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Abstract

Gaussian Graphical Models (GGMs) are tools to infer dependencies between biological variables.
Popular applications are the reconstruction of gene, protein, and metabolite association networks.
GGMs are an exploratory research tool that can be useful to discover interesting relations between
genes (functional clusters) or to identify therapeutically interesting genes, but do not necessarily
infer a network in the mechanistic sense. Although GGMs are well investigated from a theoretical
and applied perspective, important extensions are not well known within the biological
community. GGMs assume, for instance, multivariate normal distributed data. If this assumption is
violated Mixed Graphical Models (MGMs) can be the better choice.

In this review we provide the theoretical foundations of GGMs, present extensions such as MGMs
or multi-class GGMs, and illustrate how those methods can provide insight in biological
mechanisms. We summarize several applications and present user-friendly estimation software.
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1 Introduction

With the advent of high-throughput omics technologies an increased need for data analysis
tools emerged to explore relationships between different biological readouts. These readouts
can be, for instance, the expression levels of different genes, the presence of genomic
variants, the accessibility of individual genomic regions (chromatin structure), or the
abundances of single metabolites. In this context, naive correlation-based approaches were
and are still widely used. Examples are the reconstruction of gene (Eisen et al., 1998; Aoki
et al., 2007; Stuart et al., 2003; Obayashi and Kinoshita, 2009) and metabolite networks
(Weckwerth et al., 2004; Camacho et al., 2005; Ursem et al., 2008; Rosato et al., 2018).

However, ordinary pair-wise correlation is only a measure of the marginal relationships
between variables and so does not distinguish direct from indirect effects. Consequently, it is
only a weak measure of dependency (Schéfer and Strimmer, 2004); if two variables are
correlated, this does not necessarily imply that they are directly dependent on each other, as
the observed correlation could be mediated by a third variable. This issue was already
discussed by Pearson and Yule, as, for instance, reviewed in (Aldrich et al., 1995). In the
context of gene networks, it was approached using first and second order partial correlations
by (De La Fuente et al., 2004). These first or second order partial correlations are
correlations between two genes that are corrected for the presence of either one or two
genes.

Full order partial correlations are correlations between two variables corrected for all other
variables under investigation. Thus, they allow to distinguish direct from indirect effects.
Gaussian Graphical Models (GGMSs) (Lauritzen, 1996; Bishop, 2006) provide a framework
to estimate them. In contrast to pair-wise correlations, partial correlations measure the
conditional dependencies between variables. These partial correlations can then be
visualized as a network, in which nodes represent variables and edges the dependencies
between them. Equally important, the absence of an edge corresponds to a conditional
independency of two variables given the remaining variables.

This review will provide readers a general overview of GGMs and their extensions. We
provide both the basic theory of GGMs and describe their scope of application in the
analysis of omics data.

GGMs assume variables that follow a multivariate normal distribution. We will further
discuss Mixed Graphical Models (MGMs) (Lauritzen, 1996), which allow the incorporation
of, e.g., one set of variables following a Gaussian, and one set of variables following a
multinomial distribution, simultaneously. We provide examples for the estimation and
interpretation of both GGMs and MGMs, present available estimation and visualization
software, and illustrate the strengths and weaknesses of the different methods.

As both standard GGMs and/or MGMs have, in recent years, been extended to account for
compositeness of omics data (Kurtz et al., 2015), to include causality (Sedgewick et al.,
2018), to take into account different sample groups, e.g., control vs. treated group (Danaher
etal., 2014; Zhao et al., 2014), time-series experiments (Abegaz and Wit, 2013), or to
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include prior knowledge (Wang et al., 2013; Li and Jackson, 2015; Zuo et al., 2017; Yu et
al., 2017; Manatakis et al., 2018), we will further review these novel concepts.

2 Conditional independence, partial correlations, Gaussian and Mixed
Graphical Models

Throughout this section, we introduce the basic ideas of probabilistic graphical modeling.
Here, the term “variable” can refer not only to any kind of biological readout, such as gene
and protein expression levels, genomic variants, methylation levels, or metabolite
concentrations, but also to demographic data such as sex, age, body-mass index, or other
factors. A summary of all important statistical terms is given in Table 1.

2.1 Statistical independence and conditional independence

First, consider two random, discrete variables X'and Y following a joint probability
distribution 2. P (X' = x, Y= )) gives the probability that X will take on the value x, and Y
the value y, respectively. Xand Yare statistically independent if and only if their joint
probability factorizes as

P(X=x,Y=y)=PX=x)P(Y =y), €

where P (X= x) and P (Y =) are the marginal probability distributions of X'and Y. This
means that the probability that X will take on the value x does not affect the probability that
Y will take on the value y’and vice versa. For two random, continuous variables the
analogous equation holds for the corresponding probability density functions, as illustrated
in the Supplementary File 1.

However, consider the case that X'and Yare statistically dependent, i.e. the factorization in
Eq. (1) does not hold. Now it is not a priori clear if this dependency is due to a direct
relationship between the two variables or if it is mediated by a set of other random variables
Z. For illustration, we simulated this scenario in the Supplementary File 1. The
corresponding results are shown in Figure 1a and b. In Figure 1a we plot X versus Yand
observe an excellent correlation, suggesting a direct association between Xand Y. However,
if we adjust for the third variable Z, this dependency completely diminishes, as shown in
Figure 1b. Thus, the observed relationship between Xand Y was only a consequence of their
individual associations with 2.

This example illustrates the need for more sophisticated measures of independence. Such a
measure is conditional independency, which we introduce next. Assume that X, Y; and 2
follow a joint probability distribution 2. Then, Xand Y are conditionally independent given
Zif and only if

PX=x,Y=ylZ=2)=PX=xIZ=2z) PY =yl Z =72). @

Intuitively, this equation means that if we know the value of Z, then knowing the value of X
does not provide any additional information about the value of Y, and vice versa. This
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statement also holds if Zis not just a third variable, but a set of variables. The mathematical
notation for X'is conditionally independent of Y'given Zis X L Y|Z

2.2 (Probabilistic) graphs as a visualization of conditional (in)dependencies

Conditional (in)dependencies can be visualized as probabilistic graphs, also called networks,
as shown in Figure 2a. Here, nodes (vertices) represent variables and edges represent
conditional dependencies. In example Figure 2a, there is an edge between Xand Z and
between Yand Z but no edge between Xand Y. This can be translated to X L Y|Z Thus,
the graph is a visualization of the joint probability distribution of the observed data, where
the conditional independence between two variables given the remaining variables
corresponds to the absence of an edge.

