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2e detection of recorded epileptic seizure activity in electroencephalogram (EEG) segments is crucial for the classification of
seizures. Manual recognition is a time-consuming and laborious process that places a heavy burden on neurologists, and hence,
the automatic identification of epilepsy has become an important issue. Traditional EEG recognition models largely depend on
artificial experience and are of weak generalization ability. To break these limitations, we propose a novel one-dimensional deep
neural network for robust detection of seizures, which composes of three convolutional blocks and three fully connected layers.
2ereinto, each convolutional block consists of five types of layers: convolutional layer, batch normalization layer, nonlinear
activation layer, dropout layer, and max-pooling layer. Model performance is evaluated on the University of Bonn dataset, which
achieves the accuracy of 97.63%∼99.52% in the two-class classification problem, 96.73%∼98.06% in the three-class EEG clas-
sification problem, and 93.55% in classifying the complicated five-class problem.

1. Introduction

Electroencephalogram (EEG) is a noninvasive, effective
technique used in clinical studies to decode the electrical
activity of the brain. EEG is one of the critical technologies to
identify an abnormality of the brain, such as detecting epi-
leptic seizures. Seizures are transient neurological dysfunc-
tions caused by abnormal brain neurons and excessive
supersynchronized discharges. 2e visual inspection of EEG
for seizure detection by expert neurologists is a time-con-
suming and laborious process, and the diagnosis may not be
accurate because of the massive amounts of EEG data and the
discrepant clinical judgment standards of different neurolo-
gists [1, 2]. 2erefore, scientific research on EEG-based au-
tomatic detection of epilepsy has attracted much attention.

Numerous algorithms have been proposed in the liter-
ature for automatic detection of epileptic seizures. 2ese
methods can be roughly classified into two categories:
conventional methods and deep learning- (DL-) based
methods. 2ereinto, most of the traditional methods use
hand-engineered techniques for feature extraction from
EEG signals and then conjunct with classifiers to recognize.
2e Bonn University EEG database is widely used, which is
publicly available and labeled as A, B, C, D, and E. Details of
the dataset are described in a later section. 2ere is much-
published work using the Bonn dataset for epilepsy detec-
tion. 2ey concern three main classification problems: the
two-class seizure detection problem focuses on the classi-
fication between nonseizures and seizures; the three-class
epileptic classification problem focuses on the grouping of
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three different EEG categories (normal, interictal, and ictal);
and the five-class recognition problem focuses on the
classification of five distinct types (A, B, C, D, and E).

