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Abstract

Macroautophagy (hereafter referred to as autophagy) is an evolutionarily conserved cellular 

process capable of degrading various biological molecules (e.g., protein, glycogen, lipids, DNA, 

and RNA) and organelles (e.g., mitochondria, endoplasmic reticulum, ribosomes, lysosomes, and 

micronuclei) via the lysosomal pathway. Ferroptosis is a type of oxidative stress-dependent 

regulated cell death associated with iron accumulation and lipid peroxidation. The recently 

discovered role of autophagy, especially selective types of autophagy (e.g., ferritinophagy, 

lipophagy, clockophagy, and chaperone-mediated autophagy), in driving cells towards ferroptotic 
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death motivated us to explore the functional interactions between metabolism, immunity, and cell 

death. Here, we describe types of selective autophagy and discuss the regulatory mechanisms and 

signaling pathways of autophagy-dependent ferroptosis. We also summarize chemical modulators 

that are currently available for triggering or blocking autophagy-dependent ferroptosis and that 

may be developed for therapeutic interventions in human diseases.

Graphical Abstract

eTOC Blurb

Liu et al describes types of selective autophagy and discuss the regulatory mechanisms and 

signaling pathways of autophagy-dependent ferroptosis. A deeper understanding of the process 
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and function of autophagy-dependent cell death is critical for creating innovative therapeutic 

strategies for oxidative stress-related diseases.
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Introduction

Cell homeostasis is controlled by an integrated system that maintains the balance between 

biosynthesis (anabolism) and decomposition (catabolism). Macroautophagy (hereafter 

referred to as autophagy), which was first described in the 1950s, is a phylogenetically 

conserved catabolic process that plays a fundamental role in removing or clearing the 

accumulation of intracellular waste (Klionsky and Emr, 2000; Levine and Kroemer, 2019; 

Yang and Klionsky, 2010). After its breakdown by autophagy, cellular garbage, such as 

aggregated protein and damaged organelles, can be recycled for macromolecular synthesis 

and energy production. In addition, elements of the autophagic machinery can be used to 

eliminate invading pathogens or engulfed apoptotic cells via lysosomes. Thus, autophagy is 

generally beneficial for cellular survival in response to environmental stresses ranging from 

nutrient starvation to growth factor depletion, hypoxia, temperature change, and infectious 

pathogens (Kroemer et al., 2010; Murrow and Debnath, 2013). Increased autophagy appears 

to be widely observed during cell death, and the term “autophagic cell death” has been used 

to describe type II cell death according to morphological alterations (Kroemer and Levine, 

2008). Excessive or dysfunctional autophagy can result in cellular killing. In particular, the 

term “autophagy-dependent cell death” was recommended by the Nomenclature Committee 

on Cell Death to describe a form of regulated cell death (RCD) that mechanistically depends 

on the autophagic machinery or components thereof (Galluzzi et al., 2018). Autophagy-

dependent cell death has been implicated in several diseases such as cancer, 

neurodegeneration, and ischemia-reperfusion injury (Bialik et al., 2018; Denton and Kumar, 

2019). Mechanistically, it involves the progressive cellular consumption or degradation of 

cytoprotective proteins, although the specific signaling cascade remains to be elucidated 

(Bialik et al., 2018; Denton and Kumar, 2019).

Cell death has been divided into two categories: accidental cell death and RCD (Galluzzi et 

al., 2018). Unlike accidental cell death that lacks clear molecular signals and regulators, 

RCD is an active process involving tightly controlled mechanisms that can be targeted by 

genetic manipulations or drugs. The interplay between autophagy and cell death decides cell 

fate by activating integrated signaling pathways and influencing gene expression programs. 

Autophagy can coincide with apoptosis, the most common form of the RCD, as well as with 

non-apoptotic forms of RCD including ferroptosis (Zhou et al., 2019). Ferroptosis was 

initially described as a unique type of RCD observed in oncogenetic RAS-mutated cancer 

cells that is distinct from apoptosis, necrosis, and autophagy at the morphological, 

biochemical, and genetic levels (Dixon et al., 2012). However, increasing evidence 

challenges these early observations and suggests that the autophagic machinery, at least 

under certain conditions, contributes to ferroptotic cell death (Kang and Tang, 2017; Zhou et 
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al., 2019). Autophagy-dependent ferroptosis may contribute to anticancer therapies, 

inflammation responses, and tissue fibrosis (Kang and Tang, 2017; Zhou et al., 2019). In this 

review, we introduce the basic process of autophagy and ferroptosis, describe types of 

selective autophagy, and discuss recent advances in understanding the molecular mechnisms 

of autophagy-dependent ferroptosis and its regulation, placing special emphasis on the 

biomedical implications of these findings.

The molecular machinery of autophagy

Autophagy is a dynamic process that relies on the formation and maturation of specific 

membrane structures such as phagophores, autophagosomes, and autolysosomes (Dikic and 

Elazar, 2018) (Fig. 1). The cup-shaped phagophores (also known as the isolation membrane) 

can be generated from multiple sources (e.g., the endoplasmic reticulum [ER], 

mitochondria-ER associated membrane, Golgi complex, plasma membrane, and recycling 

endosomes) to engulf cytoplasm (Tooze and Yoshimori, 2010). The subsequent expansion 

and closure of the phagophores lead to the formation of typical double-membrane structures, 

which are termed autophagosomes. In a subsequent step, autophagosomes fuse with 

lysosomes to generate autolysosomes, where the degradation of the cargo proceeds by 

lysosomal hydrolytic enzymes acting at low pH. Mechanistically, autophagy-related (ATG) 

proteins are core components of the machinery that drives the initiation, progression, and 

maintenance of autophagy. Genetic screens in yeast have led to the identification of over 40 

ATG genes, many of which have mammalian homologs. These ATG proteins can interact 

with other factors governing phagophore and autophagosome formation, which may rely on 

multiple posttranslational modifications (Dikic and Elazar, 2018; Xie et al., 2015). Although 

the molecular details are still not completely understood, members of the soluble N-

ethylmaleimide-sensitive factor attachment protein receptor (SNARE) family (e.g., syntaxin 

17 [STX17], synaptosome-associated protein 29 [SNAP29], and vesicleassociated 

membrane protein 8 [VAMP8]), the homotypic fusion and vacuole protein sorting (HOPS) 

complex, certain cytoskeleton motor proteins (e.g., dynein), and regulatory lipids (e.g., 

phospholipids) are involved in the formation of autolysosomes (Nakamura and Yoshimori, 

2017).

