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Summary

Decades after the motor homunculus was first proposed, it is still unknown how different body 

parts are intermixed and interrelated in human motor cortical areas at single-neuron resolution. 

Using multi-unit recordings, we studied how face, head, arm and leg movements are represented in 

hand knob area of premotor cortex (precentral gyrus) in people with tetraplegia. Contrary to 

traditional expectations, we found strong representation of all movements and a partially 

“compositional” neural code that linked together all four limbs. The code consisted of: (1) a limb-

coding component representing the limb-to-be-moved, and (2) a movement-coding component 

where analogous movements from each limb (e.g. hand grasp and toe curl) were represented 

similarly. Compositional coding might facilitate skill transfer across limbs and provides a useful 

framework for thinking about how the motor system constructs movement. Finally, we leveraged 

these results to create a whole-body intracortical brain-computer interface that spreads targets 

across all limbs.

In Brief

Willett et al. show that “hand knob” area of premotor cortex in people with tetraplegia is tuned to 

the entire body and contains a compositional code that links all four limbs together. This coding 

may potentially facilitate skill transfer and a discrete brain-computer interface can accurately 

decode all four limbs.

Graphical Abstract
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Introduction

Knowing how different body parts are topographically mapped onto motor cortex is central 

to understanding the motor cortical system. Neural activity in human motor cortex, including 

Brodmann area 4 (BA4) in central sulcus and adjacent Brodmann area 6 (BA6) on precentral 

gyrus, is traditionally thought to have macroscopic somatotopy. In this view, face, arm and 

leg movements are represented in distinct areas of cortex but individual muscles within any 

one body area may be mixed (e.g. wrist and finger movements may overlap within arm area) 

(Schieber, 2001). Classical stimulation studies in great apes and humans suggest an orderly 

arrangement of body parts along precentral gyrus, with little intermixing between face, arm 

and leg within any one individual (Leyton and Sherrington, 1917; Penfield and Boldrey, 

1937; Penfield and Rasmussen, 1950). fMRI studies also support the idea of an orderly map 

with largely separate face, arm and leg areas along the precentral gyrus (caudal BA6) and the 

anterior bank of the central sulcus (BA4) (Lotze et al., 2000; Meier et al., 2008), as do 

electrocortiographic recordings in the high gamma band above precentral gyrus (albeit with 

occasional exceptions) (Crone et al., 1998a, 1998b; Ganguly et al., 2009; Miller et al., 2007; 

Ruescher et al., 2013). Nevertheless, the level of mixed representation within any one area of 

human precentral gyrus has not yet been quantified at single neuron resolution.

Here, we revisit motor somatotopy using microelectrode array recordings from hand knob 

area of precentral gyrus (Yousry et al., 1997) while two participants in the BrainGate2 pilot 

clinical trial made (or attempted) a variety of face, head, leg and arm movements. 

Surprisingly, we found strong neural tuning to all tested movements, contradicting 

traditional views on human motor cortical organization. In light of this new evidence of 

intermixed whole-body tuning, combined with prior anatomical evidence that places dorsal 

precentral gyrus in Brodmann area 6 and links it to macaque premotor area PMd [e.g. 

(White et al., 1997; Rizzolatti et al., 1998)], we refer to human precentral gyrus as premotor 

cortex in this manuscript (see Discussion for more details).

Our new finding of whole-body tuning in human premotor cortex presents a unique 

opportunity to investigate how each body part is neurally coded in relation to the others, 

which could shed light on its functional role. It also presents an opportunity to improve 

brain-computer interfaces (BCIs) by enabling whole-body decoding from microelectrode 

arrays in a single brain area. Along these lines, this manuscript is structured into three parts: 

(1) demonstrating tuning to the whole body in hand area of premotor cortex, (2) building on 

this finding to investigate the structure of the neural code for the whole body, and (3) 

translating this finding to BCIs to help people with paralysis.

Prior work in humans and macaques sets some expectations for how different body parts 

might be neurally coded in relation to each other. Previous fMRI and ECoG studies on 

human precentral gyrus found that matching movements of the ipsilateral and contralateral 

arms have similar (correlated) neural representations (Diedrichsen et al., 2013; Wiestler et 

al., 2014; Jin et al., 2016; Fujiwara et al., 2017; Bundy et al., 2018). Macaque studies also 

show a correlated representation of ipsilateral and contralateral reaching movements (Cisek 

et al., 2003) that changes during bimanual movements (Rokni et al., 2003). Here, we study 

not only how ipsilateral and contralateral arm movements are related, but also how leg 
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movements are related to arm movements. Examining all four limbs together reveals a 

“compositional” neural code that links homologous movements of different limbs (e.g. links 

wrist movements to ankle movements, as well as ipsilateral wrist movements to contralateral 

ones).

The compositional code has a two-part structure where movements are coded in partial 

independence of the limb to be moved. One potential function of such a representation is to 

enable the transfer of motor skills between different limbs [as shown in (Kelso and Zanone, 

2002; Christou and Rodriguez, 2008; Morris et al., 2009; Shea et al., 2011)]; motor skill 

could be learned in movement-coding components of the neural activity and then transferred 

to another limb by changing only the limb-coding component. We call the code 

“compositional” since the limb and movement components are “composed” (summed 

together) to specify the motor action. Recently, compositionality has also been suggested to 

underlie the representation of task rules in prefrontal areas (Reverberi et al., 2012; Yang et 

al., 2019).

In the last part of the manuscript, we demonstrate a discrete intracortical BCI that decodes 

movements across all four limbs from only a single brain area. We show that this whole-

body BCI improves information throughput relative to a single-effector approach. This result 

substantially opens up the space of what intracortical BCIs can do and explore, as current 

systems are limited to placing microelectrodes in only a few brain areas [e.g. (Hochberg et 

al., 2012; Collinger et al., 2013; Aflalo et al., 2015; Bouton et al., 2016; Pandarinath et al., 

2017; Ajiboye et al., 2017)].

Results

Intermixed Tuning to the Whole Body in Hand Premotor Cortex

Face, Head, and Contralateral Arm & Leg Movements—We used microelectrode 

array recordings from participants T5 and T7 to assess tuning to attempted movements of the 

face (mouth, tongue, facial muscles and speaking), head (head turning and tilting), 

contralateral arm (shoulder, elbow, wrist and fingers) and contralateral leg (hip, knee, ankle, 

and toes) in hand knob area of precentral gyrus. Participant T5 had a C4 spinal cord injury 

and was paralyzed from the neck down; he could move his face and head, but most 

attempted arm and leg movements resulted in little or no motion. Participant T7 had ALS 

and could move all joints tested, although some of his arm movements were limited due to 

weakness (see Table S2 for neurologic exam results).

In this experiment, T5 and T7 made (or attempted to make) movements in sync with visual 

cues displayed on a computer screen (Figure 1A). T5 completed an instructed delay version 

of the task where each trial randomly cued one of 32 possible movements spanning the face, 

head, arm and legs. For face and head movements, T5 was instructed to move normally; for 

arm and leg movements, T5 was instructed to attempt to move as if he were not paralyzed. 

T7, whose more limited data was collected earlier in a different study (and who is no longer 

enrolled), completed an alternating paired movement task with a block design. Each block 

tested a different movement pair, during which T7 alternated between making each of the 

paired movements every 3 seconds.
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Despite recording from microelectrode arrays placed in hand knob region of precentral gyrus 

(Figure 1B), we found strong neural tuning to all tested movements, including those of the 

face, head and leg. Figure 1C shows an example electrode from T5 that was tuned to all 

movement categories. Here, and in most other results, we analyzed binned threshold 

crossing rates (i.e. multi-unit “firing rates”) for each microelectrode (although Figure S3, 

mentioned below, reports single unit results). Analyzing multi-unit threshold crossings 

allowed us to leverage information from more electrodes, since many electrodes recorded 

activity from multiple neurons that could not be precisely distinguished. Recent results 

indicate that neural population structure can be accurately estimated from threshold crossing 

rates alone (Trautmann et al., 2019). Binned threshold crossing rates were z-scored by 

subtracting the mean firing rate and dividing by the bin-by-bin standard deviation of the 

firing rate (and are reported in units of standard deviation, SD).

In Figure 1D we summarize the population-level neural modulation observed for each 

individual movement (T5) or pair of movements (T7) across all microelectrodes. For 

participant T5, we quantified modulation size by computing the magnitude (Euclidean norm) 

of the difference between mean firing rates observed during a “do nothing” control condition 

and mean rates observed during the movement of interest. Modulation size was estimated in 

a cross-validated way to reduce bias (see Methods). For participant T7, we computed the 

difference between the mean rates observed for each pair of movements. Mean rates were 

computed for each trial in a time window 200 to 600 ms after the go cue (T5) or 200 to 1600 

ms after the go cue (T7). Figure 1D shows robust modulation for each tested movement in 

both participants (the clusters of single trial firing rates are clearly separable and the 

confidence intervals are far from zero). Tuning to arm movement was the strongest in both 

participants (p<1e-3; see Methods), with tuning to non-arm movements 38% (face), 46% 

(head) and 61% (leg) as large as arm movement tuning in T5, and 38% (face), 34% (head) 

and 53% (leg) as large in T7.

Next, we tested whether each movement was neurally distinguishable from other movements 

by using a cross-validated naive Bayes classifier to decode the movement on each trial. High 

classification accuracies (Figure 1E) confirm that tuning to each movement was unique and 

separable (as opposed to being caused by a generic signal that was the same for all 

movements). In Figure S1, we plot the neural activity in the top neural dimensions found 

using principal components analysis (PCA) to illustrate that activity is rich and multi-

dimensional for all movement types.

Finally, we searched for somatotopy across the microelectrode arrays and saw no clear 

patterns; tuning to all four movement types was highly intermixed and many electrodes were 

tuned to multiple movement types (Figure S2). We also analyzed well-isolated, spike-sorted 

single neurons and found that they were frequently tuned to multiple movement types as 

well (Figure S3). In Figures S2–S3, we also report firing rate statistics in raw units of Hz.

Ipsilateral Arm & Leg Movements—Next, we assessed tuning to ipsilateral attempted 

arm and leg movements in participant T5 (Figure 2). Our remaining results are based on data 

from T5, who is currently enrolled in the trial. Figure 2 shows that firing rates changed two-

thirds as much for ipsilateral movement as compared to contralateral movement (65% as 
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much for the arm, 78% as much for the leg). Tuning to ipsilateral movements was separable 

and robust. A cross-validated naive Bayes classifier could decode movements with 97.4% 

accuracy (amongst all movements shown in Figure 2) using a 200 to 600 ms window after 

the go cue.

A Compositional Code for Arm & Leg Movements

Isolated Movements of Single Effectors—Next, we probed the population-level 

structure of the whole-body tuning shown above, starting first with the relationship between 

ipsilateral and contralateral movements. We were guided by prior single unit recordings in 

macaques (Cisek et al., 2003; Rokni et al., 2003) and fMRI and ECoG studies in people 

(Bundy et al., 2018; Diedrichsen et al., 2013; Jin et al., 2016) which found that ipsilateral 

and contralateral movements had correlated representations in motor cortex. If this is the 

case, we hypothesized there should also exist laterality-related neural dimensions which 

code for the side of the body independently of the movement details. Laterality dimensions 

would help downstream areas distinguish between contralateral and ipsilateral movement. 

This kind of “compositional” neural code, defined by correlated movement-coding 

dimensions and separate effector-coding dimensions, is distinct from a muscle-like 

representation. In a muscle-like representation, contralateral and ipsilateral movements 

would exist in largely orthogonal neural dimensions and hence be uncorrelated [as recently 

found in macaque primary motor cortex (Ames and Churchland, 2019; Heming et al., 

2019)], since the muscles are largely non-overlapping.

We used demixed PCA (dPCA) (Kobak et al., 2016) to visualize where the neural activity 

falls on the spectrum between muscle-like and compositional. dPCA decomposes neural data 

into a set of dimensions that each explain variance related to one marginalization of the data. 

We marginalized the data according to three factors: time, laterality, and movement. In the 

movement marginalization, we included the main effect of the movement condition as well 

as the interaction between movement and laterality. If the muscle-like hypothesis holds, 

there should be small laterality dimensions and large movement dimensions in which 

activity is dissimilar for matching movements on opposite sides of the body. On the other 

hand, for compositional coding, there should be a large laterality dimension (in addition to 

large movement dimensions), and activity in the movement dimensions should be similar for 

matching movements on opposite sides of the body.

The dPCA results (Figure 3) appear more consistent with the compositional coding 

hypothesis. There is a large laterality dimension coding for body side independently of the 

movement itself (Figure 3A, middle column). Additionally, activity in the movement 

dimensions (Figure 3A, left column) is similar for any given movement (e.g. wrist 

extension) regardless of which side of the body it is on (Figure 3B).

The dPCA analysis is a helpful visualization of the overall neural structure, but is not 

definitive proof of a compositional code. Next, we test for compositionality using more 

comprehensive analyses. We also expand the scope beyond ipsilateral vs. contralateral 

movements to consider the possibility of a compositional code linking the arms to the legs.
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First, we used cross-validation to confirm that the laterality dimension revealed in Figure 3A 

was consistent for held-out movements that were not used to find it. Figure 4A shows that 

activity in the laterality dimension correctly separates attempted movements made on 

opposite sides of the body even for held-out movements (diagonal panels) and for held out 

effectors (arm or leg, off-diagonal panels). We also used cross-validated dPCA to search for 

a putative “arm vs. leg” dimension that codes for whether a movement was attempted with 

the arm or the leg (independently of the movement details or laterality). Results indicate the 

presence of a robust arm vs. leg dimension in addition to a laterality dimension.

Next, we quantified the correlations between firing rate vectors observed for arm and leg 

movements on opposite sides of the body (Figure 4B). First, firing rates were averaged 

across trials in a 200 to 600 ms window after the go cue and concatenated across electrodes 

into a vector. Then, the effect of the laterality dimension was removed by subtracting the 

mean firing rate within each laterality (otherwise, all movements on opposite sides of the 

body would appear negatively correlated). Finally, the correlation (Pearson’s r) between the 

firing rate vectors for each movement pair was computed. We observed a consistently 

positive correlation between matching ipsilateral and contralateral movements for both the 

arms and legs (indicated by the off-diagonal bands in Figure 4B). Correlation values for 

matching movements, such as contralateral vs. ipsilateral wrist extension, were statistically 

significantly greater than those for non-matching movements, such as contralateral wrist 

extension vs. ipsilateral elbow flexion (mean r=0.52 vs. r=−0.07 for the arm, p<1e-9; r=0.73 

vs. r=−0.14 for the leg, p<1e-08; significance assessed with a t-test). All correlations were 

computed with cross-validation to reduce bias (see Methods).

Surprisingly, homologous movements of the arm and leg were also more correlated than 

non-homologous movements (e.g. hand grasp and toe curl are positively correlated, while 

hand close and ankle inversion are not, as shown in the off-diagonal band in Figure 4C). 

Correlations between homologous movements were statistically significantly greater than for 

non-homologous movements (mean r=0.48 vs. r=−0.06, p<1e-9). We also confirmed this 

result for a more limited set of four arm and leg movements in participant T7 (mean r=0.22 

vs. r=−0.07, p=0.0036). These homologous correlations, along with the arm vs. leg 

dimension shown in Figure 4A, extend the compositional code to pairs of arm and leg 

movements.

