9 signal through the MyD88 adapter. MyD88 signals through a protein complex consisting of
TRAF6 and IL-1 receptor-associated kinase 1 ⁄ 4 (IRAK1 ⁄ 4) (not shown), leading to the activation of type I IFN and NF-jB signaling. RLR family
members, melanoma differentiation-associated gene 5 (MDA5), retinoic acid-inducible gene I (RIG-I), and laboratory of genetics and physiology-2
(LGP2), are cytoplasmic proteins that detect viral products within the cytosol. MDA5 and RIG-I signal through IFN-b promoter stimulator 1 (IPS-1),
which is located on the mitochondrial membrane. IPS-1 signals through TRAF3 and the TBK-1 ⁄ inhibitor of NF-jB kinase e complex to activate IRF-3
and IRF-7 and then type I IFN. IPS-1 also signals through FAS-associated death domain-containing protein (FADD) leading to the activation of
caspase-8 and caspase-10 (not shown), which causes NF-jB activation and inflammatory cytokine production. LGP2 does not signal through IPS-1
and is considered to be a negative regulator of RIG-I.
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inducing IFN-b (Cardif)], which is located on the outer mito-

chondrial membrane (15–18). Downstream of IPS-1 (19),

tumor necrosis factor (TNF) receptor-associated factor 3

(TRAF3) activates TANK -binding kinase 1 (TBK1) and inhibi-

tor of nuclear factor jB (NF-jB) kinase e (IKKe), which phos-

phorylate IFN regulatory factor 3 (IRF-3) and IRF-7 (20, 21).

Activated IRF-3 and IRF-7 translocate into the nucleus and

bind IFN-stimulated response elements (ISREs), inducing the

expression of type I IFNs (22). IPS-1 also interacts with FAS -

associated death domain (FADD)-containing protein (23).

FADD activates caspase-8 and caspase-10, and the activation of

the caspase death effector domains activates NF-jB, leading to

the production of inflammatory cytokines (24). Thus, MDA5

and RIG-I appear to activate both the IFN and inflammatory

responses.

TLRs

TLRs are transmembrane proteins that contain luminal

leucine-rich repeats (LRRs) that sense pathogen-associated

molecular patterns and cytoplasmic Toll ⁄ interleukin-1 (IL-1)

receptor homology (TIR) domains that signal through down-

stream adapters (1). There are 10 members of the TLR family

in humans and 13 in mice. TLRs involved in the detection of

viral nucleic acids are located on the cell surface (TLR3) or in

endosomal compartments (TLR3, TLR7, TLR8, and TLR9)

(25). TLR3 recognizes dsRNA, which constitutes the genome

of dsRNA viruses and is also an intermediate produced during

replication of ssRNA viruses (26). TLR7 and TLR8 recognize

ssRNA as well as imidazolequinilone compounds, which are

known to have antiviral properties (25, 27–30). TLR9

recognizes unmethylated CpG-containing DNA, which is

commonly found in the genomes of DNA viruses (31, 32).

TLR3 signals through the adapter protein TIR domain-

containing adapter-inducing IFN-b (TRIF) (33, 34) (Fig. 1).

TRIF interacts with TRAF3 and TRAF6 through TRAF-binding

motifs and with receptor-interacting protein 1 (RIP1) and

RIP3 through RIP homotypic interaction motifs (RHIM)

(35–37). TRAF3 leads to the secretion of type I IFNs, while

TRAF6 and RIP1 lead to NF-jB activation and production of

inflammatory cytokines (38). TLR7, TLR8, and TLR9 signal

through the adapter protein myeloid differentiation primary

response gene 88 (MyD88). MyD88 contains a TIR domain as

well as a death domain that allows it to serve as an adapter for

TLR signaling. MyD88 associates with a signaling complex

consisting of TRAF6, Bruton’s tyrosine kinase (BTK), IL-1

receptor-associated kinase 4 (IRAK4), and IRAK1 (39).