The ULK1 complex

The unc-51 like autophagy activating kinase (ULK) family consists of five serine/threonine-

specific protein kinases: ULK1, ULK2, ULK3, ULK4, and serine/threonine kinase 36 

(STK36). ULK1 and ULK2, the mammalian orthologs of yeast Atg1, drive the formation of 

the phagophore through binding to ATG13, RB1-inducible coiled-coil 1 (RB1CC1/FIP200, 

ortholog of yeast Atg17), and ATG101. Binding to ATG13 or RB1CC1 increases the 

stability and kinase activity of ULK, which is partly regulated by ATG101-dependent 

ATG13 phosphorylation (Mercer et al., 2009). Moreover, ULK1 can phosphorylate itself as 

well as ATG13 and RB1CC1 during autophagy induction. ULK1 and ULK2 may have some 

functional redundancy in autophagy induction, although they share only 52% amino acid 

identity (Lee and Tournier, 2011). The formation of the ULK1-ATG13-ATG101-RB1CC1 

complex is determined by the status of intracellular energy and nutrients. This complex can 

be activated under starvation via the inhibition of the mechanistic target of rapamycin kinase 

Liu et al. Page 4

Cell Chem Biol. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



complex 1 (MTORC1, containing MTOR; regulatory associated protein of MTOR complex 

1 [RPTOR]; MTOR associated protein, LST8 homolog [MLST8]; DEP domain containing 

MTOR interacting protein [DEPTOR]; and AKT1 substrate 1 [AKT1S1/PRAS40]) or via 

the activation of the energy sensor 5’-AMP-activated protein kinase (AMPK) (Kim et al., 

2011). Under starvation conditions, MTORC1 and AMPK directly regulate ULK1 

(de)phosphorylation at multiple sites. In addition to phosphorylation, ULK1 undergoes 

acetylation and ubiquitination (Ub) as an alternative regulatory mechanism (Lin et al., 2012; 

Nazio et al., 2013). Many phosphorylation substrates of ULK1, such as ATG9A (a 

lipidembedded protein for phagophore membrane cycling) (Zhou et al., 2017), Beclin 1 

(BECN1; a mammalian homolog of yeast Vps30/Atg6) (Park et al., 2018; Russell et al., 

2013), and autophagy and beclin 1 regulator 1 (AMBRA1) (Russell et al., 2013), have been 

identified to regulate the formation of phagophores or autophagosomes. The recruitment of 

ULK1 to the phagophore assembly site may involve the Golgi-localized WW domain 

containing adaptor with coiled-coil (WAC), a positive regulator of autophagy (Joachim et al., 

2015). Thus, the ULK1 complex is an important signal node, translating multiple protein 

phosphorylation signals into the initiation of autophagy.

The PIK3C3 complex

The PIK3C3 complex contains the catalytic subunit phosphatidylinositol 3-kinase catalytic 

subunit type 3 (PIK3C3, an ortholog of yeast Vps34) that converts phosphatidylinositol 

(PtdIns) into PtdIns-3-phosphate, BECN1, and phosphoinositide-3-kinase regulatory subunit 

4 (PIK3R4, a mammalian homolog of yeast Vps15), which can be activated by the ULK1 

complex. This core PIK3C3 complex can further form several subcomplexes that involve 

distinct co-factors, such as the PI3KC3-C1 complex (containing ATG14) (Fan et al., 2011), 

the PI3KC3-C2 complex (containing UV radiation resistance associated [UVRAG]) (Liang 

et al., 2006), and the rubicon autophagy regulator (RUBCN)-containing complex (Tabata et 

al., 2010). Functionally, the PI3KC3-C1 complex is responsible for the formation of the 

phagophore assembly site, membrane nucleation, elongation, and autophagosome formation. 

The PI3KC3-C2 complex enhances, whereas the RUBCN complex suppresses, 

autophagosome maturation. Accordingly, there are multiple positive and negative feedback 

loops involved in the regulation of PIK3C3 complex activity through different BECN1-

binding proteins, such as ULK1 (Park et al., 2018), BCL2 apoptosis regulator (BCL2) 

(Pattingre et al., 2005), BCL2 like 1 (BCL2L1/BCLXL) (Oberstein et al., 2007), high 

mobility group box 1 (HMGB1) (Tang et al., 2010b), vacuole membrane protein 1 (VMP1) 

(Molejon et al., 2013), inositol 1,4,5-trisphosphate receptor type 3 (ITPR3/IP3R) (Vicencio 

et al., 2009), PTEN induced kinase 1 (PINK1) (Michiorri et al., 2010), baculoviral IAP 

repeat containing 5 (BIRC5/SURVIVIN) (Niu et al., 2010), and epidermal growth factor 

receptor (EGFR) (Wei et al., 2013). These findings suggest that diversity in the assembly of 

the PIK3C3 complex could be associated with different roles of the autophagic machinery, 

connecting it to other signaling networks. For example, BECN1 and its partners are 

implicated in the control of apoptosis and other types of RCD in both an autophagy-

dependent and -independent manner, indicating the existence of a BECN1-centric network 

that orchestrates cell death and stress responses (Kang et al., 2011).
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The ubiquitin-like conjugation systems

Two ubiquitin-like conjugation systems play key roles in the process of phagophore 

elongation and autophagosome formation. The first system involves the ATG12-ATG5-

ATG16L1 pathway (Hanada et al., 2007). ATG12 was the first identified ubiquitin-like 

protein (Ubl) in autophagy and is covalently conjugated to ATG5 by the E1 enzyme ATG7 

and then the E2 enzyme ATG10. The ATG12-ATG5 conjugate can further interact with 

ATG16L1, a homolog to yeast Atg16, to form a multimeric complex at a phagophore 

assembly site. Structurally, the homo-oligomers of ATG16L1 are required for the production 

of the ATG12-ATG5-ATG16L1 complex. The second system involves microtubule 

associated protein 1 light chain 3 (MAP1LC3, including MAP1LC3A, MAP1LC3B, and 

MAP1LC3C), the first identified protein to associate with autophagosomal structures 

(Kabeya et al., 2000). The turnover of MAP1LC3 between MAP1LC3-I (the cytosolic form) 

and MAP1LC3-II (the lipidated and membrane-associated form) is responsible for the 

formation of the autophagosome and the recruitment of cargo proteins destined for 

lysosomal degradation. This process is initiated by ATG4, the sole cysteine protease that 

cleaves MAP1LC3 at the C terminus to expose a glycine residue (Scherz-Shouval et al., 

2007). MAP1LC3-I is further processed by the E1 enzyme ATG7 and then the E2 enzyme 

ATG3, finally resulting in the formation of phosphatidylethanolamine-conjugated 

MAP1LC3-II through the ATG12-ATG5-ATG16L1 system. As a recycling mechanism, the 

membrane-associated MAP1LC3-II can be cleaved by ATG4 to release free MAP1LC3-I for 

reuse in autophagosome formation (Nakatogawa et al., 2012). Although MAP1LC3-II is the 

most widely used autophagosome marker, other orthologs of yeast Atg8, such as GABA 

type A receptor-associated protein (GABARAP) and GABA type A receptor-associated 

protein like 2 (GABARAPL2/GATE-16) may play similar roles in the formation of the 

autophagosome in mammalian cells (Schaaf et al., 2016); the LC3 and GABARAP proteins 

are collectively referred to as Atg8-family proteins. Protein kinase A-mediated MAP1LC3 

phosphorylation limits its autophagic activity (Cherra et al., 2010). In addition to its role in 

the bulk degradation process, MAP1LC3-II also interacts with cargo receptors (e.g., 

sequestosome 1 [SQSTM1/p62], calcium-binding and coiled-coil domain 2 [CALCOCO2/

NDP52], and optineurin [OPTN]) to regulate the process of selective forms of autophagy. At 

the same time, MAP1LC3-II can be degraded in a lysosome-dependent manner (Mizushima 

and Yoshimori, 2007; Pankiv et al., 2007). Thus, autophagic flux capacity refers to the 

balance between the formation and degradation of autophagosomes or MAP1LC3-II during 

a certain time period (Yoshii and Mizushima, 2017). The measurement of autophagic flux is 

facilitated by the use of various inhibitors targeting the early (e.g., wortmannin, 3-

methyladenine, LY294002, and spautin-1) or late (e.g., bafilomycin A1 and chloroquine) 

stage of autophagy (Table S1), as denoted in specific guidelines (Klionsky et al., 2016).