2.3 Correlation vs. partial correlation

The Pearson correlation coefficient is defined as

_ Cov(X,Y)

XY ox0y

®
where Cov(.X, Y) is the covariance between Xand Y; and oxand oy are the standard
deviations of X'and Y. Pearson correlations take values from -1 to +1 and measure the
linear relationship between two variables. If for example, the Pearson correlation coefficient
between two variables is near +1, the increase in value of one variable is accompanied by the
increase in value of the other variable and vice versa, as exemplified in Figure 1a. The
statistical independence of two variables corresponds to a Pearson correlation coefficient
equal to zero. Note, Pearson correlation is a measure of pair-wise relationships between two
variables without considering the influence of other variables.

Here, we introduce the partial correlation coefficient pxy.» which measures the association
between two random variables X'and Y; controlling for a set of random variables Z In other
words, it measures the strength of an association between Xand Y; taking into account
effects of variables Z, which possibly explain this association. Thus, it is designed to
distinguish between direct and indirect effects and therefore reflects conditional
independencies.

Formally, for multivariate Gaussian variables conditional independence corresponds to a
partial correlation coefficient equal to zero,

X LYIZ & pxy.z=0, 4
and conditional dependence to a non-zero partial correlation coefficient,
X/L/Y|Z<=>pxy.z750. (5)

In fact, if we calculate the sample Pearson correlation coefficient between the residues from
the linear regression of X'on Zand the residues from the linear regression of Y'on Zshown
in Fig. 1b, this corresponds to an estimate of the partial correlation coefficient pxy.
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In Figure 3, we compare estimated gene-gene Pearson correlation coefficients with their
respective full order partial correlation coefficients for single-cell RNA sequencing data of
melanoma metastases (Tirosh et al., 2016). Figure 3a shows the distribution of Pearson
correlation coefficients, where we observe a high proportion of both correlated (and anti-
correlated) genes. The highest (lowest) percentile (> 99% and < 1%) has correlations > 0.41
(< -0.31), as shown by the dashed black lines. Thus, directly or indirectly all genes are more
or less correlated, making correlation a weak measure of dependency: although a vanishing
correlation suggests independence, high correlation is not a strong indicator of dependence.

The corresponding distribution of partial correlations is shown in Figure 3b. Partial
correlations can take the same values as correlations, i.e., ranging from -1 to 1. In our
example, the lowest partial correlation is p = —0.66 and the highest is p = 0.97, which is
roughly concordant with Figure 3a. The obvious difference is that the distribution of partial
correlations is much tighter (see also the highest and lowest percentiles shown as black
dashed lines). In contrast to correlation, a vanishing partial correlation is not a strong
indicator of independence, but high partial correlation is a strong indicator of dependence.

2.4 Gaussian Graphical Models

For multivariate normal data X'= (X, ..., X;) ~ My, Z) with mean vector 4= G, ... AT
and the positive definite covariance matrix

oll .. olp

oPl .. oPP

the partial correlation coefficient px, X rest between Xjand X;given all remaining variables

is related to the precision matrix Q = (w;) =x~1 by (Lauritzen, 1996)

a)ij
PXiX;i-rest = — . (6)
" V@i

This relation is also visualized in Figure 2b to d. Figure 2b shows an exemplary precision
matrix Q for four variables 14 to v4. Here, an entry of w;;= 0 indicates conditional
independence, corresponding to a zero partial correlation coefficient PXX, - rest: A non-zero

entry wjjcorresponds to non-zero partial correlation. A Gaussian Graphical Model (GGM)
represents this conditional dependency structure in a graph, where the nodes correspond to
multivariate normal distributed variables, and edges between these variables represent
conditional dependencies or non-zero partial correlation coefficients. The corresponding
network is shown in Figure 2c. Here 14 and v», as well as 14 and v are adjacent to each
other, i.e., they are connected by one direct edge in the GGM. Since there are no other
variables adjacent to v, they also form the (first-order) neighborhood of 14, shown in Figure
2d.

The GGM estimated for the single-cell data set from the previous section is represented as a
graph in Figure 4a. Here, the edge corresponds to a significant partial correlation coefficient
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ranging from -1 (red) to +1 (blue), and the edge strength is encoded by the width and
transparency of the edge. An example of a first order neighborhood is shown in Figure 4b
for the gene CD3D.

2.5 Model overfitting and solutions

A GGM is defined by the set of variables or nodes it incorporates, and the respective edge
weights between these nodes. Estimating the strength of each individual edge in the graph
based on a training data set is referred to as “model learning/training or estimation”. For a
given set of pdifferent variables, one has to estimate, in total, p x (o — 1)/2 possible edges, a
number which grows rapidly with increasing p. GGMs can be estimated by inverting the
covariance matrix X, however, this is not possible if the number of variables p exceeds the
number of distinct training samples A. Then, the covariance matrix does not have full rank
and cannot be inverted. This can be a significant problem in omics data analysis, where the
number of variables can be orders of magnitudes larger than the number of samples profiled,
i.e, p»> N

In case the covariance matrix cannot be inverted, other methods based on, e.g., parameter
regularization can overcome this problem. These regularization techniques penalize complex
models and therefore reduce the risk of overfitting the training data. In case of overfitting,
the estimated model too closely describes the underlying relationships in the training data
and is not generalizable to independent data sets. Thus, estimated edges might only reflect
noise in the training data and not the true underlying probability density function.