In Figure S4, we examined the neural representation of directional movement (as opposed to 

single-joint movement) and found that it was also correlated across all four limbs. 

Interestingly, directional movements were correlated in an intrinsic coordinate frame (where 

mirrored joint movements were correlated) as opposed to an extrinsic frame (where 

movements in the same spatial direction would be correlated), placing precentral gyrus at an 

intermediate level of motor abstraction.

To exhaustively test that both aspects of compositionality (shared movement-coding and 

independent effector-coding) were indeed non-trivial properties of the data and well above 

chance, we performed additional shuffle controls (Figure S5) which confirmed their 

significance.
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Finally, we examined compositionality through the lens of motor preparation. We reasoned 

that if compositionality was indeed the result of independently specifying the movement and 

the limb-to-be-moved, then neural activity in limb-coding or movement-coding dimensions 

should be able to be prepared by itself in the case of partial information (e.g. when only the 

limb, but not the movement, is cued in an instructed delay task). We tested this idea with a 

partial cue task. We found that when only the movement is specified during the delay period 

(i.e. “wrist extension” or “hand close” instead of “right wrist extension” or “left hand 

close”), activity in the movement dimension partially codes for the upcoming movement 

while activity in the laterality dimension doesn’t change (Figure 4D, right panel). Likewise, 

when only the laterality is specified (i.e. “left” or “right”), activity in the laterality dimension 

codes for the upcoming side of the body while activity in the movement dimension doesn’t 

change (Figure 4D, left panel). This result also holds for partial specification of arm vs. leg 

and movement direction (Figure 4E). By examining the single trial distributions of 

preparatory activity (Figure S6), we confirmed that the neural activity is consistent with 

partial preparation as opposed to a mixture of full preparation and no preparation.

Simultaneous Movement of Two Effectors—We further tested the idea of 

compositionality by examining how neural activity changes when two effectors are moved 

simultaneously. Since a movement code that is shared across effectors cannot 

simultaneously specify two different movements, we hypothesized that the code should 

change during dual movement. Prior work on bimanual reaching in macaques showed a 

decorrelation and suppression of ipsilateral-related neural activity during bimanual reaches 

(Rokni et al., 2003). To investigate this possibility, we tested all pairings of the following 

five effectors: left arm, right arm, left leg, right leg, and head. For each effector pair, we used 

an instructed delay cued movement task (Figure 5A) to probe the neural representation of 

left and right directional movements made either in isolation or simultaneously. For all pairs, 

we observed separable neural tuning to each of the four simultaneous movement conditions. 

A cross-validated naive Bayes classifier was able to distinguish between these conditions 

with an accuracy ranging from 86.1% to 100% (mean=95% across all pairs) using firing 

rates within a 200 to 1000 ms window after the go cue.

Figure 5B shows example data from one effector pairing (contralateral arm and leg). To 

visualize the neural activity, firing rate vectors were computed for each trial using a 200 ms 

to 1000 ms time window after the go cue. Then, two neural dimensions were found in which 

to visualize these vectors by using PCA to highlight tuning to movement direction (see 

Methods). The example data shows clear and separable firing rate clusters for each 

movement when the effectors are moved in isolation.

Next, we used these same two dimensions to visualize the neural activity observed during 

dual movement (Figure 5C). Interestingly, the neural representation of arm movement 

appears largely intact (blue line is similar) while the representation of leg movement shrinks 

considerably in this space (red line is smaller). This could be because the axis of 

representation has changed and no longer aligns with the single movement PCs. In Figure 

5D we show the same activity but in neural dimensions that best explain dual movement 

(found again using PCA). Although the modulation for leg movement is still smaller than in 
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Figure 5B, it is enlarged relative to Figure 5C, indicating that both the modulation size has 

decreased and the axis of representation has shifted.

We then summarized the effects observed in Figure 5B–D across all effector pairings (Figure 

5E–F). Figure 5E summarizes the change in firing rate when each effector is moved 

separately (e.g. the red and blue lines in Figure 5B). Contralateral arm movements cause the 

largest firing rate changes, followed by the contralateral leg, ipsilateral arm, ipsilateral leg 

and head. We then quantified how the modulation size changed during dual movement 

(Figure 5F, top panel). To measure how it changed, we divided the modulation size during 

dual movement (length of the lines in Figure 5D) by the modulation size during single 

movement (length of the lines in Figure 5B). Values less than 1 indicate that neural activity 

was attenuated. For most pairings, the neural representation of the “primary” effector (blue 

bars) stays relatively constant while the representation of the “secondary” effector (red bars) 

is attenuated.

We found the same pattern for the change in axis (Figure 5F, bottom panel); the primary 

effector mostly retains its axis of representation while the secondary effector’s axis changes 

more. The change in axis was defined by the cosine of the angle between the single 

movement axis and the dual movement axis. On average, this change caused the two 

effectors to become less correlated with each other during dual movement (Figure 5G). 

These suppression and decorrelation effects might facilitate independent dual-effector 

control by keeping the somatotopically dominant activity free from interference.

A Whole-Body Discrete Decoding BCI that Increases Information Throughput
—Current intracortical BCIs (iBCIs) are limited to recording from a small number of 

locations [e.g. (Hochberg et al., 2012; Collinger et al., 2013; Aflalo et al., 2015; Bouton et 

al., 2016; Pandarinath et al., 2017; Ajiboye et al., 2017)], making it difficult to record from 

the arm and leg areas of precentral gyrus across both hemispheres. The results above, which 

show strong whole-body tuning in just one patch of cortex, make it possible for current 

iBCIs to decode movements from all four limbs. One context where this could be useful is to 

enable accurate selection from a large number of items by mapping movements from 

different limbs to different items. This could be better than using the contralateral arm alone, 

since neural activity patterns from other limbs might be more distinct from each other.

We tested this idea with a discrete iBCI that decoded, in closed-loop, which of a set of N 

movements was attempted by the user. A Gaussian naïve Bayes classifier was used to 

decode the movement (using a single time window of neural activity). We focused on 

directional movements made by the wrists (as if pointing a joystick) and ankles (pointing the 

foot), consistent with prior work on discrete iBCIs that decoded directional movements 

(Musallam et al., 2004; Santhanam et al., 2006). Figure 6A shows the three target 

configurations tested. For each trial, a target would illuminate and T5 had exactly one 

second to identify the target and perform the indicated movement. At the end of one second, 

the movement was decoded and a sound played indicating to T5 whether the decoder was 

successful. The next target then appeared immediately.
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First, we motivate the need for using multiple effectors by showing how information 

throughput [measured with “achieved bit rate” (Nuyujukian et al., 2015)] and decoding 

accuracy varies as a function of the number of targets when only a single effector is used 

(Figure 6B). After just 6 targets, accuracy and bit rate start to decrease. Next, we tested 

offline whether spreading out 16 targets across multiple effectors could increase 

performance (Figure 6 C–E). When spread across all four limbs (4 targets per limb), 

accuracy was near 100% (Figure 6C). The improvement in accuracy was a result of 

increasing the distance between each target in neural population state space (Figure 6D) and 

increasing the dimensionality of the neural population space spanned by the targets (Figure 

6E). We then confirmed online that information throughput was higher when using multiple 

effectors. Even when using an optimized number of targets for each layout (see Methods), 

the four-limb layout performed substantially better (Figure 6F). Decoding errors mostly 

confused matching targets from the arm and leg on the same side of the body (Figure 6G), 

likely due to their correlated representation (as shown in Figure 4). Supplemental Video 1 

shows example trials.

Finally, we explored spreading targets across more body parts than just the wrists and ankles 

(including the elbow, knee, hip, toes, and fingers). Supplemental Video 2 shows that high 

decoding accuracies (mean of 95%) can be achieved across 32 targets in this manner, as long 

as T5 is given more time to recognize the target and prepare the movement.

Discussion

Representation of the Whole Body in Hand Knob Area of Human Precentral Gyrus

How different body parts are topographically mapped onto motor cortical areas is 

fundamental to understanding the motor system. Although prior work has addressed this 

question in humans using electrical stimulation [e.g. (Penfield and Boldrey, 1937; Penfield 

and Rasmussen, 1950)] and low-resolution recording technologies [e.g. ECoG and fMRI 

(Crone et al., 1998a; Miller et al., 2007; Meier et al., 2008)], single neuron data has been 

lacking. Using microelectrode recordings, we found the surprising result that there was 

strong neural tuning to face, head, arm and leg movements intermixed in hand knob area of 

precentral gyrus. While it was previously recognized that nearby body parts within the arm, 

leg or face area of precentral gyrus may overlap (e.g. wrist and fingers may overlap), prior 

work in humans has largely supported the idea of separate areas for the arm, leg and face on 

precentral gyrus (Penfield and Boldrey, 1937; Miller et al., 2007; Meier et al., 2008). Our 

finding of intermixed whole-body tuning overturns this prior expectation and illustrates that 

single neurons may differ substantially from what electrical stimulation or low-resolution 

activity might predict.

In our view, anatomical studies convincingly argue that a great majority of the precentral 

gyrus belongs to the caudal portion of Brodmann area 6, a premotor area (as opposed to 

Brodmann area 4, primary motor cortex) (Rademacher et al., 1993; Geyer et al., 1996; White 

et al., 1997; Rademacher et al., 2001; Geyer, 2004). This modern perspective is somewhat at 

odds with Brodmann’s original illustrations, where area 4 was drawn as occupying a large 

amount of the surface of precentral gyrus (Brodmann, 1909). More recent studies show that 

area 4 only emerges from the central sulcus quite medially (in leg region) and is mostly 
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confined to the area above the superior frontal sulcus in a wedge shape (Rademacher et al., 

1993, 2001; White et al., 1997).

Given that our recordings are likely from premotor cortex, it is natural to ask: would the 

intermixed tuning we showed here also hold in primary cortex (in the central sulcus)? Prior 

work in macaques provides some guidance on this issue. Dorsal precentral gyrus, where our 

arrays were implanted, has been proposed to be homologous to macaque area F2 (PMd) 

(Genon et al., 2017, 2018; Geyer et al., 2000; Rizzolatti et al., 1998; Zilles et al., 1995). 

From this perspective, many of our results match previous results from macaque studies, 

including a large correlation in PMd activity between contralateral and ipsilateral reaching 

movements (but not in M1) (Cisek et al., 2003; Ames and Churchland, 2019; Heming et al., 

2019), and mixed arm and leg representations in PMd (but not in M1) (Kurata, 1989). The 

close match between our results and macaque PMd provides compelling evidence of 

homology between human dorsal precentral gyrus and macaque PMd at single neuron and 

multi-unit resolution, and suggests that Brodmann area 4 in humans likely contains more 

somatotopically segregated (and less compositional) movement representations. However, 

only neural recordings from human central sulcus can provide a definitive answer.

Importantly, both participants had chronic tetraplegia (T7 had ALS and T5 had high level 

spinal cord injury), which raises the question of how whole-body tuning might generalize to 

people without tetraplegia. One would expect cortical remapping to occur after spinal cord 

injury; however, current models of remapping predict that the most adjacent intact body 

parts (in this case face and head) should become more dominant (Qi et al., 2000). Instead, 

we found in participant T5 that the arm and leg were more strongly represented than the face 

and head, suggesting that remapping may be limited in precentral gyrus. We also observed 

similar proportions of population-level tuning for face, head, arm and leg movements in 

participant T7, who had ALS, giving further confidence that intermixed tuning was not 

caused by remapping. Nevertheless, only neural recordings from able-bodied people can 

provide a definitive answer.

One additional consideration is the possibility that some of the whole-body tuning we 

observed was caused by small, inadvertent movements of the contralateral arm. However, we 

believe this is an unlikely explanation of our results. First, small generic movements of the 

contralateral arm induced by effort are unlikely to explain the rich, high-dimensional 

structure in the data (e.g. compositional coding). Second, BCI decoding performance 

increased when decoding additional effectors (due to better neural separability of the 

movements), which would not occur if tuning to the other effectors was caused by small, 

inadvertent movement of the contralateral arm.

A Compositional Neural Code for Movement

In one participant (T5), we characterized the structure of the neural code for movements 

across the whole body in one area of premotor cortex. We found that arm and leg 

movements were represented in a correlated way. Movements of the same body part on 

opposite sides of the body, and homologous movements of the arm and leg (e.g. hand grasp 

and toe curl), were significantly correlated in neural dimensions that coded for movement 

type. In other neural dimensions, the limb itself was represented largely independently of the 
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movement. Together, activity in these neural dimensions forms a partially “compositional” 

code for movement that differs from a muscle-like representation.

Compositionality provides a new conceptual framework for thinking about how the motor 

cortical system constructs movement. It can also explain why the entire body is represented 

in a single area of premotor cortex, since a whole-body compositional code might be useful 

for transferring motor skills to different limbs. Based on our findings, we propose a concrete 

neural mechanism for skill transfer that works as follows. Neural activity in movement-

coding neural dimensions could be optimized through learning to produce the correct 

patterns to accomplish the task. Then, the skill could be transferred to another limb by 

changing only the activity in limb-coding dimensions, causing the movement activity to re-

route to different muscles. We schematize this idea in Figure 7 and further concretize it with 

a neural network model (presented in Figure S7) that is capable of transferring motor skills 

across the arms using a compositional code. Behaviorally, motor skills such as sequences, 

rhythms and trajectories have been demonstrated to transfer from one arm to the other 

(Latash, 1999; Criscimagna-Hemminger et al., 2003; Shea et al., 2011), from one leg to the 

other (Morris et al., 2009), and from the arms to the legs (Christou and Rodriguez, 2008; 

Kelso and Zanone, 2002; Savin and Morton, 2008).

We hypothesize that precentral gyrus might be an intermediate node that helps transform a 

compositional representation of movement inherited from upstream areas into a more 

muscle-like representation required for motor control. Such an “in-between” role could 

explain why neural activity in precentral gyrus was not fully compositional in the sense that 

correlations values were always less than one (they typically ranged from 0.5 to 0.7). 

Consistent with such a role, we also observed that the movement code shared across 

effectors was represented in an intrinsic coordinate frame (Figure S4). We expect that more 

rostral areas might encode motor actions in visuospatial coordinates or in more abstract 

codes that could enable skill transfer between non-homologous effectors.

Our results are consistent with previous fMRI and ECoG studies that found a correlated 

representation of ipsilateral and contralateral finger/arm movements on precentral gyrus 

(Bundy et al., 2018; Diedrichsen et al., 2013; Jin et al., 2016) and an intrinsic, effector-

independent code for finger movements (Wiestler et al., 2014). A recent microelectrode 

study of human parietal cortex also found a correlated representation of ipsilateral and 

contralateral hand and shoulder movements (Zhang et al., 2017). Our study puts these results 

into a larger context of a two-part compositional coding scheme that includes all four limbs 

and contains a limb-coding component in addition to correlated movement-coding 

components. We also showed that neural activity in movement dimensions can be prepared 

independently of neural activity in limb-coding dimensions, lending more support to the idea 

of independent specification of the movement and the limb-to-be-moved.