The types of selective autophagy

Selective autophagy serves as an intracellular quality control mechanism to mediate the 

degradation of specific targets, such as invading pathogens, aggregated proteins, and 

damaged organelles. Mechanistically, specific autophagy receptors are used for cargo 

recognition and degradation, and thus better fulfill the catabolic necessities of the cell in 

response to various types of stress, including cell death stimuli (Gatica et al., 2018). The 
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autophagy receptors function by interacting simultaneously with cargoes and Atg8-family 

proteins. In general, the autophagy receptors interact with lipidated LC3 or GABARAP 

subfamily proteins by LC3-interacting region (LIR) motifs that bind to the LIR docking site 

(LDS) of Atg8 family proteins in a cargo-dependent manner (Johansen and Lamark, 2020). 

The LIR-LDS interaction is also modulated by the upstream regulators of autophagy, such as 

ULK1 and PIK3C3 (Turco et al., 2020). Here, we introduce different types of selective 

autophagy for the degradation of organelles in mammalian cells (Fig. 2) and emphasize the 

mechanisms of action of selective autophagy receptors in providing cargo specificity.

Mitophagy

Mitochondria are intracellular powerhouses that convert oxygen and nutrients into adenosine 

triphosphate (ATP), the chemical energy "currency" of the cell. These branch-like 

organelles, made up of an outer membrane, an intermembrane space, an inner membrane, 

and a matrix, are regulated by mitochondrial dynamics (including fusion and fission), 

biogenesis, and degradation, as well as communication with other organelles (e.g., the ER 

and nucleus). Mitophagy is a well-studied type of selective autophagy that segregates and 

degrades mitochondria through different mechanisms, depending on the context. Mutations 

in PINK1 (a serine-threonine protein kinase) and parkin RBR E3 ubiquitin protein ligase 

(PRKN/PARK2) are implicated in the development of Parkinson’s disease. The PINK1-

PRKN pathway plays a major role in the regulation of mitophagy through a Ub-dependent 

process. Oxidative injury and depolarization of mitochondria can increase PINK1 

accumulation on the outer membrane, and subsequent PRKN recruitment from the cytosol to 

mitochondria. This dynamic change of PINK1 and PRKN leads to the assembly of 

phosphorylated Ub chains on proteins of the outer mitochondrial membrane, which in turn 

recruit multiple cargo receptors (e.g., SQSTM1 (Geisler et al., 2010), OPTN (Wong and 

Holzbaur, 2014), NBR1 (NBR1 autophagy cargo receptor) (Gao et al., 2015), CALCOCO2 

(Lazarou et al., 2015), and Tax1 binding protein 1 (TAX1BP1) (Lazarou et al., 2015) for the 

degradation of mitochondria in a context-dependent manner. This process is significantly 

enhanced by the activation of TANK-binding kinase 1 (TBK1) because TBK1 can directly 

phosphorylate cargo receptors (e.g., SQSTM1, OPTN, CALCOCO2, and TAX1BP1), 

enhancing their binding to cargos and MAP1LC3 (Heo et al., 2015; Heo et al., 2018; Moore 

and Holzbaur, 2016). In contrast, de-ubiquitinating enzymes, such as ubiquitin specific 

peptidase 8 (USP8), USP15, USP30, and USP35, can limit PRKN-mediated mitophagy 

(Wang et al., 2015). In addition to PRKN, other E3 ubiquitin ligases (e.g., mitochondrial E3 

ubiquitin protein ligase 1 [MUL1] (Yun et al., 2014), siah E3 ubiquitin protein ligase 1 

[SIAH1] (Szargel et al., 2016), SMAD specific E3 ubiquitin protein ligase 1 [SMURF1] 

(Orvedahl et al., 2011), and autocrine motility factor receptor [AMFR/GP78]) may elicit 

mitophagy through poorly characterized mechanism (Fu et al., 2013). In addition to Ub-

dependent receptors, Ub-independent receptors (e.g., BCL2 interacting protein 3 like 

[BNIP3L/NIX] (Sandoval et al., 2008), FUN14 domain containing 1 [FUNDC1] (Liu et al., 

2012), BCL2 interacting protein 3 [BNIP3] (O'Sullivan et al., 2015), nipsnap homolog 1 

[NIPSNAP1] (Princely Abudu et al., 2019), nipsnap homolog 2 [NIPSNAP2] (Princely 

Abudu et al., 2019), prohibitin 2 [PHB2] (Wei et al., 2017), two putative yeast Atg32 

orthologs, BCL2 like 13 [BCL2L13] (Murakawa et al., 2015) and FKBP prolyl isomerase 8 

[FKBP8] (Bhujabal et al., 2017)) and mitochondrial membrane phospholipids lipid (e.g., 

Liu et al. Page 7

Cell Chem Biol. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



cardiolipin and ceramide) (Chu et al., 2013) contribute to mitophagy under different 

mitochondrial stresses (e.g., hypoxia or intrinsic stress signals). In addition, the inhibition of 

mitochondrial fission by the depletion of dynamin 1 like (DNM1L/DRP1) or fission, 

mitochondrial 1 (FIS1) reduces the levels of mitophagy, whereas mitophagy deficiency 

increases mitochondrial fragmentation (Dagda et al., 2009; Kageyama et al., 2014). 

Collectively, the molecular machinery involved in mitophagy is complex, and multiple cargo 

receptors and signals are required for the recognition of damaged mitochondria. Impaired 

mitophagy enhances cell death, tissue injury and inflammation in mouse models, suggesting 

a major homeostatic role for this type of selective autophagy (Kang et al., 2016; Li et al., 

2018; Sliter et al., 2018).

Reticulophagy

The ER is a network of tubules and flattened sacs that connects to the nucleus. This 

organelle includes rough and smooth ER, which play a key role in the regulation of protein 

synthesis, folding and secretion, calcium homeostasis, and lipid biosynthesis. The ER also 

undergoes dynamic changes in its morphology and functional properties. ER stress results 

from the accumulation of misfolded proteins and causes the activation of a signaling 

network called the unfolded protein response (UPR). ER stress not only promotes cell 

survival, but also causes cell death when the UPR is overwhelmed. Autophagic structures are 

associated with the ER membrane. The removal of unwanted portions of the ER through 

autophagy, a process called reticulophagy/ER-phagy, is critical for the maintenance of ER 

homeostasis. The level of reticulophagy is remarkably upregulated by ER stress, starvation, 

MTOR inhibition, misfolded protein aggregates, or microbial infection. Up to now, seven 

autophagic cargo receptors, including cell cycle progression 1 (CCPG1) (Smith et al., 2018), 

reticulophagy regulator 1 (RETREG1/FAM134B) (Khaminets et al., 2015), reticulon 3 

(RTN3) (Grumati et al., 2017), SEC62 homolog, preprotein translocation factor (SEC62) 

(Fumagalli et al., 2016), testis expressed 264, ER-phagy receptor (TEX264) (Chino et al., 

2019), atlastin GTPase 3 (ATL3) (Chen et al., 2019), and SEC24 homolog C, COPII coat 

complex component (SEC24C) (Cui et al., 2019) specifically bind to the ER and 

autophagosomal membranes, thus contributing to reticulophagy. RETREG1 in sheets and 

RTN3 in tubules are essential reticulophagy receptors that promote the remodeling and 

scission of ER sheets through the reticulon domains (Grumati et al., 2017; Khaminets et al., 

2015). SEC62 (an ER transmembrane protein) is required for the reticulophagy-mediated 

degradation of ER chaperones (e.g., calnexin [CANX], calreticulin [CALR], and heat shock 

protein family A [Hsp70] member 5 [HSPA5/BiP]), and folding enzymes (protein disulfide 

isomerase family A member 4 [PDIA4/ERp72] and protein disulfide isomerase family A 

member 3 [PDIA3/ERp57]) during cellular recovery from the UPR (Fumagalli et al., 2016). 