The problem of overfitting is not only present if pexceeds A. Figure 5 illustrates how the

reliability of the partial correlation estimates depends on the number of measurements for a
simulation study with 100 variables and 248 true edges (5% of all possible edges). Here, we
contrast different sample sizes with the deviation of the partial correlation estimate from the

ground truth, calculated as || pestimate — ptrue”%;, where gestimate 1S the estimated partial

correlation matrix, pgye the corresponding ground truth, and /. //=the Frobenius norm. The
red line shows the results for partial correlation estimates using the standard matrix inversion
of subsection 2.4. These estimates can only be calculated for /> p, as indicated by the black
dotted line at V= p. Near to this boundary, the estimation accuracy is most compromised
and the deviation shows a peak.

There is a variety of techniques that reduce overfitting by parameter regularization and
improve partial correlation estimates for small and moderate sample sizes. These are, for
instance, a node-wise regression approach for neighborhood selection (Meinshausen et al.,
2006) based on the least absolute shrinkage and selection operator (LASSO, #4) (Tibshirani,
1996), a covariance shrinkage approach (Schafer and Strimmer, 2005), a joint sparse
regression model to perform neighborhood selection for all nodes simultaneously (SPACE)
(Peng et al., 2009), a penalized maximum likelihood approach (Yuan and Lin, 2007;
Banerjee et al., 2008; Friedman et al., 2008), and a bivariate nodewise-scaled LASSO
method called asymptotic normal thresholding (ANT) algorithm (Ren et al., 2015).

These regularization methods assume that the training samples are independent. There are
both non-sparse and sparse regularization methods. The latter, e.g., LASSO-based methods,
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assume that the underlying true network is sparse, i.e., that only a small number of all
possible edges between the nodes is in fact unequal to zero. Such sparse networks are also
easier to interpret than (almost) fully connected networks. Here, penalty parameters calibrate
the sparseness of the model. These parameters, however, are usually not known a priori and
have to be determined. There are different strategies to estimate them, such as using the
(extended) Bayesian information criterion ((E)BIC) (Yuan and Lin, 2007; Foygel and Drton,
2010), cross-validation (Krdmer et al., 2009), stability selection based methods (Liu et al.,
2010; Meinshausen and BiihImann, 2010; Shah and Samworth, 2013), or according to the
method suggested by Meinshausen et al. (2006). Alternatively, there are non-sparse
estimation methods as, for instance, covariance shrinkage. Here, the partial correlations can
be thresholded, as proposed for instance by Schafer and Strimmer (2005). A-values are
calculated for the partial correlations, and subsequently corrected for multiple testing
Schafer et al. (2006). Then, partial correlations are only considered significant and drawn as
an edge, if they fall below some pre-defined threshold.

We demonstrate how partial correlation estimates can be improved by regularization
methods exemplarily for covariance shrinkage in Figure 5. The corresponding estimation
accuracy is shown as a blue line. We observe that overfitting is reduced substantially
compared to the standard estimate shown as a red dashed line and that it provides also
estimates for V< p. For large sample sizes, both methods provide equally reliable estimates.

All proposed methods to reduce overfitting exhibit both advantages and disadvantages.
Regularization algorithms based on the LASSO method try to maximize specificity, i.e., they
try to reduce the number of false positive edges. As a consequence, however, they might
increase the number of false negatives and estimate very sparse networks in case of small
sample sizes (Epskamp and Fried, 2018), which do not correctly reflect the underlying
ground truth. Nevertheless, LASSO regularization yields edge weights which are exactly
zero, thus there is no need for post-hoc thresholding or significance testing. Covariance
shrinkage, in contrast, has the disadvantage that it does not provide a sparse estimate of the
partial correlation matrix. Instead, the estimated partial correlations are thresholded post-
hoc. However, the regularization parameter for covariance shrinkage can be estimated
analytically (Ledoit and Wolf, 2003), rendering this approach computationally efficient.

Likewise, various pros and cons can be reported for the different penalty parameter
estimation methods. The (E)BIC has shown excellent performance in case the underlying
networks are sparse (Foygel and Drton, 2010), but it requires the manual setting of an
additional hyperparameter. The cross-validation approach determines the optimal
penalization parameter according to the maximum log-likelihood in cross-validation. This
approach has the disadvantage that it can be computationally expensive and, as shown for
the node-wise LASSO approach (Meinshausen et al., 2006), does not lead to a consistent
model selection. In stability selection, the stability of estimated edge weights is assessed
across different random subsampling runs for a set of penalty parameters, and the smallest
penalty parameter which makes a graph sparse and stable across the different subsamples is
chosen (Liu et al., 2010). Similar to cross-validation, the subsampling routine increases
computation time. For a thorough introduction and discussion of regularized graphical
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models including an extensive Rtutorial, we refer the interested reader to (Epskamp and
Fried, 2018).

2.6 Mixed Graphical Models

GGMs are an instance of undirected graphical models, where variables are assumed to be
multivariate normal distributed. Another classical instance is the Ising model or discrete
Markov Random Field (MRF), in which variables are assumed to be discrete. Complex
omics data, frequently combined with phenotypical data, often contain continuous, discrete,
and count variables. Mixed Graphical Models (MGMs) combine, e.g., the characteristics of
Gaussian Graphical and the Ising model, allowing such combined data to be effectively
analyzed (Lauritzen, 1996). In general, MGMs are probabilistic graphical models, which
reflect the joint probability density function of a set of variables following two or more
different data distributions. They describe the conditional dependency structure of, for
example, one set of variables following a Gaussian, and one set of variables following a
multinomial distribution, simultaneously. Another example would be the joint distribution of
a set of Gaussian variables, a set of multinomial variables, and a set of Poisson variables. In
the popular case of an MGM incorporating both Gaussian and multinomial variables, three
different edge types reflecting conditional dependencies, can be distinguished: edges
between two Gaussian variables, edges between two multinomial variables, as well as edges
connecting a Gaussian and a multinomial variable. Several scaleable algorithms for MGMs
have been proposed (Lee and Hastie, 2015; Cheng et al., 2017; Yang et al., 2014; Chen et al.,
2014; Fellinghauer et al., 2013). Analogously to GGMs, the problem of model overfitting
also exists for MGMs, especially in the context of omics data sets. Similar strategies based
on parameter regularization have been proposed for MGMs, including approaches based on
the pseudo-log-likelihood in combination with /- and group LASSO penalty terms (Lee and
Hastie, 2015; Sedgewick et al., 2016), or node-wise LASSO regressions (Haslbeck and
Waldorp, 2016).