Signaling through this complex activates IRF7, NF-jB, and

mitogen-activated protein kinase pathways (40–42). Thus,

although RLRs and TLRs signal through different pathways,

both appear to be able to activate the production of type I IFNs

(i.e. IFN-a and IFN-b) and inflammatory cytokines.

Two additional TLR family members that signal through

MyD88 have been implicated in the recognition of additional

viral components. TLR2 is known to detect a variety of

lipoproteins as well as yeast-associated zymosan; however, it has

also been demonstrated to have a role in the recognition of viral

envelope proteins (43). Similarly, while TLR4 has traditionally

been known as the sensor of LPS, it can also respond to virus-

derived envelope glycoproteins (44). In this review, we focus

primarily on TLRs that recognize nucleic acids.

Additional sensors

The TLRs and RLRs have been shown to play a role primarily

in RNA virus infection. Recently, the array of innate immune

sensors of viral infection has been shown to include two

additional cytosolic proteins that are involved in the recogni-

tion of DNA viruses. A DNA-binding protein, named

DNA-dependent activator of IFN-regulatory factors (DAI),

Z-DNA-binding protein 1 (ZBP1), or DLM-1, binds cytosolic

DNA, inducing type I IFN and other genes involved in innate

immunity (45, 46). Accordingly, RNA interference of mRNA

for DAI in cells inhibits DNA-mediated antiviral responses.

Furthermore, Nacht domain-, LRR-, and PYD-containing

protein 3 (NALP3), a component of the cytosolic molecular

complex termed the inflammasome, has been shown to

recognize adenoviral DNA, inducing activation of caspase-1

and maturation of pro-IL-1b in macrophages (47). Corre-

spondingly, mice lacking NALP3 or its signaling adapter,

apoptosis-associated speck-like protein containing a C-termi-

nal caspase (ASC), display reduced innate inflammatory

responses to adenovirus particles. The discovery of these

sensors has provided further insight into the innate response

against DNA viruses.

Besides the RLR and TLR classes of sensors, other proteins

are known to detect viral products and contribute to the

immune response, especially RNase L and protein kinase R

(PKR). RNase L has recently been reported to be involved in

the RLR response to viral nucleic acids (48). It is proposed that

2¢,5¢-linked oligoadenylate generated by viral infection

activates RNase L to cleave self-RNA into small RNA products,

which are responsible for RLR signaling. However, it is not

yet known how these small self-RNAs are recognized by

MDA5 and RIG-I. PKR has been shown to dimerize upon

binding of dsRNA. The activated PKR dimer phosphorylates
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eukaryotic initiation factor 2-a (eIF2-a), which results in the

inhibition of translation, preventing viral replication (49).

Like RLRs, RNase L and PKR are upregulated in response to

type I IFN, demonstrating their important role in the prepro-

gramed antiviral response.

Cytokine response to viruses

IFNs

The initiation of IFN production is an essential step in the antiv-

iral response. Type I IFNs fight viruses both directly by inhibit-

ing viral replication in cells and indirectly by stimulating the

innate and adaptive immune responses. IFN-a and IFN-b bind

to the IFN-a receptor (IFNAR) in an autocrine or paracrine

manner. Activation of this receptor leads to Janus kinase

(JAK) ⁄ signal transducer and activator of transcription (STAT)

signal transduction pathways (50, 51). These genes increase

the cellular resistance to viral infection and sensitize virally

infected cells to apoptosis (52). Interestingly, several viral

sensors are among those genes induced by IFN. They in turn

enable the production of IFN, creating a positive feedback loop

that creates a local cellular response. In addition, type I IFNs

directly activate dendritic cells (DC) and natural killer (NK)

cells and promote the survival and effector functions of T and B

cells, providing a link between the innate response to infection

and the adaptive immune response (53–56).