CCPG1 (an ER transmembrane protein) can deliver portions of ER carrying insoluble 

proteins to phagophores in pancreatic cells (Smith et al., 2018). TEX264 is an ER-resident 

protein responsible for nutrient starvation-induced reticulophagy and has a particular high 

affinity for Atg8-family proteins (Chino et al., 2019). ATL3 is a GABARAP-binding 

receptor (but not a MAP1LC3 receptor) and plays a major role in starvation-induced tubular 

ER turnover during reticulophagy (Chen et al., 2019). In contrast, SEC24C is required for 

the degradation of RETREG1 and RTN3 during reticulophagy (Cui et al., 2019). In-depth 

characterization of these reticulophagy pathways, which presumably regulate separate stress-
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response pathways, will be important for the development of new approaches for the 

treatment of ER-related disorders, such as diabetes, nonalcoholic fatty-liver disease, and 

Alzheimer’s disease (Smith and Wilkinson, 2017).

Pexophagy

Peroxisomes are membrane-bound organelles containing a wide variety of metabolic 

enzymes that regulate the redox status of specific biomolecules. Selective autophagy of 

peroxisomes, pexophagy, is initiated by the ubiquitination of peroxisomal biogenesis factor 

3 (PEX3, a regulator of the assembly and maintenance of the peroxisomal membrane) 

(Yamashita et al., 2014) or PEX5 (a peroxisomal matrix protein carrying peroxisomal 

targeting signals) (Wang and Subramani, 2017). Unlike PEX5, which is required for 

peroxisome protein import, the functional contribution of PEX3 to peroxisomes remains 

controversial. ATM serine/threonine kinase (ATM)-mediated phosphorylation of PEX5 is 

required for monoubiquitination of PEX5, which in turn promotes the binding between 

PEX5 and SQSTM1 (Zhang et al., 2015). Either SQSTM1 (Zhang et al., 2015) or NBR1 

(Deosaran et al., 2013) act as autophagic receptors in pexophagy. Other PEX members, such 

as PEX14 (Zutphen et al., 2008), PEX13 (Lee et al., 2017), or PEX2 (Sargent et al., 2016), 

may participate in pexophagy through PEX5-dependent or -independent circuitries. In 

particular, PEX14 can directly bind MAP1LC3 or ATG9A to trigger pexophagy (Li et al., 

2017). It will be important to examine the consequences of dysfunctional pexophagy on 

oxidative stress-mediated human diseases.

Nucleophagy

The nucleus is the largest cellular organelle that stores genomic materials to control gene 

expression. The selective removal of the nucleus or nuclear components by autophagy, 

namely nucleophagy, was first observed in yeast under nutrient-rich conditions as well as 

during nitrogen deprivation. Nucleophagy also occurs in mammalian cells and can cause the 

degradation of nuclear lamina components upon DNA damage. Nucleophagy-associated 

lamin B1 (LMNB1) degradation is associated with oncogenic RAS activation, but not 

starvation (Dou et al., 2015). The SUMOylation of lamin A/C (LMNA) promotes molecular 

interactions between the lamina and MAP1LC3 during nucleophagy (Li et al., 2019). 

Micronuclei are nuclear bodies containing damaged chromosome fragments that appear after 

genomic stress or mitotic catastrophe and that are usually removed by autophagy (Rello-

Varona et al., 2012). Autophagy deficiency increases the number of micronuclei, which may 

play a pathological role in aging, cancer, and neurodegenerative diseases (Dou et al., 2015; 

Papandreou and Tavernarakis, 2019). The impact of DNA sensors, such as cyclic GMP-

AMP synthase (CGAS) and HMGB1, on the regulation of nucleophagy remains to be 

characterized.

Ribophagy

Ribophagy refers to the selective degradation of ribosomes via autophagy. MTOR plays a 

key role in protein synthesis and ribosome biogenesis. The inhibition of MTOR by 

starvation or pharmacological agents such as rapamycin or torin1 can trigger ribophagy in 

mammalian cells. Using an MTOR inhibition model, nuclear FMR1-interacting protein 1 

(NUFIP1) was identified as a cargo receptor for ribophagy (Wyant et al., 2018). NUFIP1 and 
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its binding partner zinc finger HIT-type containing 3 (ZNHIT3) can bind ribosomes and 

promote their targeting to phagophores by interacting with MAP1LC3B, but not with other 

MAP1LC3 isoforms or GABARAP family members (Wyant et al., 2018). Regarding the 

wider role of MTOR inhibition in nonselective autophagy, it is important to identify the 

specific downstream signals responsible for NUFIP1 translocation from the nucleus to the 

cytoplasm during selective autophagy. In contrast, a recent study reported that agents that 

induce defects in the ribosomal quality control fails to induce robust ribophagy in HEK293 

cells using a Ribo-Keima reporter system (An and Harper, 2018), indicating that there may 

be no specific autophagy receptor for the clearance of damaged ribosomes.

Lysophagy

Lysosomes are sac-like structures delimited by a single-layer membrane. This organelle 

contains a variety of hydrolases for the degradation of various kinds of macromolecules. The 

leakage of lysosomal constituents into the cytosol can trigger “lysosomal cell death”. A 

membrane-damaged lysosome itself can be a target of autophagy, and this type of selective 

autophagy is termed lysophagy. For example, agents causing lysosomal rupture (e.g., silica, 

monosodium urate, and LLOMe) can induce lysophagy in an ATG5-dependent manner. 

Moreover, the ubiquitination of the damaged lysosomes is a biomarker and contributor to 

lysophagy. The cargo receptors SQSTM1 (Hung et al., 2013) and TAX1BP1 (Koerver et al., 

2019) play a context-dependent role in the recognition of damaged lysosomes during 

lysophagy. This process can be further regulated by galectin 8 (LGALS8) (Aits et al., 2015), 

galectin 3 (LGALS3) (Maejima et al., 2013), ubiquitin conjugating enzyme E2 Q family like 

1 (UBE2QL1) (Koerver et al., 2019; Mizushima, 2019), F-box protein 27 (FBXO27) 

(Yoshida et al., 2017), and valosin containing protein (VCP/P97) (Papadopoulos and Meyer, 

2017) through either ubiquitination-dependent or -independent mechanisms. Further 

research is needed to clarify the interplay between lysophagy and lysosomal cell death in the 

control of lysosome homeostasis.

Other selective autophagy pathways

In addition to degrading cellular organelles as discussed above, selective autophagy also 

contributes to intracellular homeostasis through eliminating invading pathogens (xenophagy 

for bacteria or viruses) (Sharma et al., 2018), lipid droplets (lipophagy) (Singh et al., 2009), 

zymogen granules (zymophagy) (Grasso et al., 2011), glycogen (glycophagy) (Reichelt et 

al., 2013), DNA (DNautophagy) (Fujiwara et al., 2015), RNA (RNautophagy) (Fujiwara et 

al., 2015), myelin (myelinophagy) (Gomez-Sanchez et al., 2015), stress granules 

(granulophagy) (Buchan et al., 2013), proteasomes (proteaphagy) (Marshall et al., 2015), 

protein aggregates (aggrephagy) (Overbye et al., 2007), and specific proteins, e.g., ferritin 

(ferritinophagy) (Mancias et al., 2014) and aryl hydrocarbon receptor nuclear translocator 

like (ARNTL/BMAL1 for clockophagy) (Yang et al., 2019a). These types of selective 

autophagy also require specific, and in some cases unknown, receptor-cargo interactions 

(Fig. 2), although the precise structural basis of this interaction and the ubiquitin substrates 

required for autophagic targeting remain to be further explored.
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The molecular machinery of ferroptosis

Reactive oxygen species (ROS) are a key determinant of RCD when the integrated 

antioxidant systems are impaired. In general terms, ferroptosis is a form of ROS-dependent 

regulated necrosis that occurs through multiple signals and pathways. Among them, iron 

accumulation and lipid peroxidation seem to play a major role in the initiation of ferroptosis, 

although the specific downstream effector proteins (e.g., pore-forming proteins) and the 

precise mechanisms remain unidentified (Stockwell et al., 2017; Xie et al., 2016) (Fig. 3). 