For illustration purposes, we present here an application to the single-cell RNA sequencing
dataset of melanoma metastases introduced earlier. Here, we included, in addition to the
continuous gene-expression levels, a categorical variable that encodes the respective cell
type. This variable contains the following categories: malignant/unknown, T cell, B cell,
macrophage, endothelial cell, cancer associated fibroblast (CAF), and natural killer (NK)
cell. As baseline level, we chose malignant/unknown. We trained the MGM analogous to
(Altenbuchinger et al. 2019) and the model was selected according to BIC. Figure 6 shows
the first order neighborhood of the variable “cell type”. Typical cell type specific genes are
directly connected to the “cell type” node. Importantly, the presence of additional variables,
here the cell type, influences the estimated gene-gene partial correlations, as shown in
Figure 7. Here, we contrast the gene-gene partial correlations estimated by the GGM ()~
axis) with those estimated by the MGM (x-axis). Although the majority coincides, as
indicated by a correlation between GGM and MGM estimates of ~ 1.0, there are several
gene pairs which acquire different partial correlations, as shown in detail in Figure 7b.
Interestingly, genes, which are directly connected to the cell-type node, are frequently
affected, as shown by the red circles. Thus, taking into account possible confounding
variables, such as the cell type, can change the estimated graphs.
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It is also important to note that, once we have specified the joint probability, or equivalently,
when we have learned the GGM/MGM, we can use it to calculate the likelihood of an
observed value, given the neighboring variables. Similarly, we can use the joint probability
to predict unobserved variables. This is illustrated in the upper left corner of Figure 6, where
we give the performance to correctly classify B and T cells, and macrophages in a one-
versus-all classification based on the first order neighborhood of the node “cell type”. For
this aspect see also Friedman (2004) and Altenbuchinger et al. (2019).

3 Software for model learning and network visualization

Numerous softwares and especially /R-packages for GGM and MGM calculation are publicly
available. Table 2 provides an overview of published model estimation software including
the implemented parameter estimation and model selection strategies.

Likewise many software packages for the visualization of graphs exist. One of the most
popular open-source desktop applications is Cyfoscape (Shannon et al., 2003). It allows easy
visualization and network analysis, and is constantly extended by the community. For R
users, the package /graph (Csardi et al., 2006) offers a large range of network visualization
and analysis tools, including interactive plotting. A direct translation of jigraph network
objects to Cytoscape is conveniently enabled by the R-package RCy3(Ono et al., 2015).
Another user-friendly visualization and network analysis R-package is ggraph (Epskamp et
al., 2012), which also allows the direct conversion of ggraph objects into igraph objects.
visNetwork (Almende et al., 2016), threefs (Lewis, 2017), and networkD3 (Gandrud et al.,
2015) facilitate interactive javascript network visualizations. In Python, networks can be
analyzed and visualized using tools such as NetworkX (Hagberg et al., 2008).

4 Applications of Gaussian Graphical Models and its extensions in omics

sciences

Gaussian Graphical Models and extensions thereof are frequently applied in omics data
analysis. Here, we give several examples to illustrate the scope of applications, without the
intention of being complete.

4.1 Gaussian Graphical Models in single omics data analysis

Reverse engineering of gene-regulatory networks.—A popular application of
GGMs is in the inference of biochemical pathways and gene regulatory networks. De La
Fuente et al. (2004) were among the first to propose the use of partial correlation networks
to infer biochemical interactions from large-scale observational datasets. They applied this
method to microarray data of Saccharomyces cerevisiae, identified sub-networks containing
a high proportion of functionally related genes, and generated new hypotheses about the
biological function of several genes.

Wille et al. (2004) modified the GGM by only considering small sub-networks of three
genes at a time to explore the dependence between two of the genes conditioned on the third.
They applied this approach to reconstruct two isoprenoid pathways in Arabidopsis thaliana
and to identify candidate genes for cross-talk between these pathways.
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Werhli et al. (2006) compared pairwise correlation networks, GGMs, and Bayesian networks
to reconstruct gene-regulatory networks. They report a better performance of GGMs and
Bayesian networks in comparison to pairwise correlation networks for Gaussian
observational data, but no significant differences between GGMs and Bayesian networks in
general. For interventional data from gene knockout and over-expression experiments,
Bayesian networks outperformed the other two methods.

Ma et al. (2007) used GeneNetto reveal locally coherent subnetworks in Arabidopsis
thaliana, which could be related to biochemical pathways, cell wall metabolism, and cold
responses. Since these subnetworks also incorporated genes with unknown functions, Ma et
al. (2007) suggested to employ gene networks reconstructed by GGMs as hypothesis
generating tools for future studies on plant metabolism and stress response.

Xue et al. (2015) reconstructed a regulatory network of paracrine signals from single-cell
data. They investigated the role of paracrine signaling in cytokine secretion by macrophages
in response to stimulation of Toll-like receptor 4 (TLR4) with lipopolysaccharide (LPS). In
this context, a GGM on single-cell data defined a regulatory network of paracrine signals,
which could be experimentally validated through neutralization of individual cytokines by
antibodies. Here, Tumor necrosis factor-a (TNF-a) turned out to be the most influential
cytokine, which was necessary, but not sufficient, for secretion of interleukin-6 (IL-6) and
IL-10.

Tissue-specific regulatory networks of transcription and splicing.—Saha et al.
(2017) proposed a GGM-hased framework to construct Transcriptome-Wide Networks
(TWNSs). These TWNSs combine total gene expression levels with relative isoform
abundances within one sparse network that potentially covers the interplay between splicing
regulation and transcription. This method was applied to RNA sequencing data from the
Genotype-Tissue Expression (GTEX) project to build tissue-specific TWNSs. The authors
identified several hubs that were enriched for splicing and RNA binding genes. They further
screened for tissue-specific edges and identified 10 groups of related tissues.