TLRs signaling pathways also induce the recently identified

type III IFNs. These include three proteins, named IFN-k1,

IFN-k2, and IFN-k3, or IL-29 (k1) and IL-28A ⁄ B (k2 ⁄3).

Although genetically distinct from type I IFNs, type III IFNs

have similar biological antiviral functions (57–59). Whether

RIG-I and MDA5 transmit signals leading to the expression of

type III IFN is yet unknown.

Inflammatory cytokines

In addition to IFN signaling, viral sensors are also known to

initiate signaling for inflammatory cytokine and chemokine

secretion. Both DCs and macrophages produce TNFa, IL-6,

monocyte chemotactic protein 1 (MCP-1), and IL-12 in

response to viral infection. In addition, these same inflamma-

tory cytokines are often detected in the serum of virally

infected animals. Inflammatory cytokines activate the vascular

endothelium as well as stimulate the recruitment of immune

cells such as monocytes and neutrophils. While the resulting

inflammatory response is important in the clearance of viral

infection, a prolonged inflammatory state can also lead to

adverse reactions including necrosis of local tissue and

autoimmune diseases.

Understanding the diversity between viral sensors

It is not entirely clear whether viral sensors serve redundant or

non-redundant functions. One way in which viral sensors can

be seen to have differential effects is by the recognition of

different viruses. However, the sensors may also recognize

different components of the same virus. Additionally, diver-

sity could insure that different sensors activate the production

of distinct cytokines. Finally, the differential expression of

viral sensors in tissues and cell types is likely to contribute to

their distinct roles in viral infection. In the following sections,

we explore whether there is true redundancy or if there is

specialization between the RLR and TLR families of sensors.

This is also illustrated in Fig. 2.

Diversity by recognition of different viruses

RLRs

Among the RLRs, ligand preferences appear to determine

which virus is recognized by which sensor. The current para-

digm is that RIG-I recognizes RNA-containing 5¢-triphos-

phates, while MDA5 recognizes dsRNA. Therefore it is not

surprising that RIG-I has been shown to detect influenza A

and B viruses, vesicular stomatitis virus (VSV), and some

flaviviruses (Japanese encephalitis virus and hepatitis C virus)

(13, 60, 61). Likewise, MDA5 detects picornaviruses such as

encephalomyocarditis virus (EMCV), Mengo virus, and

Theilers virus (13, 14) as well as caliciviruses (62). These

Fig. 2. Hypothetical model of functional diversity among viral
sensors. Three potential mechanisms by which viral sensors perform
unique functions: (i) viral sensors detect different ligands resulting in the
recognition of a variety of viral families and ⁄ or the recognition of
different components of the same virus. (ii) Toll-like receptor (TLR) and
retinoic acid-inducible gene I-like receptor (RLR) signaling results in the
production of different cytokine responses (i.e. type I interferon versus
pro-inflammatory cytokines). (iii) The expression of TLRs and RLRs in
different cell types results in unique responses to viruses in different cells
and tissues. Predominant sensors are indicated in bold, while secondary
sensors are indicated below in smaller font.
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viruses contain a 5¢-VPg cap instead of 5¢-triphosphate and

make large amounts of dsRNA during replication. However,

other results do not neatly fit this paradigm. RIG-I and MDA5

play redundant roles in the recognition of West Nile virus

(63), Dengue virus, (61) paramyxovirus, and reovirus (61),

most of which contain 5¢-triphosphates. In addition, although

Sendai virus has been shown to activate RIG-I, it encodes for a

protein, the V protein, that is a specific inhibitor of MDA5

(64). Furthermore, murine hepatitis virus, a member of the

coronavirus family that does not contain VPg, has recently

been shown to be recognized by MDA5 (65). One explanation

is that, although RIG-I preferentially recognizes 5¢-triphos-

phates and polyuridine-rich regions, it can also recognize

short dsRNA, while MDA5 recognizes long dsRNA (11). The

ability of MDA5 and RIG-I to specifically detect certain viruses

while also detecting common pathogens illustrates the need

for multiple sensors to recognize and control the wide variety

of viral pathogens.