Here, we summarize the key connections between ferroptosis and autophagy, including 

small molecules or drugs that can be used to trigger or inhibit ferroptosis (Table S1).

Iron overload and toxicity

Iron is an essential trace metal required by all living organisms. The basic process of iron 

metabolism in animals and humans includes iron absorption, in vivo distribution, the 

formation of various pools of protein-bound iron, iron storage, and iron excretion (Fig. 4). 

Many diseases are linked to abnormal iron metabolism, and altered iron metabolism itself 

can trigger a variety of diseases. The majority of iron come from nutritional or endogenous 

sources, the latter of which is mostly from hemoglobin in aging red blood cells. Most of the 

exogenous iron is directly absorbed into the bloodstream through the duodenal mucosal 

cells, and part of the iron is stored in ferritin in mucosal cells. Intestinal iron intake and 

endogenous iron re-use is balanced by iron excretion. When iron is deficient, the iron 

absorption rate and endogenous iron utilization rate increase, and iron storage decreases. 

When the iron level in food is high, iron absorption decreases while iron storage rises, thus 

allowing a homeostatic maintenance of physiological iron levels.

The control of cellular iron levels is a dynamic process. Iron exists in two oxidation states: 

ferrous (Fe2+, Fe(II)) or ferric (Fe3+, Fe(III)). Transferrin (TF)-bound ferric iron from serum 

is recognized by transferrin receptor (TFRC/TFR1), a carrier protein for TF in cell 

membranes. After uptake by TFRC, ferric iron is reduced to ferrous iron by STEAP3 

metalloreductase (STEAP3) in the endosome and then released from the endosome to the 

cytoplasm by solute carrier family 11 member 2 (SLC11A2/DMT1). Ferrous iron serves 

numerous important functions in regulating multiple metabolic and biochemical processes, 

such as oxygen transport, DNA synthesis, and iron-sulfur production. Ferritin is the primary 

form of iron storage protein, which includes two subunits: ferritin light chain (FTL) and 

ferritin heavy chain 1 (FTH1). Although the sequences of these subunits are highly 

homologous, FTL and FTH1 exhibit different functions in the regulation of iron storage and 

utilization, respectively. Ferritin degradation can occur by ferritinophagy, a type of selective 

autophagy (discussed below). Finally, the export of intracellular iron across the cell 

membrane requires the iron efflux pump SLC40A1/ferroportin-1 (solute carrier family 40 

member 1), leading to the production of ferric iron from ferrous iron. Thus, iron transport 

across the plasma membrane determines the redox status.

Iron overload, resulting from excessive extracellular or intracellular iron, can cause cell 

death and tissue injury, which is involved in a number of diseases, such as 

neurodegeneration and cancer. In particular, intracellular iron overload can trigger 

ferroptotic cell death through at least two mechanisms (Fig. 3). On the one hand, iron can 
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generate excessive ROS via the Fenton reaction, which then increases oxidative DNA and 

lipid damage. On the other hand, iron can increase the activity of nonheme iron-containing 

enzymes, such as lipoxygenases responsible for lipid peroxidation. Indeed, increased iron 

uptake (e.g., due to TFRC overexpression), reduced iron storage (e.g., due to the knockdown 

of ferritin [FTL and FTH1] or induction of ferritinophagy), and impaired cellular iron export 

(e.g., resulting from the knockdown of SLC40A1/ferroportin) enhance the sensitivity to 

ferroptosis (Bogdan et al., 2016; Du et al., 2018; Gao et al., 2016; Geng et al., 2018; Hou et 

al., 2016; Yang and Stockwell, 2008). In contrast, intracellular iron chelators such as 

desferrioxamine block ferroptosis. The transport of iron between cytosol, mitochondria, and 

lysosome, as well as the activation of iron responsive element binding protein 2 (IREB2, a 

major regulator of iron homeostasis) also affect the onset of ferroptosis (Dixon et al., 2012). 

Collectively, iron is an intracellular second messenger promoting ferroptosis. It remains 

unknown whether, under certain conditions, iron-mediated ferroptosis may amplify or 

diminish the susceptibility of cells to other types of RCD such as apoptosis (Yang et al., 

2017), necrosis (Yang et al., 2017), and pyroptosis (Zhou et al., 2018). Moreover, the 

relationship between systemic iron homeostasis (e.g., dietary iron absorption and the 

concentration of circulating iron) and ferroptosis is largely uncharacterized, although it is 

known that excessive heme can induce ferroptosis (NaveenKumar et al., 2018). Iron is 

essential for both the host and its pathogens, and the potential impact of gut microbiota on 

ferroptotic cell death in host cells remains to be clarified.

Lipid peroxidation and toxicity

Lipid peroxidation plays a major role in ferroptosis. Lipids are not only the building block of 

cellular membranes, but also the key players in energy storage, heat insulation, cell 

communication, and signal transduction. Cell membrane rupture that is associated with the 

breakdown of membrane lipids (phospholipids, glycolipids, and cholesterol) is the hallmark 

of regulated necrosis, including necroptosis, pyroptosis, alkaliptosis, and ferroptosis (Tang et 

al., 2019). Lipid peroxidation of polyunsaturated fatty-acid-containing phospholipids 

(PUFA-PLs) plays a major role in promoting ferroptotic cell death (Yang et al., 2016). This 

process is driven by the activation of specific enzymes, including acyl-CoA synthetase long 

chain family member 4 (ACSL4) (Doll et al., 2017; Kagan et al., 2017; Yuan et al., 2016b) 

and lipoxygenase (arachidonate lipoxygenase [ALOX]) enzymes (Yang et al., 2016). ACSL4 

is required for the production of PUFA-PLs, whereas lipoxygenases oxidize PUFA-PLs to 

the corresponding hydroperoxy derivatives, namely lipid peroxides or lipid oxidation 

products. The mammalian ALOX family, consisting of six members (ALOXE3, ALOX5, 

ALOX12, ALOX12B, ALOX15, and ALOX15B), plays a tissue- or cell-dependent role in 

the induction of ferroptosis (Hinman et al., 2018; Liu et al., 2015; Shintoku et al., 2017; 

Wenzel et al., 2017). ACSL4 is not only a contributor to ferroptosis, but also may be a 

biomarker for it (Yuan et al., 2016b). Increased ACSL4 expression, but not that of other 

members of the ACSL family, has been observed in ferroptotic cancer cell death (Yuan et al., 

2016b). In addition, the expression of lysophosphatidylcholine acyltransferase 3 (LPCAT3), 

a downstream effector of ACSL4, is upregulated during ferroptosis (Dixon et al., 2015); 

however, there is no direct evidence showing that the inhibition of LPCAT3 blocks 

ferroptosis.
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This classification of the ferroptosis inducers has provided a useful framework for studying 

and understanding ferroptosis. Classical ferroptosis inducers inhibit either of the two 

antioxidant systems during lipid peroxidation. One is the antiporter SLC7A11/system xc
− 