Identification of gene signatures to predict survival benefit through
therapeutic intervention for patients with resected non-small cell lung cancer.
—Tang et al. (2013) constructed a gene expression network using the SPACE method on a
set of genes associated with survival time in a multivariate Cox model adjusted for age,
cancer stage, and sample processing site. In this survival-associated gene network, they
identified 18 hub genes and combined them into a multivariate signature which was
subsequently assessed in several independent datasets across different microarray platforms.
Interestingly, the 18-hub-gene-signature outperformed a signature comprising the 18 top-
ranked genes of the initial Cox survival analysis as well as a signature comprising all genes
significantly associated with survival time. The authors investigated possible reasons for the
performance gain of the 18-hub-gene signature by analyzing the information content of the
individual gene signatures. Here, the 18-hub-gene signature comprised genes with less
information redundancy than the 18-top-ranked-gene signature and thus was able to capture
more patient variability. In a second step, 12 out of these 18 hub genes were identified to be
either synthetic lethal or to have genetic alterations in lung cancer based on literature. The
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predictive performance for adjuvant chemotherapy response of this 12-gene-signature was
subsequently tested in two independent cohorts across two microarray platforms.

Gaussian Graphical Models in the analysis of high-grade serous ovarian
cancer.—Svoboda et al. (2018) constructed GGMs of different sparsity from mRNA
expression data of the organic anion transporters encoded by SLCO genes. The network
sparsity was calibrated by varying the penalty parameter and the corresponding gene
networks were summarized by first principal components. These principal components were
subsequently used together with all single gene expression values not summarized in the
network and clinicopathological parameters, to explain variation in patient’s overall survival.
The model with the highest percentage of explained variation was finally selected, which
incorporated two putative co-regulated networks ABCBZIABCB3/ABCC4 HERZ and
ABCC3/SLCO2ZBI. The first subnetwork was suggested to be important for immune
regulation, whereas the latter appeared to be relevant for estrogen turnover.

Metabolite - metabolite association networks and the reconstruction of
metabolic reactions and pathways from observational data.—One of the first
applications of partial correlation networks in metabolomics was done by Ursem et al.
(2008), where associations between metabolites across tomato genotypes were investigated.
Here, partial correlation networks were compared with correlation networks. The authors
identified both consistent metabolite - metabolite associations and distinct associations that
differed between both measures.

Similar to the different applications of GGMs for the reconstruction of gene regulatory
networks, several studies used GGMs to reconstruct metabolic biochemical pathways from
observational data. Cakir et al. (2009) systematically investigated the inference power of
different pathway reconstruction methods for various in silico steady state data sets. They
simulated three different data sets based on the threonine synthesis pathway of Escherichia
coli, the glycolysis pathway of Saccharomyces cerevisiae, and the central metabolism
pathway of Escherichia coli, and perturbed the data taking into account enzymatic, intrinsic,
and environmental variability. The authors assessed the ability to reconstruct metabolic
pathways of conditioned networks (including both first-order partial correlation networks
and GGMs), and relevance networks based on Pearson correlation or entropy-based mutual
information. Here, conditioned networks were superior compared to relevance networks,
which was attributed to their ability to distinguish direct from indirect effects.

A systematic evaluation of the reconstruction performance of GGMs in comparison to
Pearson correlation relevance networks for many different metabolic reactions on both
simulated and real metabolic data sets was done by Krumsiek et al. (2011). The GGM
inferred from a large-scale population based serum data set displayed a modular structure
with respect to different metabolite classes, and appeared to be robust against the choice of
samples and even sample size as long as V> p for covariance matrix inversion. They further
illustrated that high partial correlation coefficients corresponded to known metabolic
reactions in their analysis.
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Prediction of unknown Immunoglobulin G glycosylation reactions.—Besides the
application of GGM s for the reconstruction of metabolic pathways, they were further used to
infer reactions in the Immunoglobulin G (IgG) glycosylation pathway (Benedetti et al.,
2017). The authors could show that edges of a GGM, calculated from plasma IgG glycomics
data, mostly reflected enzymatic steps in the known 1gG glycosylation pathway. They
predicted 22 new biochemical reactions based on the GGM and tested those with a genome-
wide association study in an independent cohort as well as different in vitro experiments.
They could experimentally validate that at least one predicted reaction occurs in vitro and
that one rejected reaction does not occur.

Network differences between individual subpopulations.—Valcarcel et al. (2011)
compared partial correlation networks of nuclear magnetic resonance (NMR)-based
lipoprotein subclasses of a large cohort of 4,406 individuals with normal fasting glucose to a
cohort of 531 subjects with prediabetes. They discovered several changes in lipoprotein
metabolism related to diabetic dyslipidemias.

4.2 Gaussian Graphical Models in multiomics data integration

Identification of unknown metabolites with Gaussian Graphical Models
incorporating genetic and metabolic information.—To facilitate the identification of
yet unidentified metabolites from untargeted metabolomic measurements in a large-scale
population based study, Krumsiek et al. (2012) combined a genome-wide association
analysis of 655,658 genotyped single-nucleotide polymorphisms (SNPs) on concentrations
of serum metabolites with a GGM derived from both identified and unidentified metabolites
and literature based metabolic pathway information. They were able to experimentally
confirm nine specific metabolite identity predictions.

Integrating the genome with the metabolome in obesity research.—Valcércel et
al. (2014) combined a differential GGM network approach with a genome-wide correlation
analysis to study the effect of genetic variants on the metabolome. The authors constructed
two metabolite association networks for obese and for normal weight individuals using
GenelNet. They assessed differences between the two networks by permutation tests and
constructed a differential network, where edges represent significantly different metabolite
partial correlations between the two physiological groups. In a second step, a genome-wide
correlation analysis identified genetic variants associated with metabolic network
differences. The authors validated their approach, called genome metabolome integrated
network analysis (GEMIN:i), in simulation studies covering a large range of data variation.
This approach revealed similar patterns of metabolic network differences across two
independent cohorts. The genome-wide correlation analysis of 318,443 SNPs with
metabolite network differences revealed 24 loci significantly associated with differences in
associations between total lipids in medium very-low-density lipoprotein particles (VLDL)
and very-large VLDL.