We further tested the idea of compositionality by examining how neural activity changed 

when two effectors were moved simultaneously. Since a shared movement code cannot 

simultaneously specify two different movements, we predicted that the code would change 

during dual movement. Results showed that during dual movement, the neural representation 

for the secondary effector was suppressed and its tuning changed, becoming less correlated 
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with the primary effector. Our results are consistent with prior behavioral work suggesting 

that bimanual movements are coded separately from unimanual movements (Nozaki et al., 

2006; Yokoi et al., 2016),fMRI studies in people (Diedrichsen et al., 2013), and electrode 

recordings in macaques that also showed changes in neural tuning for bimanual arm 

movements (Ifft et al., 2013; Rokni et al., 2003). This study extends these findings to a 

broader set of effector pairings, revealing a rank ordering of effectors that determines which 

effector’s representation remains intact during simultaneous movement.

Our compositional coding results focused on the arms and legs. Future work is needed to test 

whether the representation of head and face movements also shares a common structure with 

arm and leg movements, and thus whether compositionality can explain the presence of head 

and face related activity in arm/hand area of premotor cortex. One could imagine that motor 

skills such as timing and intensity (e.g. finger-tapping vs. nose-wrinkling a certain rhythm) 

might indeed be able to be transferred between the face and the limbs, necessitating a 

movement code with shared representations between the limbs and the face. However, skills 

that are more tied to the morphology of the extremities would likely require a unique 

representation.

Motor skill transfer is an intriguing hypothesis that could explain why all four limbs are 

represented in one area of premotor cortex; however, it is not the only possible explanation. 

One alternative is that the observed activity is an epiphenomenon of “overflow” activity 

from connected networks that control other body parts. However, the idea of overflow by 

itself cannot explain why we observed compositional structure (wherein homologous body 

parts had linked representations, effector-related activity could be prepared independently of 

movement-related activity, etc.). It is also unclear why motor cortical activity would 

overflow to connected regions to such a large degree with no functional purpose. 

Nevertheless, future work is needed to test whether the compositional code is causally 

involved with movement construction as opposed to epiphenomenal.

Related to the idea of neural overflow is the behavioral finding of “motor overflow”: the 

phenomenon that arm or leg movements are sometimes accompanied by small, unintended 

mirror movements of the opposite arm or leg, even in healthy adults (Hoy et al., 2004). 

Compositional coding offers an explanation for this phenomenon. An incomplete 

transformation between a compositional code and muscle activity could cause the effector-

independent movement command to leak to unintended effectors, resulting in homologous 

limbs making small mirror movements. One concrete prediction of our theory is that motor 

overflow should be observed from the arm to the leg, and vice versa, since these limbs are 

linked together in the compositional code. We are unaware of any studies which test this 

behavioral prediction in adults, although it has been observed in infants (Soska et al., 2012).

Whole-Body Intracortical Brain-Computer Interfaces

Our findings have important implications for intracortical brain-computer interfaces (iBCIs), 

since they open up the opportunity to decode movements across the entire body from just a 

small area of precentral gyrus. We showed that a discrete target selection iBCI could 

successfully decode targets across all four limbs accurately enough to improve performance 

relative to a single-effector approach. Using more limbs increased the neural separability of 

Willett et al. Page 13

Cell. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



targets, enabling more targets to be presented (up to 32 targets at 95% accuracy, 

Supplemental Video 2). While promising, it is important to note that our iBCI system was 

intended only as a proof-of-concept to demonstrate the potential of whole-body decoding. It 

does not constitute a complete, clinically viable system that is robust enough to recalibrate 

rapidly as neural features change [e.g. (Jarosiewicz et al., 2015)], or to automatically switch 

off during task disengagement, which are important challenges to overcome for real-world 

deployment.

Here, we demonstrated one use case for whole-body decoding: discrete target selection. 

Other use cases could be to map multiple movements to different kinds of clicks for general 

purpose computer use (e.g. curl left toes for left click, curl right toes for right click, etc.), or 

even to restore continuous control of leg and arm movements across both sides of the body. 

While whole-body decoding could also be achieved by placing electrodes across the entire 

precentral gyrus of both hemispheres, this is a much more difficult surgical and technical 

proposition.

One potential limitation of decoding the whole body from a single area is the suppression of 

activity related to secondary effectors during simultaneous movement (i.e. Figure 5). 

Nevertheless, simultaneous movements can still be decoded (we observed a mean offline 

decoding accuracy of 95% across all pairs of simultaneous movement). Moving forward, our 

results provide important design considerations for future iBCIs which must consider the 

tradeoff between additional microelectrode placement and multi-effector decoding 

performance.

STAR Methods

Lead Contact and Materials Availability

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Frank Willett (fwillett@stanford.edu). This study did not 

generate new unique reagents.

Experimental Model and Subject Details

This study includes data from two participants (identified as T5 and T7), who gave informed 

consent and were enrolled in the BrainGate2 Neural Interface System clinical trial 

(ClinicalTrials.gov Identifier: NCT00912041, registered June 3, 2009). This pilot clinical 

trial was approved under an Investigational Device Exemption (IDE) by the US Food and 

Drug Administration (Investigational Device Exemption #G090003). Permission was also 

granted by the Institutional Review Boards of University Hospitals (protocol #04–12-17), 

Stanford University (protocol #20804), Partners Healthcare/Massachusetts General Hospital 

(2011P001036), Providence VA Medical Center (2011–009), and Brown University 

(0809992560). All research was performed in accordance with relevant guidelines/

regulations.

Participant T7 was a right-handed man, 53 years old at the time of data collection, who was 

diagnosed with Amyotrophic Lateral Sclerosis (ALS) and had resultant motor impairment 

(functional rating scale ALSFRS-R of 17). In July 2013, T7 was implanted with two 96 
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channel intracortical microelectrode arrays (Blackrock Microsystems, Salt Lake City, UT) in 

the hand knob area of dominant precentral gyrus (1.5-mm length). Data are reported from 

post-implant day 24. At the time of data collection, T7 retained movement of the arm, leg, 

face and head. T7 was able to extend and flex the knee and ankle normally, and make all 

requested head and face movements normally, but had more limited range of motion in the 

arm and leg for some movements (Table S2 reports neurologic exam results). T7 is no longer 

enrolled in the trial and the data from T7 were collected before the present study was 

conceived.

Participant T5 is a right-handed man, 65 years old at the time of data collection, with a C4 

ASIA C spinal cord injury that occurred approximately 9 years prior to study enrollment. In 

August 2016, participant T5 was implanted with two 96 channel intracortical microelectrode 

arrays (Blackrock Microsystems, Salt Lake City, UT) in the hand knob area of dominant 

precentral gyrus (1.5-mm length). Data are reported from post-implant days 579–961 (Table 

S1). T5 retained full movement of the head and face and the ability to shrug his shoulders. 

Below the injury, T5 retained some very limited voluntary motion of the arms and legs that 

was largely restricted to the left elbow. Some micromotions of the right and left hands were 

also visible, along with extremely small but reliable twitching of the feet and toes (Table S2 

reports neurologic exam results).

The hand knob area in both participants was identified by pre-operative magnetic resonance 

imaging (MRI). Figure 1 shows array placement locations registered to MRI-derived brain 

anatomy.

Method Details

Session Structure and Cued Movement Tasks—Neural data was recorded in 3–5 

hour “sessions” on scheduled days. During the sessions, participants sat upright in a 

wheelchair that supported their backs and legs. A computer monitor placed in front of the 

participants displayed text and/or colored shapes to indicate which movement to make and 

when. Data was collected in a series of 2–10 minute “blocks” consisting of an uninterrupted 

series of cued movements; in between these blocks, participants were encouraged to rest as 

needed. The software required for running the experimental tasks, recording data, and 

implementing the closed-loop decoding system was developed using MATLAB & Simulink 

(MathWorks).

The data from participant T7 were collected in a single session consisting of a series of 2-

minute blocks containing 20 repetitions of one set of paired movements. These paired 

movements were designed to engage the same joint(s) but in different directions; for 

example: hand open/close, wrist flexion/extension, head left/right, etc. Every three seconds, 

the text on the screen alternated to instruct the other paired movement (e.g. as in Figure 1A) 

and T7 responded as soon as he was able.

The data from T5 were collected across 19 sessions (Table S1). All sessions followed a 

simple instructed delay paradigm (like that shown in Figure 1A) except for the closed-loop 

discrete decoding sessions (described in their own section below). For text-cued tasks 

(Figures 1–5), during the instructed delay period a red square and text appeared in the center 
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of the screen indicating to T5 that he should prepare to make the specified movement. The 

instructed delay period lasted a random amount of time that was drawn from an exponential 

distribution; values that fell outside of a minimum/maximum range were re-drawn. 

Maximum and minimum delay times varied from session to session but were within 1.4 to 3 

seconds. After the delay time, the square turned green and the text indicating the movement 

changed to “Go”, at which point T5 made the movement immediately. T5 was told to 

continue attempting to make the movement (for arm & leg movements) or to hold the 

posture of the completed movement (for face & head movements) until the text changed to 

“Return”, at which point T5 relaxed and returned to a neutral posture. The movement and 

return periods lasted 1.5 seconds each. The spatially cued movement task (Figure S4) 

followed the same structure, but used colored targets instead of text to specify which 

movement was supposed to be made (as shown in Figure S4A).

Neural Data Processing—Neural signals were recorded from the microelectrode arrays 

using the NeuroPort™ system (Blackrock Microsystems) [(Hochberg 2006) describes the 

basic setup]. Neural signals were analog filtered from 0.3 Hz to 7.5 kHz and digitized at 30 

kHz (250 nV resolution). Next, a common average reference filter was applied that 

subtracted the average signal across the array from every electrode in order to reduce 

common mode noise. Finally, a digital bandpass filter from 250 to 3000 Hz was applied to 

each electrode before spike detection.

For threshold crossing detection, we used a −4.5 × RMS threshold applied to each electrode, 

where RMS is the electrode-specific root mean square (standard deviation) of the voltage 

time series recorded on that electrode. For the analysis of waveform-sorted single neurons 

(which was only done for Figure S3), neurons were sorted manually using Plexon Offline 

Spike Sorter v3. Only waveform clusters that appeared in an unambiguous, highly separable 

cluster in principal component space were included.

Threshold crossing times (and single-unit spike times) were binned into 10 ms bins (for T5) 

or 20 ms bins (for T7) and z-scored to ensure that electrodes with high firing rates did not 

overly influence the population-level results. Different bin widths were used for T5 and T7 

because the task data was collected with different computer systems at different sampling 

rates. Z-scoring was accomplished by first subtracting, in a block-wise manner, the mean 

count over all bins within each block. Subtracting the mean within each block helps to 

counteract slow drifts in the firing rate of electrodes and was especially important for the T7 

data, since it was collected in a block-wise fashion. For this dataset, mean subtraction 

ensures that spurious drifts in firing rate did not artificially inflate the classification 

performance shown in Figure 1E (by helping to distinguish movements from different 

blocks). After mean-subtraction, the binned counts were divided by the sample standard 

deviation computed using all bins across all blocks.

Finally, electrodes with firing rates < 1 HZ over all time steps were excluded from further 

analysis in order to denoise population-level results. For some analyses (e.g. dPCA in Figure 

3), the binned spike count time series were convolved with a Gaussian kernel (sd = 30 ms) to 

reduce high frequency noise.
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Gaussian Naïve Bayes Classification—For both offline (e.g. Figure 1E) and online 

classification (Figure 6 F–G), we used a Gaussian naïve Bayes classifier to classify firing 

rate vectors. We chose to use a Gaussian naïve Bayes classifier because it is a simple and 

straightforward method that performed well enough to demonstrate our key points. It is 

possible that more advanced decoding architectures may improve performance even further.

Firing rate vectors were computed by counting the number of threshold crossings that 

occurred within a fixed window of time for each electrode and then dividing by the window 

width. To classify the firing rate vectors, we computed the log likelihood of observing that 

vector for each possible class and then chose the class with the largest log likelihood. We 

assumed that each element of the firing rate vector was normally distributed and was 

statistically independent from each other element. We also assumed that the variance of each 

Gaussian distribution was the same across all classes. Under these assumptions, the 

following quantity is proportional to the log likelihood of observing firing rate vector x 
under the class Ck (Bishop, 2006):

log p x Ck ∝ − ∑
i = 1

N xi − ui, k
2

σi2

Here, N is the number of electrodes, xi is the ith element of the firing rate vector x 
(corresponding to electrode i’s firing rate), ui,k is the mean for electrode i under class k, and 

σi is the standard deviation for electrode i (under all classes). To classify, we computed this 

quantity for each class and chose the class with the largest value. The class-specific means 

were estimated using the sample mean across all available training data; likewise, the 

variances were estimated using the pooled variances across all classes.

Closed-Loop Discrete Decoding—All closed-loop discrete decoding experiments used 

a “time-locked” trial structure where each trial lasted for 1 second and no pauses occurred 

between trials. At the end of each trial, the closed-loop discrete decoding system classified 

the participant’s attempted movement. If the movement was correctly classified, a “success” 

sound played; otherwise, a “failure” sound played. After each trial ended, a new target 

appeared and the next trial began immediately (see Supplemental Videos 1 and 2 for 

example trials).

We used a Gaussian naïve Bayes classifier (defined above) to classify mean firing rate 

vectors computed using a fixed window of time for each trial. This window was optimized 

for each task and session as part of the process of calibrating the classifier; the window 

typically fell between 300 to 1000 ms. To optimize the window, we performed an offline 

grid search across all possible start and end times for the window in 50 ms increments from 

0 ms to 1000 ms. Ten-fold cross-validation was used to estimate the achieved bit rate that 

would result from using each window. The window with the largest achieved bit rate was 

then chosen.

For each online discrete decoding session, one or two target configurations were tested. For 

each target configuration, one 5 minute open-loop block of data was first collected with 
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which to calibrate an initial classifier. Then, we proceeded with a series of 5 minute closed-

loop blocks to allow participant T5 to practice with that target configuration. After each 

closed-loop block, we re-calibrated the classifier using the preceding two blocks of data. We 

continued until we determined that T5’s performance had plateaued and he was comfortable 

with the task. After this decision was made, we collected a series of five, 3-minute 

“performance” blocks with the classifier held fixed; the average accuracy and achieved bit 

rate obtained during these blocks were reported in Figure 6. In addition to the sessions 

reported here, T5 benefitted from 6 additional sessions of practice wherein we developed/

tested the BCI system and tried different target configurations.

Achieved bit rate is a conservative, clinically-motivated metric of information throughput 

(Nuyujukian et al., 2015) and was computed with the following formula:

B =
log2(N − 1)max Sc − Si , 0

t ,

where N is the number of targets, Sc is the number of correct selections, Si is the number of 

incorrect selections, and t is the total time elapsed. Achieved bit rate assumes that every 

incorrect selection must be followed by the correct selection of a delete key to undo the 

error, thus heavily penalizing low accuracies that would be hard for participants to work with 

in practice.