(solute carrier family 7 member 11), which imports cysteine (the oxidized form) into cells 

with a 1:1 counter-transport of glutamate (the most abundant neurotransmitter, an excess of 

which can cause neurotoxicity and oxidative injury) and then induces the production of 

glutathione (GSH), a major free radical scavenger. A number of small molecules or drugs 

such as erastin, sulfasalazine, and sorafenib induce ferroptosis by the inhibition of 

SLC7A11/system xc
− (Dixon et al., 2012). Erastin, as the first-used ferroptosis inducer, has 

other direct binding targets, such as voltage dependent anion channel 2 (VDAC2) and 

voltage dependent anion channel 3 (VDAC3), which also contribute to ferroptosis (Yagoda 

et al., 2007). The second antioxidant system is the selenium-containing glutathione 

peroxidase 4 (GPX4), a phospholipid hydroperoxidase that can directly reduce phospholipid 

hydroperoxide production. The antioxidant activity of GPX4 requires GSH, the 

pharmacological inhibition of GPX4 by RSL3 or FIN56, causes ferroptotic cell death (Yang 

et al., 2014). Notably, the conditional depletion of GPX4 in tissues or cells can cause 

oxidative injury or cell death in both ferroptosis-dependent and -independent manners (Canli 

et al., 2016; Cole-Ezea et al., 2012; Friedmann Angeli et al., 2014; Kang et al., 2018a; 

Matsushita et al., 2015; Ran et al., 2006; Ran et al., 2004; Ran et al., 2003; Seiler et al., 

2008), indicating broad roles for GPX4 in different RCD scenarios. In contrast, antioxidants, 

including N-acetyl cysteine and vitamin E, can protect against ferroptosis caused by the 

classical ferroptosis inducers (e.g., erastin or RSL3) or GPX4 depletion in vivo and in vitro. 

In addition to GPX4, apoptosis inducing factor mitochondria associated 2 (AIFM2) 

(Bersuker et al., 2019; Doll et al., 2019) or endosomal sorting complexes required for 

transport (ESCRT)-III (Dai et al., 2020b; Dai et al., 2020c) also limits membrane damage 

through increased CoQ10 production or plasma membrane repair during ferroptosis.

Other components of an integrated stress response, such as transcription factors (e.g., 

nuclear factor, erythroid 2 like 2 [NFE2L2/NRF2] (Chen et al., 2017; Shin et al., 2018; Sun 

et al., 2016; Wu et al., 2011) and tumor protein p53 [TP53] (Gnanapradeepan et al., 2018; 

Jiang et al., 2015; Kang et al., 2019; Xie et al., 2017)), heat shock response (Sun et al., 

2015), the UPR (Sauzay et al., 2018; Zhu et al., 2017), cell adhesion (Wu et al., 2019a; Yang 

et al., 2019b), and autophagy (discussed below) also play a context-dependent role in the 

control of oxidative injury-mediated ferroptosis.

Role of autophagy in ferroptosis

Increased autophagy flux is observed in various cells in response to classical ferroptosis 

activators, such as erastin and RSL3. While appropriate autophagy has likely evolved as a 

pro-survival response, excessive autophagy, especially selective autophagy, and impaired 

lysosomal activity may promote ferroptotic cell death. Here, we outline the key types of 

selective autophagy or regulators of autophagic machinery in driving ferroptosis (Fig. 5).
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NCOA4-dependent ferritinophagy

Ferritinophagy is the process of autophagic degradation of the iron-storage protein ferritin, 

which is critical for the regulation of cellular iron levels. Ferritin is composed of 24 subunits 

of FTH1 and FTL, and can store up to 4500 atoms of iron. The combination of 

autophagosome isolation and quantitative proteomics has identified nuclear receptor 

coactivator 4 (NCOA4) as a cargo receptor responsible for autophagy-dependent ferritin 

degradation, likely because the C terminus of NCOA4 binds a conserved surface arginine 

(R23) on FTH1 in phagophores, and subsequently in autophagosomes and autolysosomes 

(Mancias et al., 2014). NCOA4-dependent ferritinophagy promotes ferroptosis through 

releasing free iron from ferritin. The depletion or inhibition of NCOA4 or ATG protein (e.g., 

ATG3, ATG5, ATG7, and ATG13) inhibits ferritin degradation and therefore reduce free iron 

levels and thus limit subsequent oxidative injury during ferroptosis (Gao et al., 2016; Hou et 

al., 2016). As a feedback mechanism, the level of intracellular NCOA4 is regulated by 

cellular iron (Mancias et al., 2014). When cellular iron levels are high, NCOA4 can be 

degraded subsequent to its ubiquitination by HECT and RLD domain containing E3 

ubiquitin protein ligase 2 (HERC2, a ubiquitin E3 ligase) through the ubiquitin-proteasome 

pathway (Mancias et al., 2015), suggesting a negative correlation of HERC2 with ferroptosis 

induction. Moreover, deficient ferritinophagy may increase the activity of iron responsive 

element binding protein 2 (IREB2/IRP2), a central posttranscriptional regulator of iron 

metabolism, and subsequently upregulate TF as a feedback mechanism (Dixon et al., 2012). 

Mitochondrial ferritin and iron uptake also limit or amplify the iron toxicity and ferroptosis 

(Wang et al., 2016; Yuan et al., 2016a). Other than NCOA4, it remains unknown whether 

additional mitochondrial factors are required for the selective autophagic degradation of 

ferritin in mitochondria. Ferritinophagy-mediated ferroptosis is implicated in hepatic fibrosis 

and neurodegenerative diseases (Kong et al., 2019; Zhang et al., 2018) and can be used to 

kill cancer under specific circumstances (Du et al., 2018; Lin et al., 2016). A further 

understanding of different pathways leading to ferritin degradation, including autophagy-

independent lysosomal degradation of ferritin (Goodwin et al., 2017), and their contribution 

to intracellular and systemic iron homeostasis will be important for the therapeutic 

manipulation of ferroptosis.

RAB7A-dependent lipophagy

Free fatty acids can be esterified into triglycerides and cholesterol esters in cells to reduce 

their toxicity. This anabolic reaction occurs in the ER, causing the deposition of neutral 

lipids in a lenticular microdomain between the bilayer membranes of the ER, ultimately 

leading the outer leaves of the layer to expand to form a unique spherical organelle, the lipid 

droplet (Liu and Czaja, 2013). Lipid droplets are complex organelles that were previously 

thought to be inert sites for fat fixation and are now known to have a unique, dynamic 

proteome. The lipid droplet proteome fluctuates with changes in cellular metabolic status, 

thus influencing the composition of neutral lipids in organelles. Lipophagy, the autophagic 

digestion of lipid droplets can release free fatty acids, which then serve as a fuel for 

mitochondrial beta-type oxidation. The process by which intracellular lipid droplets are 

selectively transported by autophagosomes for lysosomal decomposition, lipophagy, 

provides another potential pathway for regulating cellular lipid levels, and therefore the 

propensity to cell death. The level of lipid droplets is negatively related to oxidative stress-
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induced ferroptosis (Bai et al., 2018). Increased lipid droplet formation by the upregulation 

of tumor protein D52 (TPD52) suppresses RSL3-induced ferroptosis in hepatocytes (Bai et 

al., 2018). The main function of RAB7A (a member of the RAS oncogene family) is to 

mediate the recruitment of lipid droplets by multivesicular bodies and lysosomes during 

lipid phagocytosis. In contrast, increased RAB7A-dependent lipophagy promotes lipid 

droplet degradation and therefore increases lipid peroxidation-mediated ferroptosis (Bai et 

al., 2018). It remains unknown whether other regulators of lipophagy, such as glycine N-

methyltransferase (GNMT), transcription factor EB (TFEB), and forkhead box O1 

(FOXO1), contribute to lipophagy-mediated ferroptosis in diseases caused by fat 

accumulation.