TLRs

Compared with that of the RLRs, the role of TLRs in antiviral

responses is more intricate (66). TLR3 was originally shown to

detect dsRNA (26). Accordingly, TLR3 has been implicated in

the detection of several RNA viruses such as EMCV (67), respi-

ratory syncytial virus (RSV) (68, 69), West Nile virus (70),

and Punta Toro virus (PTV) (71). However, in one study TLR3

did not contribute to viral pathogenesis in VSV, lymphocytic

choriomeningitis virus (LCMV), and reovirus infections (72).

To make matters more confusing, TLR3 has been implicated in

recognition of DNA viruses. TLR3-deficient mice are more

susceptible to murine cytomegalovirus (MCMV) infection than

wildtype mice (73). Moreover, a recent human study has

demonstrated that a dominant negative form of TLR3 causes

susceptibility to neonatal herpes simplex-1 encephalitis (HSE)

(74). However, it is unclear why TLR3 plays such a major

role in HSE, whereas it has no obvious role in other HSV-1

infections, such as skin, eye, or mouth infections, or sepsis or

in other DNA virus infections. Thus, TLR3 may recognize not

only RNA viruses but also DNA viruses, most probably through

RNA intermediates that are generated during viral replication.

TLR7 has been shown to contribute to the detection of RSV,

Sendai virus, influenza, human immunodeficiency virus

(HIV), VSV, and coxsackie virus B3 (CVB3) (75), while TLR8

has been implicated in the detection of influenza and para-

myxovirus as well as HIV (28, 44, 76). TLR9 plays a role in

the recognition of herpes simplex virus and cytomegalovirus

infection (73, 77–79). TLR2 and TLR4 have been shown to

play a role in the recognition of enveloped viruses. Both

herpes viruses, which contain a DNA genome, and RSV,

which has a ssRNA genome, have been reported to be recog-

nized by these sensors (80–82). In summary, TLR7 and TLR8

recognize ssRNA viruses, while TLR9 recognize DNA viruses.

TLR2 and TLR4 recognize enveloped viruses, while TLR3

plays a role in the recognition of both RNA and DNA viruses.

Overall, TLR viral specificities exhibit a significant overlap

with those of RLRs.

Diversity by distinct cytokine responses

Another potential explanation for the presence of different

classes of sensors could be the induction of different cytokine

responses. Although both RLRs and TLRs appear to be able to

signal through both IFN and inflammatory cytokine pathways,

there is evidence that the different classes have distinct func-

tions in signal propagation leading to different immune

responses.

Indeed, initial characterization of TLR3-deficient mice in

response to dsRNA analog polyinosinic–polycytidylic acid

(polyI:C) revealed a defect in IL-12 not type I IFN secretion in

serum (26). Subsequently, it was shown that TLR3 induces a

T-helper 2 (Th2)-type inflammatory response in airway

epithelia cells infected with RSV infection (68, 69). Another

study showed that TLR3 triggers an inflammatory response

against West Nile virus infection that breaks down the blood–

brain barrier, facilitating viral penetration and spreading in

the brain and subsequent neuronal damage (70). Similarly,

TLR3 plays an important role in liver pathology caused by

PTV infection through the overproduction of inflammatory

mediators (71). Altogether, these studies have suggested that

TLR3 promotes a strong inflammatory response to RNA

viruses, whereas it seems to have limited impact in type I IFN

responses that control viral replication.

More recent studies have revealed differential signaling by

RLRs and TLRs in individual cell types. One study found that

influenza infection in bronchial epithelial cells led to

TLR3-dependent inflammatory cytokine induction and RIG-I-

dependent IFN response (83). Another recent study has

demonstrated that human keratinocytes contain functional

TLR, RLR, and PKR signaling pathways and, with the use of

small interfering RNA (siRNA) and small molecule inhibitors,

has shown that TLR3 provides the main stimulus for NF-jB

signaling, while RLRs are the primary initiators of IRF3 and

IFN signaling in this cell type (84).