For the online results in Figure 6 F–G, we used an offline simulation to find the optimal 

number of targets for each layout in order to maximize the achieved bit rate. To do so, we 

used an exploratory offline dataset with all four effectors (right & left hand, right & left foot) 

and with eight targets per effector. We then fit a simple linear encoding model of target 

direction to each effector, using only the data corresponding to that effector’s movements:

f = aEk
1

cos(θ)
sin(θ)

+ ε

Here, f is the N × 1 firing rate vector for a single trial, Ek is an N × 3 matrix of mean firing 

rates (first column) and directional tuning coefficients (second and third columns) for 

effector k, θ is the angle of the target, ε is an N × 1 noise vector, and a is a scalar gain factor. 

Each element of ε is normally distributed with covariance matrix Σk. Ek was fit to the data 

using least squares regression for each effector independently, and Σk was estimated using 

the sample error covariance of the linear model. To counteract overfitting in Ek (which could 

overestimate the amount of tuning present), we searched for the gain factor a which led to 

the best match in predicted accuracy for the number of targets present in the exploratory 

dataset (eight). These a values were < 1 and downweighed the tuning.

Once the model was fit, we varied the number of possible targets from 2 to 10. For each 

target layout, we simulated a new set of trials using the model and predicted decoder 

performance by applying a Gaussian naïve Bayes classifier to the simulated data using ten-

fold cross-validation. Using this method, we predicted that the optimal number of targets 
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was equal to 6 for a single effector (right hand only), 6 each for two effectors (right & left 

hand), and 4 each for four effectors (right & left hand, right & left foot) when the trial time 

was constrained to be one second. Encouragingly, the optimal number of targets predicted 

by this method for a single effector (6) matched online data (Figure 6b).

Quantification and Statistical Analysis

The quantitative methods used for data analysis are detailed below in this section, organized 

mainly by the Figure for which they were used. Statistical analyses are reported in the 

Results and also described in detail below in this section. In general, 95% confidence 

intervals and/or p-values < 0.05 were used to define statistical significance. We used t-tests 

to compare the means of two distributions. We used bootstrap resampling, jackknifing or 

parametric assumptions of normality to generate 95% confidence intervals of the mean. 

Quantitative approaches were not used to determine if the data met the assumptions of the t-

tests or normality. The statistical units and N for each test are detailed below.

Cross-Validated Estimator of Neural Distance—Measuring the distance between two 

distributions of firing rate vectors is useful for quantifying the amount of neural modulation 

caused by a particular movement. However, measuring this in an unbiased way in the 

presence of noise is a nontrivial problem. Here, we motivate the problem and describe the 

methods we used to obtain conservative estimates of distance that substantially reduce bias 

by using cross-validation (see our code repository https://github.com/fwillett/cvVectorStats 

for an implementation and simulated tests that validate the approach).

To understand the problem, consider the measurements in Figure 1C. The bar heights reflect 

the distance between two multivariate distributions: a distribution of firing rate vectors 

corresponding to the “do nothing” condition (distribution 1), and a distribution of firing rate 

vectors corresponding to the movement in question (distribution 2). Let us denote the firing 

rate vector observed on trial i for distribution 1 as xi
1 and for distribution 2 as xi

2. The 

sample means are

u1 = 1
N ∑

i = 1

N
xi1

u2 = 1
N ∑

i = 1

N
xi2

The sample means differ from the true means u1 and u2 by some sampling error. As a result, 

the difference in sample means also contains error: ud = u2 − u1 = u2 − u1 + ε for some error 

vector ε.

One simple method for estimating the distance between distributions 1 and 2 would be to 

take the Euclidean norm of the difference in sample means: ud = ud ⋅ ud. However, the 

sampling error inherent in ud causes this metric to be biased upwards. Expanding terms, we 
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have: ud ⋅ ud = ud + ε ⋅ ud + ε = ud ⋅ ud + 2ud ⋅ ε + ε ⋅ ε, which is larger than ud ⋅ ud on 

average since ε · ε > 0. One intuitive way to see this is to consider the case where 

distribution 1 and distribution 2 are identical. The sample means for each distribution will 

always differ from each other (due to sampling error), and hence there will always be some 

positive distance between them even though the true difference in means is zero.

Fortunately, there is a straightforward way to achieve a practically bias-free estimate of 

distance. First, by following the approach laid out in (Allefeld and Haynes, 2014), we can 

estimate the squared distance by averaging together a series of unbiased estimates, each 

made by using leave-one-out trials. The following is an unbiased estimate of the squared 

distance:

ud = 1
N ∑

i = 1

N
ud, i ⋅ ud, 1:N /i

Here, ud, i is the sample estimate of the difference in means using only the pair of samples 

from trial i and ud, 1:N /i is the sample estimate of the difference in means using all trials 

except i. Note that this cross-validation technique has also been used elsewhere as part of the 

“crossnobis” estimator (Diedrichsen and Kriegeskorte, 2017).

Since ud, i and ud, 1:N /i contain no overlapping trials, they are statistically independent 

from each other. Statistical independence implies that the expectation of their product is 

equal to the product of their expectation. Taking the expectation, we can show that it is an 

unbiased measure:

E 1
N ∑

i = 1

N
ud, i ⋅ ud, 1:N /i = 1

N ∑
i = 1

N
E ud, i ⋅ E ud, 1:N /i = 1

N ∑
i = 1

N
ud ⋅ ud = ud ⋅ ud

Note that this cross-validation approach will work for computing the squared norm of any 

vector quantity in an unbiased way. For example, ud could be a vector of coefficients from a 

linear tuning model or, more simply, the mean of a single distribution.

Although squared distance can be used as a measure of neural modulation, we find ordinary 

(Euclidean) distance to be a much more intuitive metric (e.g. when using Euclidean distance, 

if the neural distance is twice as large, then there is twice as much firing rate change). 

Unfortunately, taking the square root of the above quantity does not immediately yield an 

unbiased measure of Euclidean distance, since it can be negative. Nevertheless, it is possible 

to construct a conservative, largely unbiased estimator of Euclidean distance by taking the 

square root of the absolute value while preserving the sign: sign ud ⋅ ud ud ⋅ ud . This square 

root estimator substantially reduces (practically eliminates) bias and is far more robust to 

sampling error than a naïve approach of taking the Euclidean norm of the sample estimate. 

We found that except in cases of very high sampling error, the square root estimator’s 

expectation was equal to the true value. Importantly, in cases where some bias was present, 

the estimator was conservative (see https://github.com/fwillett/cvVectorStats for 
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simulations); since it is conservative, significantly positive distances can be safely 

interpreted as meaningful differences in neural activity.

Note that above method assumes that there are an equal number of observations from each 

distribution (N observations from each), but the same technique can be applied for unequal 

numbers of observations by splitting the data into folds of varying sizes (https://github.com/

fwillett/cvVectorStats).

Cross-Validated Angles and Correlations—In the above section, we described our 

approach for reducing bias when estimating the distance between two firing rate 

distributions. We also extended this approach to reduce the bias of correlation and angle 

measurements, which we describe here (see our code repository at https://github.com/

fwillett/cvVectorStats for an implementation and simulated tests that validate the approach).

When computing the angle between mean firing rate vectors (in Figure 5F–G), the sample 

estimate is:

u1 ⋅ u2
u1 u2

= cosθ

Here, u1 and u2 are the sample estimates of the mean firing rate vectors for distribution 1 

and 2. The problem here is that u1  and u2  are biased upwards because they contain 

sampling error. This causes cos θ to appear smaller than it truly is, making the vectors 

appear more dissimilar. The larger the uncertainty (smaller sample sizes or smaller vectors), 

the greater this effect will be.

By replacing u1  and u2  with bias-reduced estimators of vector norm, this effect can be 

eliminated. For example, as shown in the above section, u1
2 can be estimated in an 

unbiased way by computing 1
N ∑i = 1

N u1, i ⋅ u1, 1:N /i, where u1, i is the sample estimate of 

u1 using only trial i and u1, 1:N /i is the sample estimate of u1 using all trials except i. u1
can then be estimated by applying the sign-preserving square root transform.

The same technique of substituting bias-reduced estimators into the denominator can be 

applied to greatly reduce bias when estimating correlations between vector means (as in 

Figure 4) or vectors of tuning coefficients (as in Figure S4). To see this, note that the 

equation 
u1 ⋅ u2
u1 u2

 estimates the correlation between two u1 and u2 as long as u1 and u2 are 

taken to be the sample estimates of the centered vectors.

Figure 1 Methods—The datasets presented in this figure (10.22.2018 and 08.23.2013) 

consisted of 32 trials per movement for T5 and 19 trials per movement for T7.

In Figure 1C, 95% confidence intervals of the mean were computed by assuming that the 

data are normally distributed.
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In Figure 1D, we used the bias-reducing, cross-validated estimator of distance to compute 

the height of each bar. To compute the confidence intervals, we used a jackknife procedure 

as described in (Severiano et al., 2011). We found that the jackknife confidence intervals 

produced more accurate confidence intervals than bootstrapping (which we confirmed via 

simulation), since the cross-validated distance metric is biased upwards when resampling 

identical data points (because identical data points are more aligned with each other). This 

effect is similar to that noted in (Severiano et al., 2011), where the jackknife was also found 

to outperform the bootstrap.

In Figure 1D, the small circles represent single trial firing rate vectors projected onto a 

“difference axis” consisting of the difference between two distributions of firing rate vectors. 

For T5, the two distributions correspond to the “do nothing” control condition and the 

movement condition of interest. The light circles are the single trial projections of the “do 

nothing” activity onto this axis and the dark circles are the single trial projections of the 

movement activity. For T7, the two distributions correspond to each of the paired 

movements for the pair of interest, and the light and dark circles each correspond to one of 

the movements in the pair. The small circles were jittered along the x-axis for ease of 

visualization.

We used cross-validation to project each trial’s firing rate vector onto a line connecting the 

two distributions in question. For each trial, we first estimated the line connecting the two 

distributions using all other trials by computing v = u2 − u1 /d, where u1 is the sample mean 

for distribution 1, u2 is the sample mean for distribution 2, and d is the scalar distance 

between the distributions found using the cross-validated estimator. We then projected the 

held-out trial’s firing rate vector onto v by using the dot product.

Using the data in Figure 1D, we performed t-tests to determine whether the changes in firing 

rate evoked by arm movements were statistically significantly larger than those evoked by 

non-arm movements. For T5, enough movements were tested so that we could perform 

independent, two-sample t-tests for each movement category (using the mean Δ firing rate 

magnitude for each movement as the statistical unit, i.e. the bar height for each bar in Figure 

1D). The arm modulation (N=8 arm data points) was statistically significantly larger than the 

face (p<1e-06, N=11 face data points), head (p<1e-04, N=8 head data points), and leg 

(p=0.003, N=6 leg data points) modulation. For T7, only two movement pairs each were 

tested for the face, head, and leg categories, making statistical comparison underpowered on 

a per-category basis. However, lumping together all non-arm movements (for a total of 6 

arm data points and 6 non-arm data points) showed a statistically significant difference from 

arm movements when using a two-sample t-test (p<1e-3).

For Figure 1E (offline classification), we used the firing rates in a window between 200–600 

ms (T5) or 200–1600 ms (T7) after the go cue as input into the classifier. For T7, we found 

that since there was temporal variation in activity throughout the movement, classification 

performance could be improved by including multiple time windows of firing rates for each 

electrode in the feature vector. We split the 200 to 1600 ms time window into two smaller 

windows (200 to 800 and 800 to 1600) and included the activity in each of these windows 

for each electrode as input to the classifier (effectively doubling the number of inputs). This 
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wasn’t necessary for the T5 dataset as performance was already saturated with a single 

window.

Note that, due to the block design of T7’s data, we pre-processed the neural data to remove 

differences in firing rate means from block to block that could spuriously increase 

classification performance (see above section “Neural Data Processing”).

Figure 2 Methods—Figure 2 was created in the same way as Figure 1D, detailed above. 

Figure 2’s dataset (12.05.2018) consisted of 30 trials per movement.

Figure 3 Methods—Figure 3 used the same dataset as the one shown in Figure 2 

(12.05.2018; 30 trials per movement).

We used the most recent version of demixed principal components analysis (Kobak et al., 

2016) [https://github.com/machenslab/dPCA] with the default parameters, including using 

an optimization procedure to find the best regularization factor. Demixed principal 

components analysis (dPCA) is an optimization technique that decomposes neural data into 

a sum of neural dimensions that express variance related only to certain variables in the 

experiment. This decomposition gives an interpretable and comprehensive overview of the 

structure in the neural data as it relates to the experimentally manipulated variables. Here, 

we briefly summarize dPCA as it was applied to our data [refer to (Kobak et al., 2016) for a 

complete description].

Demixed PCA begins with splitting the data into marginalizations in an ANOVA-like 

manner. Considering first just a single electrode, we can put this electrode’s binned firing 

rate data into a four-dimensional data tensor the laterality condition, and k is the trial. By 

averaging across trials, we can obtain the trial-averaged, three-dimensional data tensor xtml.

We can now define the following marginalizations of the trial-averaged data tensor. In the 

following equations, when a subscripted index is replaced with a dot, it means to average 

over that dimension:

x = x…
xt = xt ⋅ ⋅ − x
xm = x ⋅ m ⋅ − x
xl = x ⋅ ⋅ l − x
xtm = xtm ⋅ − xt − xm − x
xtl = xt ⋅ l − xt − xl − x
xml = x ⋅ ml − xm − xl − x

xtml = xtml − xml − xtl − xtm − xl − xm − xt − x

The left-hand side of the above equations are the marginalizations and the right-hand side 

shows how to compute them. Note that the trial-averaged data tensor can be written as a sum 

of the marginalizations, since they define a complete decomposition of the data:

xtml = xtml + xml + xtl + xtm + xl + xm + xt + x
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Next, each marginalization can be “unrolled” into a row-vector of length TML by tiling the 

marginalization appropriately (where T is the number of time steps, M is the number of 

movement conditions, and L=2 is the number of body sides). Once unrolled, this 

marginalization can be “stacked” vertically across all electrodes to yield a matrix of size N × 

TML that describes the entire neural population’s marginalization.

After computing the marginalizations, demixed PCA then attempts to find neural dimensions 

that “readout” certain sets of the marginalizations on a single-trial basis. For example, we 

can group together the xl and xtl marginalizations by adding together their matrices XL and 

XTL, yielding an N × TML matrix of laterality-related signals in the neural population. 

Demixed PCA then tries to find neural dimensions that will map single trial recordings to 

the marginalization matrix. To do so, first the marginalization matrix must be expanded to 

tile across all single trials, yielding a matrix of size N × TMLK (where K is the number of 

trials). Demixed PCA then uses the following loss function:

Lϕ = Xϕ − FϕDϕX 2

Here, Xϕ is the trial-averaged marginalization set of interest (in this example, XL + XTL) 

tiled across all trials, X is a matrix containing the single-trial data (also of size N × TMLK), 

and D and F are decoder and encoder matrices (of size C × N and N × C) that readout the 

single trial activity into C signals and then re-encode them back into the N-dimensional 

neural activity.

For the analysis in Figure 3A, we grouped the marginalizations as follows for ease of 

interpretation: movement xtml, xml, xtm, xm , laterality xtl, xl , and time xt . Figure 2B shows 

the top readout dimensions (rows of DϕX in order of variance explained) for each 

marginalization group. Each line depicts the average across trials and the shaded regions 

depict 95% confidence intervals.