Investigating the effects of diet induced weight changes on adipose tissue.—
Montastier et al. (2015) investigated the interactions among bio-clinical information, fatty
acid as well as mRNA levels in adipose tissue of women following a weight-reducing diet
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program. For each dataset, intra-omic networks were calculated utilizing GGMs, and a
combined network across the different omics layers was achieved by regularized canonical
correlation analysis. A subsequent comparison of network component clusters highlighted
the central role of myristoleic acid, a minor adipose tissue fatty acid not provided by food, in
fat mass reduction.

4.3 Applications of Mixed Graphical Models with (multi-)omics data

Identification of molecular pathways that underlie age-related diseases and
associated comorbidities.—Graphical Random Forests were employed to integrate
preselected epigenomics, transcriptomics, glycomics, and metabolomics data known to be
associated with chronological age with various disease phenotypes in 510 women of the
TwinsUK cohort (Zierer et al., 2016). Seven individual network modules were identified,
representing distinct aspects of aging, namely gene expression, lung function, arthritis, bone
density, fat and lean mass related variables, as well as liver and kidney function. They were
connected by distinct hubs such as urate that connects renal function with body composition
and obesity, or oxytocin, that connects body composition and inflammation. These hubs
might represent molecular markers of the aging process and might drive disease
comorbidities.

Data integration in the context of chronic kidney disease.—Altenbuchinger et al.
(2019) used MGM s for an integrative analysis of NMR metabolic fingerprints with
comprehensive patient data, such as clinical, phenotypic, and demographic parameters from
the German Chronic Kidney Disease (GCKD) study (Eckardt et al., 2011; Titze et al., 2014).
Here, the MGM was used to estimate the joint probability of this complex feature space
including, in total, 879 different variables. It was shown that the model provides associations
that remain robust with respect to subsequent covariate adjustment. Thus, MGMs were not
primarily used to gain insights into the underlying biochemical reactions and pathways.
They were used as a data screening tool that returns meaningful associations, which also
persist if the data are analyzed epidemiologically accounting for confounding variables
selected based on expert knowledge. Using the MGM, the authors identified associations
between cardiac arrhythmia and trimethylamine-N-oxide (TMAQ), as well as cardiac
infarction and TMAQ. These associations persisted after appropriate covariate adjustment.
Interestingly, the MGM revealed associations which remained hidden or underestimated in
univariate screening approaches. For instance, alcohol consumption was one of the least
prominent risk factors of gout in a univariate screening analysis, but was almost the
strongest risk factor according to the MGM and even surpassed male gender as risk factor.
Moreover, the authors demonstrated the predictive power of linear signatures derived from
the first order MGM neighborhoods of various discrete and continuous nodes.

Causal MGMs for chronic lung disease diagnosis and prognosis.—In
(Sedgewick et al., 2018) the authors used a causal extension of MGMs to analyze disease
diagnosis and progression in a clinical data set from patients with chronic obstructive
pulmonary disease (COPD). Using this approach, they confirmed known causal relationships
and proposed factors that potentially affect the longitudinal lung function decline of COPD
patients.
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Identification of gene pathways associated with breast cancer.—In (Manatakis et
al., 2018) MGMs were extended to incorporate prior knowledge. This method was used to
identify gene pathways differentially regulated between receptor positive (Luminal A and B
subtypes) and receptor negative (HER2 and Triple-Negative) breast cancer subtypes.

5 Extensions of Gaussian Graphical Models

5.1 Modeling network differences between Gaussian Graphical Models

Networks can differ between phenotypes or diseases. For example, in cancerous tissue other
cellular processes are carried out than in healthy tissue, which is also reflected in the
underlying transcriptional networks. GGMs were extended by several authors to incorporate
network differences (Danaher et al., 2014; Zhao et al., 2014). The basic concept is illustrated
in Figure 8. Figure (a) and (b) show two partial covariance networks, corresponding to two
different phenotypes A and B, with precision matrices Q4 = Zgl and Qg = Z[;l respectively.

Figure (c) shows the difference Q 4 — Qg, which can be understood as the differential partial
covariance network. Thus, we investigate the differential wiring of networks.

In (Danaher et al., 2014), these differential networks were estimated using a penalized log-
likelihood, where both edge weights and edge weight differences were penalized by two
distinct penalty parameters. While the first penalty induces sparseness in edges, the second
enforces edge weights to be equal among the compared sample groups. As a consequence,
both edge differences and edge weights are modeled simultaneously. Thus, information is
shared across sample groups. As an example application, the differential network was
estimated from epithelial cells sampled from patients with lung cancer versus those of
controls.

In (Zhao et al., 2014), a similar method was applied to study stage 11l and IV ovarian
cancers, where the differential networks were built between molecular tumor subtypes.

5.2 Graphical Models with prior knowledge

The estimation of GGMs can be improved by taking advantage of prior biological
knowledge. Such prior knowledge can be based on known relationships between variables
such as a functional association between two genes or a biochemical pathway directly
connecting two metabolites. Usually, a priori known edges are assigned a lower weight in a
penalized regression setup, which increases the likelihood of being recovered. Several
authors suggested algorithms: Wang et al. (2013) modify the node-wise neighborhood
selection method of Meinshausen et al. (2006), Li and Jackson (2015) and Zuo et al. (2017)
the graphical LASSO algorithm, and Yu et al. (2017) the SRACE method.

The incorporation of prior knowledge in the MGM estimation procedure was proposed by
Manatakis et al. (2018). This method, called piMGM, is also able to score the reliability of
provided prior information, thus enabling the identification of gene pathways, which appear
to be active in a specific data set.
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5.3 Learning gene networks under SNP perturbations

In (Zhang and Kim, 2014), gene regulatory networks were estimated using a GGM based
approach, called Conditional Gaussian Graphical Model (CGGM), that learns the network
along with expression quantitative trait loci (eQTLs). Those were considered as naturally-
occurring perturbations of the gene regulatory system. The model provides a
characterization of how the direct genetic perturbations propagate through the gene network
to perturb other genes indirectly. A successor of this method, called Perturb-Net, models the
gene network that modulates the influence of SNPs on phenotypes, using again SNPs as
naturally occurring perturbation of a biological system (McCarter et al., 2018).