SQSTM1-dependent clockophagy

Circadian clocks are endogenous, entrainable rhythmic oscillations with a periodicity of 

approximately 24 hours that play a fundamental role in internal cycles of behavior, 

physiology, and metabolism. The core oscillation mechanism is a transcriptional-

translational negative feedback loop, in which ARNTL and clock circadian regulator 

(CLOCK) are core nuclear factors driving circadian clocks through regulating the expression 

of a number of genes via the binding of E-box motifs in their promoters. Clockophagy is a 

recently identified type of selective autophagy for the degradation of ARNTL during 

ferroptosis induced by type-2 ferroptosis inducers (e.g., RSL3 and FIN56), but not type-1 

ferroptosis inducers (e.g., erastin, sulfasalazine, and sorafenib) (Liu et al., 2019; Yang et al., 

2019a). Mass spectrometric mechanistic investigation of ARNTL-binding protein indicates 

that the cargo receptor SQSTM1 (but not NBR1, OPTN, CALCOCO2, or NCOA4) makes a 

major contribution to autophagic ARNTL degradation (Yang et al., 2019a). Although 

clockophagy requires several ATG proteins, such as ATG5 and ATG7, it is mechanistically 

distinct from classical autophagy, in thus far that clockophagy does not appear to require 

ATG9A (Yang et al., 2019a). Autophagic ARNTL degradation promotes ferroptotic cell 

death through blocking hypoxia inducible factor 1 subunit alpha (HIF1A)-dependent fatty 

acid uptake and lipid storage. HIF1A, one of the major transcription factors regulating 

hypoxic response, plays a pro-survival role in ferroptosis through the upregulation of fatty 

acid binding protein 3 (FABP3, muscle and heart) and fatty acid binding protein 7 (FABP7, 

brain) for lipid storage (Yang et al., 2019a). The level of HIF1A is further regulated by egl-9 

family hypoxia inducible factor 2 (EGLN2/PHD1), an ARNTL target gene in RSL3-induced 

ferroptosis (Yang et al., 2019a). In addition to HIF1A, endothelial PAS domain protein 1 

(EPAS1/HIF2A) regulates ferroptosis in kidney cancer (Zou et al., 2019). It also remains 

unclear how the disruption of circadian rhythms might affect ferroptosis sensitivity.

Chaperone-mediated autophagy

Chaperone-mediated autophagy (CMA) is a type of selective autophagy that uses molecular 

chaperones to deliver certain cytosolic proteins to lysosomes for degradation based on the 

recognition of specific amino acid sequences. Heat shock protein family A (Hsp70) member 

8 (HSPA8/HSC70), the constitutively expressed member of the Hsp70 family, is a major 

molecular chaperone responsible for the recognition of cytosolic proteins that contain a 

KFERQ-like motif within the sequence of a protein. GPX4 protein degradation by CMA 

seems to be a universal event in response to various ferroptosis activators (Muller et al., 
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2017; Shimada et al., 2016; Zhu et al., 2017). HSPA5, an ER stress-associated molecular 

chaperone, can limit erastin-induced GPX4 degradation and therefore protects against 

ferroptotic cell death in pancreatic cancer cells (Zhu et al., 2017). HSPA8-dependent CMA 

also contributes to erastin-induced GPX4 degradation in breast cancer cells (Wu et al., 

2019b). Moreover, HSP90 can increase the protein stability of lysosomal associated 

membrane protein 2A (LAMP2A), a CMA receptor, to enhance GPX4 degradation during 

ferroptosis (Wu et al., 2019b). These findings establish a model of interaction between CMA 

and autophagy to determine GPX4 protein stability in ferroptosis. However, the structural 

basis of GPX4 degradation remains poorly understood.

BECN1-mediated oxidative injury

BECN1 was originally identified as a BCL2 (an anti-apoptotic protein)-binding protein 

through yeast two-hybrid assays (Liang et al., 1998). Later, BECN1 was reported as the 

mammalian homolog of yeast Vps30/Atg6, and is involved in autophagy induction and 

tumor suppression (Liang et al., 1999). Autophagy-independent functions of BECN1 were 

also demonstrated. The multifunctional roles of BECN1 in cell survival and death appear to 

rely on its binding partners. In the case of ferroptosis, BECN1 was identified as a novel 

SLC7A11/system xc
−-binding protein to inhibit transport activity in cancer cells in response 

to type 1 ferroptosis inducers (e.g., erastin, sulfasalazine, and sorafenib) (Kang et al., 2018b; 

Song et al., 2018) (Fig. 6A). This process is controlled by AMPK-mediated BECN1 

phosphorylation at S90 and S93. Thus, the mutation of these BECN1 phosphorylation sites 

or inhibtion of AMPK activity limits the formation of a BECN1-SLC7A11 / system xc
− 

complex and blocks ferroptosis (Song et al., 2018). In contrast, the administration of the 

BECN1 activator peptide Tatbeclin 1 enhances the anticancer activity of the SLC7A11/

system xc
− inhibitor through the induction of lipid peroxidation-dependent ferroptosis (Song 

et al., 2018). In addition to protein-protein interactions, BECN1-mediated ferroptosis is 

regulated by BECN1 mRNA stability. Consistent with this notion, the RNA-binding protein 

ELAV like RNA binding protein 1 (ELAVL1) can increase BECN1 mRNA stability to 

trigger subsequent ferritinophagy in hepatic stellate cells (Zhang et al., 2018) (Fig. 6B). 

These findings indicate that BECN1 regulates ferroptosis through both autophagy-dependent 

and -independent mechanisms. becn1 knockout mice exhibit late-onset lung carcinomas, 

hepatocellular carcinomas, and lymphomas (Liang et al., 1999), and hence may constitute a 

convenient model for studying the impact of autophagy-dependent ferroptosis on 

tumorigenesis.

HMGB1-mediated danger signals

HMGB1 plays a dual role in the regulation of stress responses. Most intracellular HMGB1 

localizes in the nucleus and functions as a DNA chaperone to regulate gene transcription, 

replication, and recombination. Moreover, HMGB1 is a damage-associated molecular 

pattern (DAMP) and can be secreted by immune cells or passively released from dead or 

dying cells. Extracellular HMGB1 acts as a danger signal to trigger immune responses 

during various types of cell death, including ferroptosis (Wen et al., 2019). Various 

ferroptosis activators (e.g., erastin, sorafenib, RSL3, and FIN56) can induce HMGB1 

release, and this process is inhibited by pharmacological (using ferrostatin-1, liproxstatin-1, 

baicalein, bafilomycin A1, or chloroquine) or genetic (using Acs14 shRNA or atg5−/− or 
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atg7−/− cells) inhibition of autophagy or ferroptosis (Wen et al., 2019). Moreover, HMGB1 

release mediates ferroptotic cell death-induced inflammatory responses in macrophages 

through the activation of advanced glycosylation end-product specific receptor (AGER/

RAGE), but not toll like receptor 4 (TLR4) (Wen et al., 2019) (Fig. 7A). HMGB1 also plays 

a location-dependent role in promoting autophagy. Cytosolic HMGB1 is a BECN1-binding 

protein for the induction of autophagosome formation (Tang et al., 2010b). Nuclear HMGB1 

regulates heat shock protein family B (small) member 1 (HSPB1) expression for actin 

filament assembly that is involved in the regulation of autophagy membrane dynamics (Tang 

et al., 2011). Extracellular HMGB1 induces autophagy through the activation of the PIK3C3 

complex (Tang et al., 2010a). Interestingly, intracellular HMGB1 positively regulates 

erastin-induced ferroptosis in leukemia cells through the upregulation of TFRC expression 

downstream of the activation of mitogen-activated protein kinase (MAPK, e.g., MAPK/JNK 

and MAPK/p38) (Ye et al., 2019) (Fig. 7B). The broader interconnectivity of HMGB1 in 

autophagy, ferroptosis, and immune response requires further elucidation.