Confidence intervals were found using a cross-validated version of dPCA. Specifically, for 

each trial, we performed dPCA on all remaining trials to find the readout dimensions Dϕ and 

then applied them to the held-out trial. After doing this for each held-out trial, we then 

estimated the means and 95% CIs using the held-out readouts. CIs were computed by 

assuming that the data were normally distributed. Cross-validation ensures that any result 

found is not due to overfitting the decoder matrices to noise in the data. One potential issue 

with this cross-validation approach is that the sign of the readout dimensions can sometimes 

change for each held-out trial; to counteract this, we corrected for any sign flips by finding 

the sign that best matched the readout dimensions found for the first held-out trial (match 

quality was assessed with the dot product). This problem is discussed in general in (Milan 

and Whittaker, 1995).

Figure 4 Methods—In Fig4A, we used a cross-validation approach to verify that the 

laterality and arm vs. leg dimensions found by dPCA generalized to new movements. To do 

so, we took two approaches: a held-out “single movement” approach and a held-out 

“movement set” approach. In the single movement approach (diagonal panels in Figure 4A), 
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we used leave-one-out cross-validation for each single movement condition. That is, for each 

movement, we applied dPCA to all other movements in order to find the top component for 

reading out the laterality or arm vs. leg marginalization. We then applied this component to 

the held-out condition. In the movement set approach (off-diagonal panels in Figure 4A), we 

held out an entire set of movements corresponding to a different limb (or laterality). The 

results show that the laterality and arm vs. leg components generalize both across movement 

conditions and across different sides of the body and effectors.

For Figure 4B–C we used the cross-validated correlation metric (described above in “Cross-

Validated Angles and Correlations”) to compute the correlation between pairs of mean firing 

rate vectors associated with each movement condition. Figure 4B uses data collected in 

session 12.05.2018 (the same as in Figure 2 and 3; 30 trials per movement), while Figure 4C 

used a different dataset designed specifically to contain many pairs of homologous arm and 

leg movements (11.19.2018; 20 trials per movement). Before computing the correlations, we 

subtracted the average firing rate within each laterality (Figure 4B) or within each effector 

(Figure 4C). Otherwise, correlations would be predominately negative across all movements 

due to the presence of large laterality and arm vs. leg dimensions (shown in Figure 4A). For 

example, for Figure 4B, we computed the mean firing rate vector across all ipsilateral 

movements (vector I) and contralateral movements (vector C). Vector I was subtracted from 

all ipsilateral movement conditions and vector C was subtracted from all contralateral 

movement conditions to remove the effect of the laterality dimension.

To test for correlations between homologous arm and leg movements in T7, we leveraged 

the following movement pairs that were present in T7’s dataset (shown in Figure 1D): (Arm 

Raise & Leg Raise), (Arm Lower & Leg Lower), (Wrist Flex & Ankle Flex), (Wrist Extend 

& Ankle Extend). Using these pairs, we computed a 4×4 correlation matrix with the same 

methods we used for T5, yielding 4 homologous correlation values and 12 non-homologous 

correlation values. A two-sample t-test with these two distributions indicated statistical 

significance between them (p=0.0036, with an average Pearson’s r=0.22 for homologous 

movements vs. an average Pearson’s r=−0.07 for non-homologous movements).

Figure 4D–E contains data from two separate sessions (12.10.2018 and 03.27.2019, 18 trials 

per movement condition) designed to test whether partially specified movements could elicit 

preparatory activity in dimensions corresponding only to the partially specified information. 

In the partial laterality cueing experiment (Figure 4D), there were four movements tested: 

contralateral wrist extension, ipsilateral wrist extension, contralateral hand grasp, and 

ipsilateral hand grasp. During the instructed delay period, the upcoming movement could 

either be fully cued (with both the laterality & movement specified by text on the screen), 

laterality-cued (with only the laterality specified), or movement-cued (with only the 

movement specified), with equal probability of each. In the partially cued conditions, when 

the go cue was given, the text on the screen changed to specify the missing piece of 

information so that the movement could be attempted.

For example, for a movement-cued trial for contralateral wrist extension, during the delay 

period a red square appeared in the center of the screen and the text above it was: “Wrist”. 

Then, during the go period, the square turned green and the text changed to: “Right”. 
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Displaying “Right” instead of “Right Wrist” during the go period ensured that T5 must 

remember the partially specified piece of information (and cannot simply skip movement 

preparation, waiting until the go cue to read the text).

The partial arm vs. leg cueing experiment (Figure 4E) had an analogous design with the 

following four movements: wrist up (extension), wrist down (flexion), ankle up 

(dorsiflexion), and ankle down (plantarflexion). During the instructed delay period, the 

upcoming movement could either be fully cued (with both the effector & movement 

direction specified by text on the screen), effector-cued (with only the “wrist” or “ankle” 

specified) or movement-cued (with only the movement direction specified).

To analyze the data from the partial cue experiment, the data was first smoothed (convolved 

with a Gaussian kernel, width = 60 ms std) and marginalized according to either movement 

type or laterality (for the first experiment), or movement direction or effector (for the second 

experiment). We then applied demixed PCA to a time window of the data beginning 1 

second before the go cue and ending at the go cue (see the section above on Figure 2 for an 

explanation of dPCA and marginalization). The demixed PCA components were found using 

only the fully cued trials.

To make Figure 4D–E (and Figure S6), we used the dPCA component for each 

marginalization that explained the most variance. The means and confidence intervals 

plotted in Figure 4D–E were found by first averaging the activity in each dPCA dimension 

across a 300 ms time window for each trial. This yields a single value for each trial; these 

values were then averaged for each condition and confidence intervals were fit by assuming 

a normal distribution. We used unsmoothed neural data for this portion of the analysis so 

that only data that was strictly contained within the 300 ms window was used.

Figure 5 Methods—This figure used a series of ten paired effector experiments collected 

across three sessions (03.19.2018, 03.21.2018, 04.02.2018; 18 trials per movement 

condition).

To find the neural dimensions used to visualize the activity in Figure 5B–D, we first 

computed a firing rate vector for each trial containing each electrode’s firing rate within a 

window from 200 to 1000 ms after the go cue. For Figure 5B, in order to find neural 

dimensions for visualization, we first averaged these firing rate vectors within each single-

movement condition to obtain four average vectors: f1A, f1B, f2A, f2B (for effectors 1 & 2 

and movement directions A & B). We then subtracted the average firing rate vector within 

each effector to remove the differences in firing rates caused by effector alone. That is, we 

computed mean-subtracted vectors:

f1A = f1A − 1
2 f1A + f1B

f1B = f1B − 1
2 f1A + f1B

f2A = f2A − 1
2 f2A + f2B

f2B = f2B − 1
2 f2A + f2B
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We then applied PCA to the mean-subtracted vectors f1A, f1B, f2A, f2B to find the two 

components that explained the most variance in these vectors. Finally, we used these two 

components to project the single trial firing rate vectors into a two-dimensional space for 

visualization. Note that applying PCA to the mean-subtracted vectors ensures that the PCA 

components capture differences in firing rate that are related to movement direction. 

Otherwise, PCA would find a large “effector” dimension (like that shown in Figure 3A) and 

the direction-related activity would not be as visible in the first two dimensions.

For Figure 5D, in order to find the dual movement neural dimensions for visualization, we 

first averaged the single trial firing rate vectors within each dual-movement condition to 

obtain four average vectors: gAA, gAB, gBA, gBB (for movement directions A & B). We then 

applied PCA directly to these vectors without mean-subtraction. No mean subtraction was 

necessary in this case because both effectors were active for all movements; thus, there is no 

possibility of finding dimensions that are related to the effector being moved and not the 

direction it is moving in.

When applying PCA for Figure 5B–D, we used cross-validation to ensure that the clustering 

observed was not due to overfitting noise in the data. Specifically, for each trial, we 

performed PCA on all remaining trials to find the top principal components and then 

projected the held-out trial into those dimensions. Cross-validation ensures that any result 

found is not due to overfitting to noise in the data. One potential issue with this cross-

validation approach is that the sign of the readout dimensions can sometimes change for 

each held-out trial; to counteract this, we corrected for any sign flips by finding the sign that 

best matched the PCA dimensions found for the first held-out trial (match quality was 

assessed with the dot product). This problem is discussed in general in (Milan and 

Whittaker, 1995).

For Figure 5E and the top panel of Figure 5F (dual/single ratio), we used the cross-validated 

estimator of distance (see above section “Cross-Validated Estimator of Neural Distance”). 

For the bottom panel of Figure 5F (change in angle), we used the cross-validated estimator 

of vector angle (see above section “Cross-Validated Angles and Correlations”). When 

computing angles and distances for Figure 5E–F, the full-dimensional space of all electrodes 

was used (i.e. not just the top two principal components shown in Figure 5B–D). To 

compute the 95% CIs of the mean for each bar, jackknifing was used (Severiano et al., 

2011); see above section “Figure 1 Methods” for more details.

For Figure 5G, each circle denotes, for a single pair of effectors, the absolute value of the 

cosine of the angle between each effector’s axis of representation. This “alignment 

magnitude” metric denotes the strength of the correlation between that pair’s neural 

representation. As in Figure 5F, the angle was computed using cross-validation to reduce 

bias. There are ten data points, one for each effector pair. The alignment magnitude was 

computed separately for the single movement context (where the axes of representation 

where estimated during single-effector movement, e.g. Figure 5B) and the dual movement 

context (where the axes were estimated during dual-effector movement, e.g. Figure 5D). Bar 

heights indicate the mean across all ten data points, and lines connect matching effector 
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pairs. A paired t-test reveals a statistically significant difference in alignment between the 

single and dual contexts (p=0.0053; 0.33 vs. 0.14).

Figure 6 Methods—Data for Figure 6B was collected in a single session (11.05.2018; 540 

trials per layout) where multiple target layouts were tested. For each target layout, T5 first 

completed a 4 minute “open-loop” block where he made the cued movements but they were 

not decoded in real-time. This block was used to calibrated an initial decoder. T5 then 

completed a 4 minute “practice” closed-loop block using the initial decoder. Next, a new 

decoder was calibrated by combining data from the open-loop and closed-loop block. 

Finally, T5 completed a series of three, 4 minute “performance” closed-loop blocks using 

that decoder; performance form these blocks was reported in Figure 6B.

Data for Figure 6C–E was collected in a separate session (01.07.2019; 355 trials per layout). 

In this session, T5 completed a series of 15 open-loop blocks with three target layouts (5 

blocks each, 71 trials per block): radial 16 single-effector (right hand joystick), radial 8 dual-

effector (left & right hand joystick), and radial 4 quad-effector (left & right hand, left & 

right feet). Each block lasted 5 minutes. The blocks were interleaved in sets of 3 blocks each 

(1 for each layout).

The 95% confidence intervals of the mean shown in Figure 6D were computed by bootstrap 

resampling individual trials (not targets). The 95% CIs in Figure 6E were also computed by 

bootstrap resampling individual trials.

To compute the dimensionality of the neural activity as shown in Figure 6E, we first 

averaged the time-varying neural activity across trials to produce a trial-averaged, three-

dimensional firing rate data tensor XNxTxM where N is the number of electrodes, T is the 

number of time bins, and M is the number of movements. We then “unrolled” the last two 

dimensions of this tensor to yield a two-dimensional matrix XNxTM; PCA was then applied 

to this matrix to find the cumulative variance explained by increasing numbers of N-

dimensional components.

Data for Figure 6F was collected in a series of 7 sessions (see above section “Closed-Loop 

Discrete Decoding” for details about the session structure and decoder). Table S1 lists each 

individual session. The 95% confidence intervals of the mean shown in Figure 6F were 

computed by bootstrap resampling individual trials.

Figure S1 Methods—To make this figure, we did a PCA-type analysis within each 

movement category using the data shown in Figure 1 (datasets 10.22.2018 and 08.23.2013). 

First, the mean time-varying response of each electrode across all movements within a 

particular category was subtracted off. This eliminates any generic signal that varies across 

time but is otherwise the same across all movements, making movement-specific tuning 

easier to see. Next, we averaged the mean-subtracted neural activity across trials to produce 

a trial-averaged, three-dimensional firing rate data tensor XNxTxM where N is the number of 

electrodes, T is the number of time bins, and M is the number of movements within a 

movement category. We then “unrolled” the last two dimensions of this tensor to yield a 

two-dimensional matrix XNxTM; PCA was then applied to this matrix to find the top 3 neural 
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dimensions (principal components) that explained the most variance. The mean-subtracted 

neural activity was then projected into these three components and plotted above.

To generate confidence intervals, we used bootstrap resampling (percentile method, 200 re-

samplings). One potential issue with applying resampling techniques to PCA is that, if 

multiple dimensions contain similar amounts of variance, the principle components can 

change order, rotate, or flip their signs from resampling to resampling, causing the 

confidence intervals to be much wider than they should be. To counteract this, we applied a 

Procrustes analysis to each resampling’s principal components to solve for a small 5×5 

rotation matrix to align the first five principal components to a reference set computed on all 

the data. This problem (and solution method) is discussed in general in (Milan and 

Whittaker, 1995).

Figure S2 Methods—The array maps in Figure S2A were created using the two datasets 

shown in Figure 1 (10.22.2018 and 08.23.2013). To assess statistical significance and 

compute FVAF scores, firing rates were first computed for each trial within a 200 to 600 ms 

window for T5 and 200 to 1600 ms window for T7 (matching Figure 1). Next, we grouped 

trials into four movement sets (Head, Face, Arm and Leg) as in Figure 1. To assess the 

statistical significance of tuning to a movement set on a given electrode, we performed a 1-

way ANOVA on all trials within that movement set. Each individual movement cue within 

the set was considered its own group. If the p-value was less than 0.001, the electrode was 

considered significantly tuned.

To compute FVAF scores for each electrode and movement set, we used the following 

equations:

FV AF =
SSMOV
SSTOT

SSTOT = ∑
i = 1

N
fi − f 2

SSMOV = ∑
i = 1

N
fM[i] − f 2

Here, SSTOT is the total variance (sum of squares), SSMOV is the movement-related variance, 

N is the total number of trials across all movements within the set, fi is the firing rate for trial 

i, f is the average firing rate across all movements within the set, and fM[i] is the average 

firing rate for the particular movement cued on trial i. FVAF values range from 0 (no 

movement-related variance) to 1 (all variance is movement-related). T7’s FVAF shading 

range was reduced to 0.5 to increase visibility of the colors (since the maximum FVAF value 

for T7’s dataset was 0.52).

To assess statistical significance for T5’s matrix in (B), we performed a two-sample t-test 

comparing each movement’s firing rates to the “Do Nothing” firing rates. For T7, we 

performed a two-sample t-test to compare the firing rates corresponding to each movement 

of a movement pair. For both analyses, the electrode was considered significantly tuned if 

the p-value was less than 0.001. Black horizontal bars indicate cluster ranges computed via 
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k-means clustering with the number of clusters set to 4. Results show a diversity of 

electrodes with both sparse and broad movement tuning characteristics.