The stimulation of different signaling pathways by TLRs

and RLRs could have important implications. There are several
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viruses that are known to stimulate both TLR and RLR

pathways, depending on whether infection is detected in

endosomal or cytoplasmic compartments. It has been assumed

that these sensors activate the same general cytokine

responses; however, if the TLR and RLR pathways do indeed

produce different cytokine products, then it is likely that they

also produce different effects on the subsequent immune

response. For example, it is known that the inflammatory

cytokines can function not only to limit viral infection but also

to cause excessive immunopathology. If we are able to

distinguish which receptor is preferentially responsible for the

production of each cytokine, then we may be able to target

small molecules to the endosomal or cytoplasmic compart-

ments to affect cytokine response. This could be a tremendous

advantage to the fields of vaccine development as well as

infectious diseases and tumor immunology, as antiviral

sensors and their ability to induce cytokines are potential

targets for therapy.

Diversity by differential distribution of sensors

The distribution of viral sensors in different cell and tissue

types may be another mechanism to differentiate their actions.

This is easily seen in comparison between conventional DCs

(cDCs) and plasmacytoid DCs (pDC). cDCs are specialized for

pathogen detection and antigen presentation. pDCs specialize

in the secretion of type I IFNs in response to viruses (25, 85).

In humans, cDCs express TLR1, TLR2, TLR3, TLR4, TLR5,

TLR6, and TLR8, while pDCs preferentially express TLR7 and

TLR9. cDCs are capable of expressing high levels of RIG-I and

MDA5, while pDCs also express these cytoplasmic sensors,

but, paradoxycally, the sensors do not appear to function

(86). Nevertheless, both cell types are able to respond to

viruses. In human cDCs, this occurs in an MDA5- and TLR3-

dependent manner, leading to the production of IFN-b, auto-

crine activation via IFNAR, and the production of IFN-a. In

pDCs, however, TLR3 is not present, MDA5 and RIG-I may

not be functional, and autocrine secretion and activation via

IFN-b does not occur, but high levels of IFN-a are produced

(87). This occurs because pDCs utilize TLR7 and TLR9 and

express endogenously high levels of IRF7 (22), which primes

them for IFN-a production. In this situation, we can see that

by varying the expression of TLRs and signaling components,

different cell types have unique ways to detect pathogens.

Extending this observation, a recent study demonstrated that

human neutrophils respond to polyI:C through the RLR

pathway rather than the TLR3 pathway (88).

A similar situation may occur in tissues. RIG-I and MDA5

are IFN-inducible genes that may be expressed in all cell types,

while TLRs have a more restricted tropism. It has been

demonstrated that MDA5 and RIG-I are the predominant

sensors for polyI:C and RNA virus infection in bone marrow-

derived DCs, macrophages, and fibroblasts. However, TLR3

has also been shown to play a role in different cell types. This

may occur as a result of differential expression of the various

sensors or their downstream adapter proteins. One specific

example may occur in the brain. Several groups have shown

that TLR3 is expressed in the brain, while MDA5 does not

appear to be expressed. Most probably, this differential

expression of the various viral sensors contributes to their

importance in viral infection.

Conclusions

Both the TLR and RLR families of receptors contain multiple

sensors that are important in viral infection. In this review, we

examine the diversity of these sensors and the potential expla-

nations for this diversity. The role of each sensor potentially

may be distinguished by recognition of distinct viral patho-

gens, by stimulation of distinct cytokine signaling pathways,

or by distribution of individual sensors in different cell and

tissue types. Further studies are necessary to determine which

of these possibilities most contributes, as well as the role of

the individual sensors in viral infection in vivo.
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