5.4 Prediction of protein residue-residue contacts by inverse covariance estimation

Protein structure prediction is one of the essential problems in molecular biology. Here,
information about amino acid residues which are in contact with each other can substantially
reduce the computational complexity. Multiple-sequence alignment (MSA) can be used to
predict these contacts, since correlated mutations can be indicative of residue-residue
contacts: given a contacting residue is mutated, its partner will more likely be mutated to a
complementary amino acid. Otherwise, it would perturb the contact. In this context,
measures of correlation based on binary amino acid variables are used (Halabi et al., 2009).
However, correlation does not distinguish direct from indirect effects, i.e. a direct coupling
between residue A and B, and residue B and C can result in an observed correlation between
A and C. Thus, it is natural to use partial correlations which allow to distinguish these
indirect from direct couplings. The seminal work in this context is (Jones et al., 2011). Here,
the graphical LASSO algorithm (Friedman et al., 2008) was used in combination with a
shrinking of the sample covariance as, e.g., in (Schéafer and Strimmer, 2005), to improve the
convergence of the graphical LASSO. This method, called PSICQOV, substantially improved
predictions compared to the best performing normalized mutual information approach.

5.5 Graphical models for repeated multivariate time-series data

So far, we restricted our discussion on stationary graphical models meaning that we
estimated the dependency structure between variables measured at one time-point in
different samples (cross-sectional). In contrast, time-series experiments repeatedly measure
variables in individual samples at multiple time-points such as in prospective cohort studies
that include multiple repeated measurements at regular intervals. Graphical models of time-
series data can provide information about dynamic or delayed interactions and
contemporaneous interactions amongst genes, metabolites, or any other omics trait.
Therefore, time-series chain graphical models (TSCGMs), as proposed by Abegaz and Wit
(2013), combine GGMs for stationary undirected interactions at one time-point and dynamic
Bayesian networks for dynamic or delayed directed interactions from one time-point to a
consecutive time-point. Abegaz and Wit (2013) employed the TSCGM to explore regulatory
networks of mammary gland gene expression in mice and circadian gene expression in
Arabidopsis thaliana.
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5.6 Sparse and compositionally robust Inference of Gaussian Graphical Models

Most omics measurements are not quantitative: we do not measure the number of RNAs in a
specimen but only something which is proportional to this number. This proportionality
factor depends on a number of factors such as sequencing depths, sensitivity of the
technology, and quality of the material. That makes data “compositional” meaning that we
only measure compositions. In studies of microbial communities (16S ribosomal RNA
(rRNA) sequencing), this property received particular attention (Lin et al., 2014;
Altenbuchinger et al., 2017a), although it applies similarly to other omics read outs, such as
transcriptomics and metabolomics (Zacharias et al., 2017; Altenbuchinger et al., 2017b). In
Kurtz et al. (2015), SPIEC-EASI (SParse Inversk Covariance Estimation for Ecological
Association Inference) was proposed, which is a statistical method for the compositionally
robust inference of microbial ecological networks. SPIEC-EASI combines data
transformations developed for compositional data analysis with Gaussian graphical
modeling. SPIEC-EASI was demonstrated to outperform state-of-the-art methods with
respect to edge recovery under a variety of scenarios. Moreover, it predicted previously
unknown microbial associations using data from the American Gut project (AGP; http://
americangut.org).

6 Summary and conclusion

GGMs are among the most popular methods to infer networks from omics data. Their
estimation was approached by various strategies. Software for GGM inference and
visualization is readily available as R and Python packages or as stand-alone software or
interface. In fact, they became standard analysis tools. Reasons are that they have a
straightforward interpretation as conditional independences, which allows to distinguish
direct from indirect effects, they can be used for realistic data simulation (Emmert-Streib et
al., 2019), and they are computationally efficient.

GGMs are also extended in various aspects, which are less well known to the community.
Those allow, for instance, to incorporate other data types (MGMs and CGGMs), to account
for compositeness of omics data, to include causality, to estimate GGMs over different
categories (or phenotypes), and to include prior knowledge such as biochemical pathways.
Here, we gave (1) the theoretical background of GGMs to allow the computational biologist/
statistician to apply and to interpret GGMs in a cautious way, (2) we presented extensions
that could be the better choice for his/her biological problem, and (3) we illustrated the
scope of possible applications. GGMs are likely to play a key role in the analysis of
upcoming omics data, and they will be the backbone of upcoming methods that are adapted
to new biological problems. Here, we hoped to stimulate this process of applications and
developments of GGMs.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights
. Gaussian Graphical Models (GGMs) infer statistical dependencies between
variables.
. They are popular tools for omics data analysis.

. A general overview of GGMs and Mixed Graphical Models (MGMs) is

provided.
. Their scope of application in the analysis of omics data is described.
. Important extensions of GGMs and MGM s are reviewed.
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Figure 1: Scatterplots before and after variable adjustment.
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Figure (a) shows the scatterplot of 1000 measurements between two multivariate normal
random variables X'and Y. Figure (b) takes into account the effect of a third random variable
Z, which is associated with both Xand Y. Here, we calculated the residues ey and ey after a
linear regression of X'with Zand of Y'with Z We observe that the correlation between X
and Yin (a) can be entirely explained by variable Zas shown in Figure (b). The
corresponding Pearson correlation coefficients are given in the lower right corners. Data
were simulated from a three-dimensional multivariate normal distribution, (X, ¥, 27~ MO,
Q~1), where the precision matrix Q is defined by a1 = wpr = w33 = 1, w31 = w3p = w13 =
aw»3 =—0.7 and 0 elsewhere, as outlined in the Supplementary File 1.
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Figure 2: Graphical representation of conditional independence.
Figure (a) illustrates the concept of conditional independence. Variables Xand Yare

conditionally independent given Z Consequently, no edge is drawn between Xand Y; while
there is an edge between Xand Z and Yand Z Figure (b) shows an exemplary precision
matrix Q. Figure (c) shows the corresponding network visualization, and (d) illustrates the
first order neighborhood of the variable 14, which includes the node itself and the two
adjacent nodes 1, and vj.
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Figure 3: Distribution of gene-gene Pearson correlations and full order partial correlations.
Figure (a) shows the distribution of gene-gene Pearson’s correlation coefficients estimated

for single-cell RNA sequencing data of melanoma metastases from Tirosh et al. (2016).
Figure (b) shows the corresponding distribution of full order partial correlations estimated
using the R package Gene/Net (Schaefer et al., 2015). The black dashed lines in (a) mark the
highest and lowest percentile (99% and 1%) of (anti-)correlations. In (b), the corresponding
lines are shown for partial correlations. Notice that for both (a) and (b) the y~axis is on log-
scale.
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Figure 4: Gaussian Graphical Model for single-cell RNA sequencing data of melanoma
metastases (Tirosh et al., 2016).