The bar plots in (C) were created by summing the number of significantly tuned electrode 

channels for each movement set as computed via the ANOVA analysis performed in (A).

To make the pie charts in (D), the p-values from the ANOVA analysis in (A) were used to 

compute how many movement categories each functioning electrode was tuned to (i.e. by 

counting the number of p-values less than 0.001).

To make the scatter plots in (E), first, for each electrode, the mean change in firing rate was 

computed for each movement separately. The cross-validated distance estimator was used to 

estimate the magnitude of the firing rate change. Then, the absolute change in firing rates 

were averaged across all movements within a movement category to produce four numbers 

per electrode: mean change for arm, head, face and leg. Then, pairs of these numbers were 

plotted against each other as scatter plots, where each circle corresponds to a single 

electrode.

Figure S3 Methods—The datasets analyzed in this figure are the same as those analyzed 

in Figure 1 (datasets 10.22.2018 and 08.23.2013). The firing rates for the PSTHs were 

smoothed with a Gaussian kernel (30 ms std for T5 and 60 ms std for T7). The statistical 

significance of movement tuning was assessed with a 1-way ANOVA (for movement 

category) or a two-sample t-test (for individual movements) with a p-value threshold of 

0.001, using the same methods as described above for Figure S2.

Figure S4 Methods—Figures 1–4 assess neural modulation largely to movements around 

a single joint. In Figure S4, we assessed how movement direction is represented across 

different effectors. Our goal was to determine whether a shared representation of direction 

exists across effectors and to characterize its coordinate frame. Participant T5 completed an 

instructed delay, spatially cued movement task which randomly cued one of eight directional 

movements from one of four effectors (Figure S4A). Two datasets were collected 

(02.13.2019, 24 trials per target; 12.05.2018, 26 trials per target), each testing a different set 

of effectors (hands and feet, SFig 4B–D; arms and legs, SFig 4E).

We first confirmed that neural activity was linearly tuned to movement direction [as 

expected from previous work (Georgopoulos et al., 1982)] by plotting the mean firing rates 

for each movement in the first two principal components (in a time window between 200 to 

1000 ms after the go cue). PCA was applied in a cross-validated manner to ensure an 

unbiased result (explained in more detail below). The neural activity forms a ring which 

matches the geometry of the targets for each of the four body parts tested and is indicative of 

linear tuning to direction (Figure S4B).

To make Figure S4B, we used PCA to find, for each effector separately, the two highest-

variance neural dimensions that best explained across-target variance. To do so, we first 

computed a firing rate vector for each trial containing each electrode’s firing rate within a 

window from 200 to 1000 ms after the go cue. Next, we averaged these firing rate vectors 

within each target to obtain eight target-averaged vectors. We then applied PCA to these 
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target-averaged vectors to obtain the top two neural dimensions that best explained across-

target variance. Finally, we then projected each trial’s firing rate vector onto these 

components to obtain the single-trial dots shown in Figure S4B. These were then rotated 

using a Procrustes analysis to align with the target geometry (i.e. a single rotation matrix 

was found that best mapped the neural activity to the target locations; this matrix had no 

ability to shear or skew the firing rates).

When applying PCA, we used a leave-one-out cross-validation approach. For each trial, the 

top two neural dimensions were found using all other trials; the held-out trial was then 

projected onto those neural dimensions. One potential issue with a cross-validation approach 

for PCA is that the sign of the PCs can sometimes change for each held-out trial; to 

counteract this, we corrected for any sign flips by finding the sign that best matched the 

PCA dimensions found for the first held-out trial (match quality was assessed with the dot 

product). This problem is discussed in general in (Milan and Whittaker, 1995).

Next, to assess how neural tuning to movement direction was correlated across different 

body parts, we first fit a linear tuning model for each body part separately to obtain 

horizontal and vertical tuning coefficients (preferred directions) for each electrode. Then, we 

correlated these horizontal and vertical coefficients separately between each different body 

part to see if a representation of movement direction was shared across body parts (Figure 

S4D–E). If an “extrinsic” (visuospatial) representation were shared, then both the horizontal 

and vertical coefficients should be positively correlated. On the other hand, if an “intrinsic” 

(joint or muscle-related) representation were shared, then the vertical coefficients should be 

positively correlated in all cases (since these correspond to the same joint movements), 

while the horizontal coefficients should be negatively correlated across different sides of the 

body (since these correspond to opposite joint movements) but positively correlated on the 

same side of the body. For example, the joint movement made when pointing the right hand 

towards the right is the opposite of that made when pointing the left hand towards the right; 

if neural activity is primarily intrinsic (representing the joint movement), then it will be 

negatively correlated across these two conditions.

We found that, across both the wrists and ankles (Figure S4D) and the arms and legs (Figure 

S4E), the pattern of correlations was more consistent with a shared intrinsic representation 

(mean r=0.50 for cases of matching joint movements, mean r=−0.34 for cases of opposite 

joint movements, p=1.4e-17). Statistical significance was assessed with a two-sample t-test 

that compared correlation values for matching joint movements (N=8) to correlation values 

for opposite joint movements (N=4). This result indicates that a shared representation of 

direction does indeed exist across effectors in precentral gyrus, and that this representation 

lies at an intermediate level of motor abstraction.

Tuning coefficients were found using the following model:

f = Ek
1

cos(θ)
sin(θ)

+ ε

Willett et al. Page 31

Cell. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here, f is the N × 1 firing rate vector for a single trial, Ek is an N × 3 matrix of mean firing 

rates (first column) and directional tuning coefficients (second and third columns) for 

effector k, θ is the angle of the target, and ε is an N × 1 noise vector. Ek was fit using 

ordinary least squares regression using all trials from effector k. Correlations were computed 

by calculating Pearson’s r using matching columns of Ek for pairs different effectors.

When computing the correlation between vectors of linear tuning coefficients, we used 

cross-validation (employing the principles described above in “Cross-Validated Angles and 

Correlations”). To do so, the coefficient vector magnitudes were estimated by fitting the 

encoding model separately for held-out and held-in data. We then took the dot product 

between held-out and held-in vectors to estimate the magnitude term in the correlation 

equation (see cvOLS in our code repository for an implementation).

Figure S5 Methods—We developed shuffle controls to demonstrate two points with 

further rigor: (1) that both the movement correlations and the movement-independent 

effector coding we observed are significantly above chance, and (2) the fact that homologous 

movements are correlated does not automatically imply the existence of significant effector-

coding, and vice versa. Our shuffle controls examine how the variance explained by different 

marginalizations of the data changes when structure in the data is destroyed by shuffling 

across certain factors (see the above section “Figure 3 Methods” for a detailed description of 

how to compute marginalizations of the data).

To test for effector-coding, we shuffled the effector labels corresponding to each condition. 

For example, for a dataset consisting of ipsilateral and contralateral arm movements (e.g. 

Figure 4B), each condition has a particular movement (e.g. elbow flex, hand close, etc.) and 

a particular effector (ipsilateral arm or contralateral arm). For each movement, we can 

randomly swap the effector labels for the corresponding pair of conditions relating to that 

movement. Then, we test if this shuffling significantly decreases the amount of variance 

captured by the effector marginalization of the neural data. If it does, this is quantitative 

proof of significant (i.e. above chance) effector-related, movement-independent variance. 

Note that this shuffle control does not affect the correlations between homologous 

movements.

Likewise, to test for movement correlations, we shuffle the movement labels within each 

effector. This breaks the association between homologous movements by re-pairing them in 

a random way, but keeps intact the effector that each movement belongs to, preserving any 

consistent effector code. We then test if this shuffling decreases the amount of variance 

captured by the movement marginalization as compared to the movement × effector 

interaction marginalization. If it does, this quantitatively shows that the shared movement 

variance is larger than chance.

In Figure S5A, we show the results of applying these shuffle controls to three sets of 

movements studied in this manuscript: ipsilateral arm and contralateral arm (top row; dataset 

12.05.2018), ipsilateral leg and contralateral leg (middle row; dataset 12.05.2018), and 

contralateral arm and contralateral leg (bottom row; dataset 11.19.2018).
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Each set of movements has two shuffle distributions associated with it: an effector shuffle 

distribution (left) and a movement shuffle distribution (right). The statistic we compute to 

test for effector-coding is a variance ratio: Var{E} / (Var{M} + Var{M × E})), where Var{E} 

is the variance captured by the effector marginalization, Var{M} is the variance of the 

movement marginalization, and Var{M × E} is the variance of the movement × effector 

interaction marginalization. The larger this value is, the larger the effector signal is. The 

statistic we compute to test for movement correlations is Var{M} / Var{M × E}. If this ratio 

is larger than 1, there is more shared variance across effectors than unique variance.

The results from Figure S5A show that for each real dataset, both the effector-coding 

property and the movement correlation property are significantly above chance (the real 

variance ratio is always the largest ratio as compared to all other shufflings of the data).

In addition to applying these shuffle controls to the real data, we also apply them to four 

simple models to demonstrate that movement correlations and effector coding are 

independent properties. Neither of these properties imply the other or are trivial artifacts of 

our data analysis process or movement tuning in general. The models are defined as follows:

1. In the “random” model, each movement’s neural representation (i.e. mean firing 

rate vector) is a random vector with each element drawn from a Gaussian 

distribution; this model shows neither movement correlations nor effector-

coding.

2. In the “movement correlations” model, each movement’s neural representation is 

the sum of a movement-specific “shared” vector which is the same across both 

effectors and a “private” vector which is drawn randomly within each movement. 

This model shows movement correlations but not effector-coding.

3. In the “effector coding” model, each movement’s neural representation is the 

sum of a “private” vector which is drawn randomly for each movement and an 

“effector” vector which is effector-specific and constant across all movements 

within an effector. This model shows effector-coding but not movement 

correlation.

4. Finally, in the “movement correlations + effector coding” model, each 

movement’s neural representation is the sum of a “private” random vector, a 

movement-specific “shared vector” which is the same across both effectors, and 

an “effector” vector which is the same across all movements within an effector. 

This model shows both effector-coding and movement correlation.

The results of applying the shuffle controls to the four models are shown above in Figure 

S5B. The results show that effector-coding and movement correlation properties are 

independent properties, neither of which imply the other. This also demonstrates that the 

shuffle controls are capable of correctly testing for the existence of each property.

Figure S6 Methods—See the above section “Figure 4 Methods” for details about the 

partial preparation experiment and dPCA methods.
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Figure S7 Methods—First, we trained a recurrent neural network model (“controller 

RNN”) to control two simulated arms by using standard gradient descent techniques (Figure 

S7A). Each arm is a planar, two-link mechanical arm model (as if reaching in the transverse 

plane across a table top). The controller RNN takes as input a compositional representation 

of movement velocity and outputs the shoulder and elbow joint torque needed to make that 

movement. The controller RNN can be loosely thought of as representing lower motor 

cortical areas [e.g. primary motor cortex (M1) and dorsocaudal premotor cortex (PMd)] 

which might take as input a compositional representation of movement and convert it into 

the lower-level motor outputs necessary to execute that movement.

To demonstrate that this architecture can enable skill transfer, we simulated the process of 

learning a motor skill by training a pattern-generating RNN to generate a time series of joint 

velocities that, when given as input to the controller RNN, make the left arm trace a circle 

(Figure S7B). The pattern-generating RNN was trained only with the left arm; that is, the 

laterality input to the controller RNN was fixed to represent the left arm only. To 

demonstrate that the skill can be transferred to the right arm post-learning, we changed only 

the laterality input to the controller RNN to represent the right arm while keeping the 

pattern-generating RNN the same. The results indicate successful transfer of the circle-

drawing skill to the right arm (Figure S7C).

Next, we examined the neural tuning properties of the controller RNN and compared them 

to a “direct mapping” RNN that is equally capable of controlling the simulated arms but that 

does not use a compositional movement code. In Figure S7D, we illustrate the architecture 

of the direct mapping RNN. Instead of taking as input a representation of shoulder and 

elbow velocity that is shared across both arms, it receives separate shoulder and elbow 

velocity inputs for each arm. This architecture is incapable of implementing skill transfer, 

since it has no mechanism for flexibly re-routing joint velocity inputs for one arm into joint 

torques for the other arm.

To compare the neural tuning between the compositional RNN and the direct RNN, we first 

collected synthetic “radial 8” data from both RNNs and both arms (Figure S7E). Each RNN 

was given joint velocity inputs that specified a reaching movement in one of eight radial 

directions [a minimum-jerk trajectory was used to specify the movement (Flash and Hogan, 

1985)]. Data was collected one reach and one arm at a time (20 repetitions per movement). 

The corresponding neural activity from each movement was concatenated and saved for 

analysis

Examining the neural activity, we found that both the compositional RNN and the direct 

RNN show a high degree of overlapping neural tuning for both arms (Figure S7F). In fact, 

100% of the neurons in both networks showed statistically significant tuning to movements 

in both arms (as assessed with a 1-way ANOVA for each arm, see below). Despite both 

networks showing highly overlapping and intermixed tuning, the neural representations were 

very different. As expected, the compositional RNN contained a compositional 

representation of movement consistent with what we observed in the real data, with positive 

neural correlations between matching movements across the arms (Figure S7G) and a 

consistent, movement-independent neural representation of the effector (Figure S7H). On 
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the other hand, the direct RNN exhibited neither of these properties. Matching movements 

across the arms had no neural similarity (Figure S7G) and demixed PCA was unable to find 

a neural dimension that consistently represented the effector independently of the movement 

(Figure S7H). These results illustrate that tuning to multiple effectors is not sufficient for 

skill transfer nor does it imply a compositional code for movement.

Neural Network Methods: We used a basic RNN models with the following dynamics:

ℎ(t) = σℎ W ℎx(t) + Uℎℎ(t − 1) + bℎ + ε(t)
y(t) = a0 ∗ σℎ W yℎ(t − 1) + by + a1

Here, σh is the hyperbolic tangent function, h(t) is the RNN’s hidden state vector (neural 

activity) at time step t, x(t) is the input vector, y(t) is the output vector, ε(t) is a Gaussian 

noise vector (sd = 0.01), Wh, Uh, Wy, bh and by are weight matrices and bias vectors, and a0 

and a1 are scalars that define the range of outputs (which was −30 to 30 N m for the 

controller RNN and −20 to 20 rad/s for the pattern-generating RNN).

The RNNs were trained using backpropagation through time using the Adam method 

(Kingma and Ba, 2014). Networks were trained for 2000 iterations using minibatches of 64 

trials. We used TensorFlow v1 (Abadi et al., 2016) to implement both the RNNs and the 

planar arm models, enabling backpropagation through both the arms and the RNNs in series. 

Each time step was 10 ms long.

Controller RNNs were trained to convert randomly generated time series of joint velocity 

inputs into arm motion that matches the joint velocities. The RNNs were trained to minimize 

the squared error between the target joint velocities and the arms’ actual joint velocities:

1
N ∑

t = 1

N
θ̇l(t) − θ̇g, l(t)

2 + θ̇r(t) − θ̇g, r(t) 2

Here, θ̇l(t) is the left arm’s joint velocity vector, θ̇r(t) is the right arm’s joint velocity vector, 

θ̇g, r(t) is the target joint velocity vector for the right arm, and θ̇g, l(t) is the target joint 

velocity for velocity inputs when the laterality input matches that arm, otherwise they were 

equal to zero. For the direct RNN, the target velocity vectors were always equal to the joint 

velocity inputs.