Conclusions and perspectives

In the past 5 years, studies of ferroptosis have been vastly expanded and the knowledge of 

the mechanism for ferroptosis has been ever increasing, revealing a surprising degree of 

complexity. Ferroptosis was originally recognized as a novel cell death modality that is 

morphologically, biochemically, and genetically distinct from other forms of cell death 

including apoptosis, necrosis, and autophagy. However, recent studies indicate that 

ferroptosis may occur while sharing common signals or regulators with other types of RCD 

such as apoptosis (Hong et al., 2017; Huang et al., 2018), necroptosis (Muller et al., 2017), 

autophagy (Gao et al., 2016; Hou et al., 2016), and lysosomal cell death (Gao et al., 2018; 

Torii et al., 2016). Indeed, mixed types of cell death appear to be more prevalent in human 

disease than “pure” types, although one type of cell death may dominate over others at a 

particular stage. In this review, we highlighted the regulation of autophagy-dependent 

ferroptosis and the involvement of a diverse array of molecular factors in this process. While 

certain types of selective autophagy (e.g., ferritinophagy, lipophagy, clockophagy, and 

CMA) play a significant role in promoting ferroptosis, the molecular, structural, and 

metabolic basis of autophagy-dependent ferroptosis still remains largely unknown. Although 

mitochondrial dysfunction and ER stress are related to ferroptosis in some cases (Dixon et 

al., 2014; Gao et al., 2019; Lee et al., 2018; Zhu et al., 2017), the functional role of 

mitophagy, reticulophagy, or the associated autophagy receptor in ferroptosis remains poorly 

understood. It is also a challenge to define the threshold or checkpoints associated with pro-

survival and pro-death autophagy in ferroptosis. More recently, autophagy-dependent 

ferroptosis has been related to pancreatic tumor growth and progression through the released 

KRAS protein-mediated tumor-associated macrophage polarization (Dai et al., 2020a), 

indicating a dual role of ferroptosis in tumorigenesis and cancer therapy. More connections 

between autophagy-dependent ferroptosis and human disease will likely be demonstrated in 

the near future.
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Highlights

Autophagy is a lysosome-dependent cellular degradation mechanism.

Ferroptosis is an iron-dependent form of oxidative cell death.

Ferroptosis requires the autophagy machinery for its induction and execution.

Autophagy-dependent ferroptosis is implicated in diseases and pathological conditions.
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Significance

Autophagy plays a fundamental role in controlling of cellular homeostasis, thus 

determining the cellular fate. In many cases, autophagy is presumably activated by dying 

cells as a part of the programmed cell survival mechanism in response to stress. However, 

impaired and excessive autophagy promotes cell death, namely autophagy-dependent cell 

death. Of note, ferroptosis has been recognized as a form of autophagy-dependent cell 

death in some conditions. The ties between autophagy and ferroptosis could potentially 

allude to a complex interplay between metabolism dysfunction and oxidative stress. As a 

result, it is important to monitor autophagic activity or flux during ferroptosis. There are 

multiple compounds or drugs that inhibit the different types of autophagy-dependent cell 

death. A deeper understanding of the process and function of autophagy-dependent 

ferroptosis is critical for creating innovative therapeutic strategies for oxidative stress-

related diseases, including neurodegenerative disorders and cancer.
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Figure 1. The process of autophagy.
Autophagy is an intracellular degradation process that occurs with the formation and 

maturation of specific membrane structures, including phagophores, autophagosomes, and 

autolysosomes, which is controlled by ATG and other proteins. See also Table S1.
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Figure 2. Selective autophagy receptors in mammalian cells.
In addition to bulk degradation in a non-elective manner, selective autophagy serves as an 

intracellular quality control mechanism to mediate the degradation of specific targets, such 

as invading pathogens, aggregated proteins, and damaged organelles through specific 

receptors. Different forms of selective autophagy are usually named by combining a prefix 

derived from the cargo and the suffix “phagy.” Note the large number of receptors found in 

the most-studied forms of selective autophagy (mitophagy and reticulophagy). It is unclear 

whether this correlates with their relative importance as homeostatic mechanisms or whether 

this reflects more extensive and long-lasting research of these phenomena.
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Figure 3. The process of ferroptosis.
The ferroptotic response is characterized by iron accumulation and lipid peroxidation, 

resulting in the formation of lipid peroxides. Increased iron not only triggers the Fenton 

reaction to produce ROS, but also increases the activity of iron-containing enzymes (e.g., 

ALOX), which contributes to lipid peroxidation. The activation of the GPX4, AIFM2, or 

ESCRT-III pathways can limit or repair the oxidation of PUFAs that result from the 

activation of the ACSL4-LPCAT3-ALOX pathway. See also Table S1.

Liu et al. Page 33

Cell Chem Biol. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. Role of cellular iron metabolism in ferroptosis.
Most cells acquire plasma Fe3+ via TFRC-mediated endocytosis of TF-bound iron. In the 

endosome, Fe3+ is reduced to Fe2+ by STEAP3 and then released from the endosome to the 

cytoplasm by SLC11A2. The labile Fe2+ can be stored by ferritin, including FTH1 and FTL. 

Fe2+ plays an important function in regulating multiple processes, such as oxygen transport 

and iron-sulfur production in mitochondria. The export of intracellular iron across the cell 

membrane requires the iron efflux pump SLC40A1, leading to the production of Fe3+ from 

Fe2+. In general, increased iron uptake (e.g., due to TFRC overexpression), reduced iron 

storage (e.g., due to the knockdown of ferritin or induction of ferritinophagy), and impaired 

cellular iron export (e.g., resulting from the knockdown of SLC40A1) enhance the 

sensitivity to ferroptosis.
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Figure 5. Role of selective autophagy in ferroptosis.
(A) NCOA4-mediated ferritinophagy promotes iron accumulation in ferroptosis. (B) 

RAB7A-mediated lipophagy, and (C) SQSTM1-mediated clockophagy promote lipid 

peroxidation in ferroptosis, and (D) HSP90-mediated chaperone-mediated autophagy 

(CMA) promote lipid peroxidation in ferroptosis.
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Figure 6. Role of BECN1 in ferroptosis.
(A) AMPK-mediated BECN1 phosphorylation at S90 and S93 is required for the formation 

of a BECN1-SLC7A11/system xc
− complex, which leads to lipid peroxidation-dependent 

ferroptosis via the inhibition of SLC7A11/system xc
− activity. (B) ELAVL1-mediated 

BECN1 mRNA stability increases autophagosome formation and subsequent ferritinophagy-

mediated ferroptosis.
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Figure 7. Role of HMGB1 in ferroptosis.
(A) Autophagy-dependent ferroptotic cell death promotes HMGB1 release, which favors 

inflammation and immunity response through binding its receptor AGER. (B) HMGB1 

promotes ferroptosis through upregulation of MAPK-dependent TFRC expression.
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