Figure (a) displays the complete GGM with nodes representing the 1,000 most abundant
genes in the data set and edges representing significant (g-value < 0.05) full order partial
correlations. The strength of an association is reflected by the edge intensity from strong
positive (dark blue) to strong negative association (dark red). Figure (b) displays the first
order neighborhood of CD3D, which encodes a protein of the T-cell receptor/CD3 complex.
The corresponding R code to reproduce the results is given in the Supplementary File 1.
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Figure 5: Partial correlation estimation accuracy.
We simulated data for p =100 variables and 248 true edges (5% of all possible edges) for

different sample sizes. The y~axis gives the deviation between partial correlation estimates
and the ground truth, calculated as || pestimate — ptme”%-, where gestimate IS the estimate, pyrye

the ground truth, and ||.|| zthe Frobenius norm. Here, the red curve is the estimate obtained
from covariance matrix inversion, which is only possible for sample sizes N> p. N= pis
indicated by the vertical black dotted line. The blue line shows the corresponding result
using the covariance shrinkage approach of Schaefer et al. (2015). We observe that
covariance shrinkage provides estimates for sample sizes NV < pand that estimates improve
considerably for moderate sample sizes /> p. Note that both axes are on a logarithmic
scale.
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Figure 6: First order neighborhood of the node “cell type”.
The right figure shows the neighborhood of the categorical variable “cell type”. Edge

intensity reflects the strength of an association from strong positive (dark blue) to strong
negative association (dark red). The node color indicates if the selected gene is specific for B
cells (red squares), macrophages (green circles), and T cells (blue circles). T-cell genes are,
e.g., CD3D, CD3E, CD3G, which encode proteins of the T-cell receptor-CD3 complex,
CD2, that encodes a surface antigen present on all peripheral blood T cells, and Interleukin
32 (/L32), which encodes a cytokine increased in the activation of T cells. B-cell related
genes (red) are, e.g., CD37, which encodes a cell-surface protein whose expression is
restricted to cells of the immune system, with highest expression in mature B cells, and
HLA-DRA, which is one of the HLA class Il alpha chain paralogues that is expressed in
antigen presenting cells. The only selected macrophage gene was Lysozyme (LYZ).
Lysozymes are associated with the monozyte-macrophage system and enhance the activity
of immunoagents. The corresponding classification performance in differentiating T and B
cells, and macrophages from the remaining cells is shown in the upper left corner.
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Figure 7: Partial correlation estimates GGM versus MGM.
Figure (a) compares the partial correlations estimated using a GGM ()~axis) with those

estimated using a MGM that additionally contains the cell type as a discrete node (x-axis).
For better comparability, we estimated both the GGM and MGM as described in
Altenbuchinger et al. (2019). Figure (b) shows the orange area indicated in (a). Red circles
correspond to genes that are directly connected to the cell-type node in the MGM approach.

Biochim Biophys Acta Gene Regul Mech. Author manuscript; available in PMC 2021 June 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnue Joyiny

1duosnuely Joyiny

Altenbuchinger et al. Page 30

© @ @ J @
©

Figure 8: Differential networks.
Figure (a) shows an example network Q 4, corresponding to phenotype A, (b) shows the

corresponding network of phenotype B. Both networks share similarities, but differ in
selected edges, yielding the differential network Q 4 — Qgin (c). Blue edges encode positive
associations and red edges negative associations.
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Table 1:

Glossary of general terms in probabilistic graphical modeling.

General term

Short description

Pearson correlation

measure of linear relationship between two variables, can take values between -1 and 1

first/second order partial
correlation

correlation between two variables corrected for presence of one/two other variables at a time, can take
values between -1 and 1

full order partial correlation

correlation between two variables corrected for presence of all other variables under investigation, can take
values between -1 and 1

probability distribution AX =
X)

gives the probability that a random variable X'takes on the value xin an experiment

statistical independence

two random variables Xand Y arestatistically independent if the probability that X will take on the value x
does not affect the probability that Y'will take on the value y and vice versa

conditional independence

two random variables X'and Yare conditionally independent given the random variable Zif the probability
that X'will take on the value x does not affect the probability that Y'will take on the value y’and vice versa
given that Zequals z

probabilistic graphical model
(PGM)

describes conditional dependency structure of a set of random variables and represents it in a graph

node/vertex

represents one variable in PGM

edge

represents conditional dependency between two vertices given all other vertices in PGM; absence of an edge
encodes conditional independency between two vertices given all remaining vertices

neighbor of vertex v;

vertex which is adjacent, i.e. directly connected by an edge, to vertex v;

first order neighborhood of
vertex v;

complete set of neighbors of vertex v;

precision matrix

encodes conditional dependencies of PGM, whereas 0 typically represents conditional independence
between two vertices

Gaussian Graphical Model
(GGM)

PGM with only Gaussian distributed variables

discrete Markov Random Field

PGM with only discrete variables

Mixed Graphical Model
(MGM)

PGM with mixed variable types, typically Gaussian and categorical variables

parameter regularization

penalization of complex models to reduce risk of overfitting

overfitting

the estimated model too closely describes the underlying relationships in the training data and is not
generalizable to independent data sets

probabilistic graphical model
learning

determining the presence and strength of each individual edge in a PGM

probabilistic graphical model
selection

selection of one specific PGM out of a set of estimated PGMs based on the optimization of a certain model
selection criterion
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