For each 3 second trial of each minibatch, joint velocity and laterality input time series were 

randomly generated. Each time series consisted of one or more bouts of instructed 

movement with an exponentially distributed duration (mean = 0.5 s). For each bout, the arm 

to be moved was randomly chosen and, if the network was compositional, the laterality input 

was fixed to −1 (for the left arm) or 1 (for the right arm). Then, joint velocity inputs for the 

chosen arm were generated by convolving white noise (sd=8) with a Gaussian kernel 

(sd=100 ms) and subtracting a line connecting the first and last points (so that the time series 

would begin and end at zero).
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In addition to velocity squared error, we used the following additional regularizing costs:

10−4 W ℎ F
2 + Uℎ F

2 + W ℎ F
2 + 10−6 1

N ∑
t = 1

N
‖ℎ(t)‖2 + 2 1

N − 1 ∑
t = 2

N
τ(t) − τ(t − 1) 2

Here, the first term corresponds to L2 weight decay, the second term penalizes large 

activations, and the third term penalizes rapid changes in output torque (τ(t) is the RNN’s 

output torque vector for time step t).

Implementation of the planar arm physics in TensorFlow is relatively straightforward since 

two-link arm mechanics can be expressed in closed-form with a relatively small number of 

terms [e.g. (Fagg et al., 1997; Uno et al., 1989)]. Approximate solutions were obtained using 

Euler integration. The parameters of the arm were as follows for each link: mass (1.86 kg, 

1.53 kg), center of mass (0.18 m, 0.18 m), moment of inertia (0.013 kg m2, 0.02 kg m2), and 

length (0.29 m, 0.235 m).

When training the pattern-generating network, the controller network weights were held 

fixed. The pattern-generating network was trained with the following cost function:

1
N ∑

t = 1

N
px(t) − (cos 2πt

100 − 1)
2

+ py(t) − sin 2πt
100

2

Here, px(t) and py(t) are the X and Y coordinates of the left hand. This cost function 

computes the error between the position of the left hand and a circular trajectory. We also 

used the same weight and activation regularization terms described above for the controller 

networks.

Modulation Depth and Tuning: To compute modulation depth for each artificial neuron 

(Figure S7F), first the mean activation of each neuron was computed for each movement by 

averaging over all 20 repetitions. Activations were averaged over a 250 ms bin beginning at 

movement onset. Then, for each neuron and each arm, the maximum and minimum mean 

activations were found. The modulation depth was then computed as the difference between 

the maximum and minimum activations.

To test for statistical significance of tuning to each arm, we performed a 1-way ANOVA for 

each neuron and each arm (consisting of 8 groups of 20 observations). A p-value < 0.001 

was considered significant. Under this criterion, all neurons in both the compositional and 

direct networks were significantly tuned to both arms.

Supplemental Video 2 Methods—The decoding methods used for the 32-target layout 

were the same as those described for Figure 6, except that an additional two second 

instructed delay period was added before each trial to inform T5 of the upcoming target. 

This allowed T5 enough time to recognize and prepare the movement. During this time, the 

target appeared red. After the delay period, the target turned blue and T5 had one second to 

make the movement. The discrete decoder used data only from this one second movement 
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period to classify the movement. We found that, without the delay period, T5 could not 

recognize the movement quickly enough and perform it correctly within the allotted time.

We collected closed-loop data for the 32-target layout on three different days. Accuracy was 

high (mean of 95% across all three sessions) but the achieved bit rate is relatively low (mean 

of 1.5 bps) because of the additional two second delay period. Without the two second delay 

period, the bit rate would have been 4.52 bps, suggesting that high bit rates are possible if 

the user can learn to select between a large number of movements quickly.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

We thank participants T5 and T7 and their caregivers for their dedicated contributions to this research, N. Lam for 
administrative support, and J. Simeral and B. Sorice for data collection with T7.

This work was supported by the following awards to LRH: Office of Research and Development, Rehabilitation R 
and D Service, Department of Veterans Affairs N9288C, N2864C, A2295R, B6453R, the Executive Committee on 
Research of Massachusetts General Hospital, and NIDCD R01DC009899 and NINDS U01NS098968. The 
following awards to JMH and KVS: Larry and Pamela Garlick, Samuel and Betsy Reeves, the Wu Tsai 
Neuroscience Institute at Stanford, and NIDCD R01DC014034. The following awards to KVS: Simons Foundation 
Collaboration on the Global Brain 543045 and the Howard Hughes Medical Institute. The funders had no role in 
study design, data collection and interpretation, or the decision to submit the work for publication.

References

Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, Corrado GS, Davis A, Dean J, Devin M, 
et al. (2016). TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems. 
ArXiv160304467 Cs.

Aflalo T, Kellis S, Klaes C, Lee B, Shi Y, Pejsa K, Shanfield K, Hayes-Jackson S, Aisen M, Heck C, et 
al. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. 
Science 348, 906–910. [PubMed: 25999506] 

Ajiboye AB, Willett FR, Young DR, Memberg WD, Murphy BA, Miller JP, Walter BL, Sweet JA, 
Hoyen HA, Keith MW, et al. (2017). Restoration of reaching and grasping movements through 
brain-controlled muscle stimulation in a person with tetraplegia: a proof-of-concept demonstration. 
The Lancet 389, 1821–1830.

Allefeld C, and Haynes J-D (2014). Searchlight-based multi-voxel pattern analysis of fMRI by cross-
validated MANOVA. NeuroImage 89, 345–357. [PubMed: 24296330] 

Ames KC, and Churchland MM (2019). Motor cortex signals for each arm are mixed across 
hemispheres and neurons yet partitioned within the population response. ELife 8, e46159. [PubMed: 
31596230] 

Bishop CM (2006). Pattern Recognition and Machine Learning (Springer).

Bouton CE, Shaikhouni A, Annetta NV, Bockbrader MA, Friedenberg DA, Nielson DM, Sharma G, 
Sederberg PB, Glenn BC, Mysiw WJ, et al. (2016). Restoring cortical control of functional 
movement in a human with quadriplegia. Nature 533, 247–250. [PubMed: 27074513] 

Brodmann K (1909). Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien 
dargestellt auf Grund des Zellenbaues (Leipzig: Barth).

Bundy DT, Szrama N, Pahwa M, and Leuthardt EC (2018). Unilateral, 3D Arm Movement Kinematics 
Are Encoded in Ipsilateral Human Cortex. J. Neurosci. 38, 10042–10056. [PubMed: 30301759] 

Christou EA, and Rodriguez TM (2008). Time but not Force Is Transferred Between Ipsilateral Upper 
and Lower Limbs. J. Mot. Behav. 40, 186–189. [PubMed: 18477532] 

Willett et al. Page 37

Cell. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Cisek P, Crammond DJ, and Kalaska JF (2003). Neural Activity in Primary Motor and Dorsal 
Premotor Cortex In Reaching Tasks With the Contralateral Versus Ipsilateral Arm. J. 
Neurophysiol. 89, 922–942. [PubMed: 12574469] 

Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, 
Velliste M, Boninger ML, and Schwartz AB (2013). High-performance neuroprosthetic control by 
an individual with tetraplegia. The Lancet 381, 557–564.

Criscimagna-Hemminger SE, Donchin O, Gazzaniga MS, and Shadmehr R (2003). Learned Dynamics 
of Reaching Movements Generalize From Dominant to Nondominant Arm. J. Neurophysiol. 89, 
168–176. [PubMed: 12522169] 

Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, and Lesser RP (1998a). 
Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. 
Alpha and beta event-related desynchronization. Brain 121, 2271–2299. [PubMed: 9874480] 

Crone NE, Miglioretti DL, Gordon B, and Lesser RP (1998b). Functional mapping of human 
sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization 
in the gamma band. Brain 121, 2301–2315. [PubMed: 9874481] 

Diedrichsen J, and Kriegeskorte N (2017). Representational models: A common framework for 
understanding encoding, pattern-component, and representational-similarity analysis. PLOS 
Comput. Biol. 13, e1005508. [PubMed: 28437426] 

Diedrichsen J, Wiestler T, and Krakauer JW (2013). Two Distinct Ipsilateral Cortical Representations 
for Individuated Finger Movements. Cereb. Cortex 23, 1362–1377. [PubMed: 22610393] 

Fagg AH, Sitkoff N, Barto AG, and Houk JC (1997). Cerebellar learning for control of a two-link arm 
in muscle space. In 1997 IEEE International Conference on Robotics and Automation, 1997. 
Proceedings, pp. 2638–2644 vol.3.

Flash T, and Hogan N (1985). The coordination of arm movements: an experimentally confirmed 
mathematical model. J. Neurosci. 5, 1688–1703. [PubMed: 4020415] 

Fujiwara Y, Matsumoto R, Nakae T, Usami K, Matsuhashi M, Kikuchi T, Yoshida K, Kunieda T, 
Miyamoto S, Mima T, et al. (2017). Neural pattern similarity between contra- and ipsilateral 
movements in high-frequency band of human electrocorticograms. NeuroImage 147, 302–313. 
[PubMed: 27890491] 

Ganguly K, Secundo L, Ranade G, Orsborn A, Chang EF, Dimitrov DF, Wallis JD, Barbaro NM, 
Knight RT, and Carmena JM (2009). Cortical Representation of Ipsilateral Arm Movements in 
Monkey and Man. J. Neurosci. 29, 12948–12956. [PubMed: 19828809] 

Genon S, Li H, Fan L, Müller VI, Cieslik EC, Hoffstaedter F, Reid AT, Langner R, Grefkes C, Fox PT, 
et al. (2017). The Right Dorsal Premotor Mosaic: Organization, Functions, and Connectivity. 
Cereb. Cortex N. Y. NY 27, 2095–2110.

Genon S, Reid A, Li H, Fan L, Müller VI, Cieslik EC, Hoffstaedter F, Langner R, Grefkes C, Laird 
AR, et al. (2018). The heterogeneity of the left dorsal premotor cortex evidenced by multimodal 
connectivity-based parcellation and functional characterization. NeuroImage 170, 400–411. 
[PubMed: 28213119] 

Georgopoulos AP, Kalaska JF, Caminiti R, and Massey JT (1982). On the relations between the 
direction of two-dimensional arm movements and cell discharge in primate motor cortex. J. 
Neurosci. 2, 1527–1537. [PubMed: 7143039] 

Geyer S (2004). The Microstructural Border Between the Motor and the Cognitive Domain in the 
Human Cerebral Cortex (Berlin Heidelberg: Springer-Verlag).

Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Bürgel U, Klingberg T, Larsson J, 
Zilles K, and Roland PE (1996). Two different areas within the primary motor cortex of man. 
Nature 382, 805–807. [PubMed: 8752272] 

Geyer S, Matelli M, Luppino G, and Zilles K (2000). Functional neuroanatomy of the primate 
isocortical motor system. Anat. Embryol. (Berl.) 202, 443–474. [PubMed: 11131014] 

Heming EA, Cross KP, Takei T, Cook DJ, and Scott SH (2019). Independent representations of 
ipsilateral and contralateral limbs in primary motor cortex. ELife 8, e48190. [PubMed: 31625506] 

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, 
Smagt P. van der, et al. (2012). Reach and grasp by people with tetraplegia using a neurally 
controlled robotic arm. Nature 485, 372–375. [PubMed: 22596161] 

Willett et al. Page 38

Cell. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hoy KE, Fitzgerald PB, Bradshaw JL, Armatas CA, and Georgiou-Karistianis N (2004). Investigating 
the cortical origins of motor overflow. Brain Res. Rev. 46, 315–327. [PubMed: 15571773] 

Ifft PJ, Shokur S, Li Z, Lebedev MA, and Nicolelis MAL (2013). A brain-machine interface enables 
bimanual arm movements in monkeys. Sci. Transl. Med. 5, 210ra154.

Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, Oakley EM, Blabe C, 
Pandarinath C, Gilja V, et al. (2015). Virtual typing by people with tetraplegia using a self-
calibrating intracortical brain-computer interface. Sci. Transl. Med. 7, 313ra179–313ra179.

Jin Y, Lu M, Wang X, Zhang S, Zhu J, and Zheng X (2016). Electrocorticographic signals comparison 
in sensorimotor cortex between contralateral and ipsilateral hand movements. In 2016 38th Annual 
International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 
1544–1547.

Kelso J. a. S., and Zanone PG (2002). Coordination dynamics of learning and transfer across different 
effector systems. J. Exp. Psychol. Hum. Percept. Perform. 28, 776–797. [PubMed: 12190250] 

Kingma DP, and Ba J (2014). Adam: A Method for Stochastic Optimization. ArXiv14126980 Cs.

Kobak D, Brendel W, Constantinidis C, Feierstein CE, Kepecs A, Mainen ZF, Qi X-L, Romo R, 
Uchida N, and Machens CK (2016). Demixed principal component analysis of neural population 
data. ELife 5, e10989. [PubMed: 27067378] 

Kurata K (1989). Distribution of neurons with set- and movement-related activity before hand and foot 
movements in the premotor cortex of rhesus monkeys. Exp. Brain Res. 77, 245–256. [PubMed: 
2792274] 

Latash ML (1999). Mirror Writing: Learning, Transfer, and Implications for Internal Inverse Models. J. 
Mot. Behav. 31, 107–111. [PubMed: 11177624] 

Leyton ASF, and Sherrington CS (1917). Observations on the Excitable Cortex of the Chimpanzee, 
Orang-Utan, and Gorilla. Q. J. Exp. Physiol. 11, 135–222.

Lotze M, Erb M, Flor H, Huelsmann E, Godde B, and Grodd W (2000). fMRI Evaluation of 
Somatotopic Representation in Human Primary Motor Cortex. NeuroImage 11, 473–481. 
[PubMed: 10806033] 

Meier JD, Aflalo TN, Kastner S, and Graziano MSA (2008). Complex organization of human primary 
motor cortex: a high-resolution fMRI study. J. Neurophysiol. 100, 1800–1812. [PubMed: 
18684903] 

Milan L, and Whittaker J (1995). Application of the Parametric Bootstrap to Models that Incorporate a 
Singular Value Decomposition. J. R. Stat. Soc. Ser. C Appl. Stat. 44, 31–49.

Miller KJ, Leuthardt EC, Schalk G, Rao RPN, Anderson NR, Moran DW, Miller JW, and Ojemann JG 
(2007). Spectral Changes in Cortical Surface Potentials during Motor Movement. J. Neurosci. 27, 
2424–2432. [PubMed: 17329441] 

Morris T, Newby NA, Wininger M, and Craelius W (2009). Inter-limb transfer of learned ankle 
movements. Exp. Brain Res. 192, 33–42. [PubMed: 18830590] 

Musallam S, Corneil BD, Greger B, Scherberger H, and Andersen RA (2004). Cognitive Control 
Signals for Neural Prosthetics. Science 305, 258–262. [PubMed: 15247483] 

Nozaki D, Kurtzer I, and Scott SH (2006). Limited transfer of learning between unimanual and 
bimanual skills within the same limb. Nat. Neurosci. 9, 1364–1366. [PubMed: 17028583] 

Nuyujukian P, Fan JM, Kao JC, Ryu SI, and Shenoy KV (2015). A high-performance keyboard neural 
prosthesis enabled by task optimization. IEEE Trans. Biomed. Eng. 62, 21–29. [PubMed: 
25203982] 

Pandarinath C, Nuyujukian P, Blabe CH, Sorice BL, Saab J, Willett FR, Hochberg LR, Shenoy KV, 
and Henderson JM (2017). High performance communication by people with paralysis using an 
intracortical brain-computer interface. ELife 6, e18554. [PubMed: 28220753] 

Penfield W, and Boldrey E (1937). Somatic motor and sensory representation in the cerebral cortex of 
man as studied by electrical stimulation. Brain J. Neurol. 60, 389–443.

Penfield W, and Rasmussen T (1950). The cerebral cortex of man; a clinical study of localization of 
function (Oxford, England: Macmillan).

Qi H-X, Stepniewska I, and Kaas JH (2000). Reorganization of Primary Motor Cortex in Adult 
Macaque Monkeys With Long-Standing Amputations. J. Neurophysiol. 84, 2133–2147. [PubMed: 
11024101] 

Willett et al. Page 39

Cell. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Rademacher J, Caviness VS, Steinmetz H, and Galaburda AM (1993). Topographical Variation of the 
Human Primary Cortices: Implications for Neuroimaging, Brain Mapping, and Neurobiology. 
Cereb. Cortex 3, 313–329. [PubMed: 8400809] 

Rademacher J, Bürgel U, Geyer S, Schormann T, Schleicher A, Freund H-J, and Zilles K (2001). 
Variability and asymmetry in the human precentral motor systemA cytoarchitectonic and 
myeloarchitectonic brain mapping study. Brain 124, 2232–2258. [PubMed: 11673325] 

Reverberi C, Görgen K, and Haynes J-D (2012). Compositionality of Rule Representations in Human 
Prefrontal Cortex. Cereb. Cortex 22, 1237–1246. [PubMed: 21817092] 

Rizzolatti G, Luppino G, and Matelli M (1998). The organization of the cortical motor system: new 
concepts. Electroencephalogr. Clin. Neurophysiol. 106, 283–296. [PubMed: 9741757] 

Rokni U, Steinberg O, Vaadia E, and Sompolinsky H (2003). Cortical Representation of Bimanual 
Movements. J. Neurosci. 23, 11577–11586. [PubMed: 14684860] 

Ruescher J, Iljina O, Altenmüller D-M, Aertsen A, Schulze-Bonhage A, and Ball T (2013). 
Somatotopic mapping of natural upper- and lower-extremity movements and speech production 
with high gamma electrocorticography. NeuroImage 81, 164–177. [PubMed: 23643922] 

Santhanam G, Ryu SI, Yu BM, Afshar A, and Shenoy KV (2006). A high-performance brain–
computer interface. Nature 442, 195–198. [PubMed: 16838020] 

Savin DN, and Morton SM (2008). Asymmetric generalization between the arm and leg following 
prism-induced visuomotor adaptation. Exp. Brain Res. 186, 175–182. [PubMed: 18057927] 

Schieber MH (2001). Constraints on somatotopic organization in the primary motor cortex. J. 
Neurophysiol. 86, 2125–2143. [PubMed: 11698506] 

Severiano A, Carriço JA, Robinson DA, Ramirez M, and Pinto FR (2011). Evaluation of Jackknife and 
Bootstrap for Defining Confidence Intervals for Pairwise Agreement Measures. PLOS ONE 6, 
e19539. [PubMed: 21611165] 

Shea CH, Kovacs AJ, and Panzer S (2011). The Coding and Inter-Manual Transfer of Movement 
Sequences. Front. Psychol 2.

Soska KC, Galeon MA, and Adolph KE (2012). On the other hand: Overflow movements of infants’ 
hands and legs during unimanual object exploration. Dev. Psychobiol. 54, 372–382. [PubMed: 
22487940] 

Trautmann EM, Stavisky SD, Lahiri S, Ames KC, Kaufman MT, O’Shea DJ, Vyas S, Sun X, Ryu SI, 
Ganguli S, et al. (2019). Accurate Estimation of Neural Population Dynamics without Spike 
Sorting. Neuron 103, 292–308.e4. [PubMed: 31171448] 

Uno Y, Kawato M, and Suzuki R (1989). Formation and control of optimal trajectory in human 
multijoint arm movement. Biol. Cybern. 61, 89–101. [PubMed: 2742921] 

White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, and Purves D (1997). Structure 
of the human sensorimotor system. I: Morphology and cytoarchitecture of the central sulcus. 
Cereb. Cortex 7, 18–30. [PubMed: 9023429] 

Wiestler T, Waters-Metenier S, and Diedrichsen J (2014). Effector-independent motor sequence 
representations exist in extrinsic and intrinsic reference frames. J. Neurosci. Off. J. Soc. Neurosci. 
34, 5054–5064.

Yang GR, Joglekar MR, Song HF, Newsome WT, and Wang X-J (2019). Task representations in neural 
networks trained to perform many cognitive tasks. Nat. Neurosci. 22, 297–306. [PubMed: 
30643294] 

Yokoi A, Bai W, and Diedrichsen J (2016). Restricted transfer of learning between unimanual and 
bimanual finger sequences. J. Neurophysiol. 117, 1043–1051. [PubMed: 27974447] 

Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, and Winkler P (1997). 
Localization of the motor hand area to a knob on the precentral gyrus. A new landmark. Brain 120, 
141–157. [PubMed: 9055804] 

Zhang CY, Aflalo T, Revechkis B, Rosario ER, Ouellette D, Pouratian N, and Andersen RA (2017). 
Partially Mixed Selectivity in Human Posterior Parietal Association Cortex. Neuron 95, 697–
708.e4. [PubMed: 28735750] 

Zilles K, Schlaug G, Matelli M, Luppino G, Schleicher A, Qü M, Dabringhaus A, Seitz R, and Roland 
PE (1995). Mapping of human and macaque sensorimotor areas by integrating architectonic, 
transmitter receptor, MRI and PET data. J. Anat. 187 (Pt 3), 515–537. [PubMed: 8586553] 

Willett et al. Page 40

Cell. Author manuscript; available in PMC 2021 April 16.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



• “Hand knob” area of premotor cortex is tuned to the entire body

• A compositional neural code links matching movements from all 4 limbs 

together

• Separate coding of the movement and limb-to-be-moved may facilitate skill 

transfer

• A discrete BCI can accurately decode movements of all 4 limbs from hand 

knob
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Figure 1. Separable and robust neural modulation for face, head, and contralateral arm & leg 
movements in hand knob area.
(A) Neural activity was recorded while participants T5 and T7 completed cued movement 

tasks that instructed them to make (or attempt to make) movements of the face, head arm 

and leg in sync with text appearing on a computer monitor.

(B) Participants’ MRI-derived brain anatomy and microelectrode array locations. 

Microelectrode array locations were determined by co-registration of postoperative CT 

images with preoperative MRI images.
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(C) The mean firing rate recorded for each cued movement is shown for an example 

electrode from participant T5. Shaded regions indicate 95% CIs. Neural activity was 

denoised by convolving with a Gaussian smoothing kernel (30 ms sd).

(D) The size of the neural modulation for each movement was quantified by comparing to a 

baseline “do nothing” condition (in participant T5) or by comparing to its paired movement 

(T7). Each bar indicates the size (Euclidean norm) of the mean change in firing rate across 

the neural population (with a 95% CI). Each dot corresponds to the cross-validated 

projection of a single trial’s firing rate vector onto the “difference” axis. For T5, light dots 

represent the “do nothing” condition and dark dots represent the given movement. For T7, 

dark and light dots represent different movements of the given pair. Statistically significant 

modulation was observed for all movements (no confidence intervals contain 0). Translucent 

horizontal bars indicate the mean bar height for each movement type.

(E) A Gaussian naive Bayes classifier was used to classify each trial’s movement using the 

firing rate in a window from 200 to 600 ms (T5) or 200 to 1600 ms (T7) after the go cue. 

Confusion matrices are shown from offline cross-validated performance results; each entry 

(i, j) in the matrix is colored according to the percentage of trials where movement j was 

decoded (out of all trials where movement i was cued).
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Figure 2. Modulation for ipsilateral vs. contralateral arm and leg movements.
The size of the neural modulation for each attempted movement was quantified by 

comparing to a baseline “do nothing” condition. Each bar indicates the size (Euclidean 

norm) of the mean change in neural population activity (with a 95% CI) and each dot 

corresponds to the cross-validated projection of a single trial’s neural activity onto the 

“difference” axis. Translucent horizontal bars indicate the mean bar height for each 

attempted movement type.
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Figure 3. The neural population code relating ipsilateral to contralateral movements.
(A) To reveal how the ipsilateral and contralateral movements are represented in relation to 

each other, demixed PCA was applied to a set of four example attempted arm movements 

(taken from the dataset shown in Figure 2). Each panel shows the mean activity for a single 

dimension and each column shows dimensions related to a particular factor 

(marginalization). Each trace shows the mean activity for a single condition and the shaded 

regions indicate 95% CIs. The percent variance explained by each dimension is indicated in 

the top left.

(B) The mean activity through time in the first two movement dimensions is plotted as a 

trajectory for each condition. The dashed lines lie mostly near the solid lines and travel in 

the same direction, indicating that activity for a given movement is similar across sides of 

the body.
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Figure 4. A compositional code that links together all four limbs.
(A) A cross-validation analysis demonstrates the existence of neural dimensions that code 

for laterality (left vs. right side of the body) and effector (arm vs. leg). Each dimension was 

identified using only a subset of the data (rows) and then applied to all data (columns). In 

diagonal panels (e.g. train on arm and test on arm), each individual movement was held out 

(that is, each movement’s trace was made using dimensions found using other movements 

only).
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(B) Each square (i,j) of the correlation matrices indicates the Pearson correlation between 

the mean firing rate vector of movement i and that of movement j. The off-diagonal banding 

shows that ipsilateral and contralateral movements were correlated with each other, for both 

the arm (left) and leg (right).

(C) Correlations between pairs of contralateral arm and leg movements were computed to 

reveal a surprising pattern: homologous movements of the arm and leg are correlated (e.g. 

hand opening and closing is uniquely correlated with toe opening and closing, as indicated 

by the off-diagonal band)..

(D) Neural activity in laterality-coding and movement-coding dimensions is partially active 

during an instructed delay period where only the laterality or the movement is specified. 

Each panel corresponds to a different neural dimension. Each circle indicates the mean (and 

its black line indicates the 95% CI) of activity in each dimension in the case where the full 

movement is specified (Full), only the laterality is specified (Lat.), or only the movement is 

specified (Movmt.). A 300 ms time window preceding the go cue was used for analysis.

(E) Same as in D, showing results from a different experiment testing the partial preparation 

of arm vs. leg (wrist vs. ankle) and movement direction.
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Figure 5. Departure from compositionality during dual movement: suppression and 
decorrelation effects
(A) An instructed delay task was used to probe the neural representation of dual (multi-

effector) movement. In this example experiment, participant T5 attempted to move his 

contralateral arm and leg to the left or right either simultaneously (e.g. the first illustrated 

movement) or individually (e.g. the second illustrated movement).

(B) Example single trial firing rates vectors during the “go” period are plotted in the top two 

neural dimensions that show differences in firing rate due to movement direction. Red and 
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blue lines connect their respective cluster means and their lengths are a measure of tuning 

strength.

(C) Firing rates observed during dual movement are plotted in the same dimensions used in 

B. Leg modulation is considerably weakened in this space (the red line is smaller than in B). 

Red and blue lines show the distance between the dark and light clusters (blue, arm 

movement) and the purple and gold clusters (red, leg movement).

(D) The data in C is plotted in the top two principal components that describe the dual 

movement data. The leg modulation appears larger, indicating that its axis of representation 

has changed relative to single movement.

(E) Each bar depicts, for a single experiment, the mean change (± 95% CI) of firing rate 

observed during single movement for each effector (e.g. the blue and red lines in B).

(F) The ratio of dual/single modulation (top) and the change in axis during dual movement 

(bottom) is shown for each individual experiment. Each pair of bars is from a separate 

experiment with two different body parts. The blue bar corresponds to whichever body part 

of the two tested that had the largest modulation in E. Results show that the “secondary” 

effector (red bar) almost always decreased its modulation more sharply during simultaneous 

movement (top) and changed its axis of representation more (bottom).

(G) The alignment between each pair of effectors is summarized for the single and dual 

movement contexts. Each circle shows data from a single pair and lines connect matching 

pairs. Bar heights indicate the mean across all pairs. A paired t-test reveals a statistically 

significant difference in alignment between the single and dual contexts, meaning that the 

effectors become less correlated during dual movement (p=0.0053; 0.33 vs. 0.14).
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Figure 6. Spreading targets across multiple effectors increases the accuracy and throughput of a 
discrete BCI.
(A) Target configurations. Each target was associated with a specific attempted movement.

(B) Online discrete decoding performance for a single contralateral effector (right wrist) as a 

function of the number of radially spaced targets. Bit rate and accuracy decline if more than 

6 targets are used.

(C) Offline decoding accuracy increases as targets are spread across more effectors (mean 

and 95% CI shown).
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(D) As the number of effectors increases, the distance of each target to its closest neighbor in 

neural population state space increases (each gray dot corresponds to a single target and 

indicates the distance to its closest neighbor in neural population state space). Bars and error 

bars show the means ± 95% CIs.

(E) The dimensionality of the neural activity increases with the number of effectors. 

Cumulative variance explained is plotted (mean ± 95% CI) as a function of the number of 

PCA components used to explain the neural activity across all targets.

(F) Online decoder performance for the target layouts in A. The achieved bitrate increases 

with the number of effectors, even when the number of targets is optimized for each layout 

(see Methods). Each circle shows the mean performance (± 95% CI) during a single session; 

bar heights show the mean across all sessions.

(G) Example confusion matrix from the online Quad Radial task. Each entry (i, j) in the 

matrix is colored according to the fraction of trials where movement j was decoded (out of 

all trials where movement i was cued). Off-diagonal banding shows that most errors were 

made when classifying between matching hand and foot movements.
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Figure 7. A compositional neural code may facilitate the transfer of motor skills across limbs.
(A) We speculate that premotor cortex (the site of our arrays) might receive input from 

upstream areas in the form of a “compositional” representation of movement where the limb 

is specified somewhat independently of the motion details. In this example, activity in the 

“laterality” and “arm vs. leg” input streams specify which of the four limbs should move, 

and activity in the “wrist/ankle motion pattern” input stream specifies the motion that should 

be performed (at a wrist or ankle joint). Premotor cortex and primary motor cortex would 

then convert this representation into limb-specific muscle patterns to achieve a desired joint 

motion.
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(B) The same motion pattern could be transferred to any other wrist or ankle by changing 

activity only in the “laterality” and “arm vs. leg” dimensions, achieving immediate transfer 

without requiring relearning.

See Figure S7 for a concrete implementation of this hypothesis in a neural network model.
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