In 2009, Ocak [3] proposed a scheme for detecting
epileptic seizures based on approximate entropy and discrete
wavelet transform (DWT) of EEG signals. 2is framework
obtained an accuracy of 96% for two-class EEG classifica-
tion. Moreover, Tzallas et al. [4] demonstrated the suitability
of the time-frequency analysis (TFA) to classify EEG seg-
ments for epileptic seizures. 2e authors employed the ar-
tificial neural network (ANN) as the classifier and achieved
an accuracy of 100% for the two-class and three-class
classification and 89% for the five-class case. In 2010, Subasi
and Ismail Gursoy [5] employed principal component
analysis, independent component analysis, and linear dis-
criminant analysis to reduce the dimension of EEG signals,
extracted statistical features from DWT, and then used
support vector machine (SVM) for classification.2is model
yielded a seizure detection accuracy of 100% for two-class
classification. In 2011, Orhan et al. [6] used the k-means
algorithm to cluster from the wavelet coefficients and then
classified a multilayer perceptron neural network (MLPNN).
2is model yielded maximum accuracy of two-class and
three-class classifications that are 100% and 96.67%, re-
spectively. In 2012, Acharya et al. [7] proposed a method-
ology for the automatic detection of normal, interictal, and
ictal categories from EEG signals. 2ey extracted four en-
tropy features and then fed to a fuzzy classifier. 2is
methodology achieved an accuracy of 98.1%. In 2014, Kaya
et al. [8] used the one-dimensional local binary pattern (1-D-
LBP) to extract features from raw EEG and, respectively,
combined with five different classifiers, such as Bayes Net,
SVM, ANN, logistic regression (LR), and functional tree
(FT). 2e best-performing classifier was the Bayes Net
classifier, which achieved 99.5% and 95.67% maximum
accuracy for two-class and three-class classifications, re-
spectively. 2e worst performing classifier was the LR
classifier, which gained 96.50% and 66.67% maximum ac-
curacy for two-class and three-class classifications, respec-
tively. In 2015, Sharma and Pachori [9] proposed the features
based on the phase space representation for the classification
of epileptic seizure and seizure-free EEG signals. 2ey
employed the least squares support vector machine as a
classifier, which gave 98.67% accuracy. In 2016, Sharmila
and Geethanjali [10] studied the performance of the 14
different combinations of two-class epilepsy detection. 2ey
employed naive Bayes (NB) and k-nearest neighbor (KNN)
classifiers for the derived statistical features from DWT, and
the NB classifier obtained an accuracy of 100% in the
classification of healthy eyes open and epileptic EEG data. In
2017, Zhang and Chen [1] employed local mean decom-
position (LMD) to decompose raw EEG signals into several
product functions (PFs) and then fed the features into five
classifiers. 2e authors reported that the best-performing
classifier was the SVM optimized by genetic algorithm (GA-
SVM), and the average classification accuracy was equal to or
higher than 98.1%. Bhattacharyya et al. [11] computed the
Q-based entropy by decomposing the signal with the tun-
able-Q wavelet transform (TQWT) into the number of

subbands and estimating K-nearest neighbor entropies
(KNNE) from various subband cumulatively and used the
support vector machine classifier with the wrapper-based
feature selection method to be the classifier. 2is method
achieved an accuracy of 100% and 98.6% of maximum ef-
ficiency for two-class and three-class classifications, re-
spectively. Zahra et al. [12] presented a data-driven approach
to classify five-class EEG classification using the multivariate
empirical mode decomposition (MEMD) algorithm. And
ANN was employed to be a classifier, which achieved 87.2%
accuracy.

2ese conventional methods for the detection of seizures
use hand-engineered techniques to extract features from
EEG signals. And many of these traditional methods show
good accuracy for one problem but fail in performing ac-
curately for others [2]. For example, they identify nonseizure
and seizure cases (the two-class classification problem) with
excellent accuracy but show poor performance for the de-
tection of three-class epilepsy classification. Deep learning is
a new research direction of machine learning that auto-
matically learns the inherent laws and features of sample
data. As both the available data and computational ability of
hardware continue to increase, deep learning has addressed
increasingly complex applications with ever-increasing ac-
curacy [13–15]. Recently, automatic detection of epileptic
seizures based on deep learning methods received much
attention.

In 2018, Acharya et al. [16] implemented a 13-layer deep
convolutional neural network (CNN) algorithm to detect
normal, preictal, and seizure classes.2is model includes five
convolutional (Conv) layers, five max-pooling layers, and
three fully connected (FC) layers. On this three-class de-
tection problem, it achieved accuracy, specificity, and sen-
sitivity of 88.67%, 90.00%, and 95.00%, respectively.
Moreover, Ullah et al. [2] proposed an automatic system for
epilepsy detection based on an ensemble of pyramidal one-
dimensional convolutional neural network models. 2e core
component of the system is a pyramidal one-dimensional
convolutional neural network (P-1D-CNN) model, which
consists of three main types of layers: Conv, batch nor-
malization (BN), and FC layers. 2e classification perfor-
mance of the P-1D-CNN model is not very satisfactory.
Hence, the authors introduced the majority-vote (M-V)
module in the final stage of the P-1D-CNN model, which
significantly improved the performance of the algorithm. In
almost all the cases of two-class and three-class concerning
epilepsy detection problems, it has given the accuracy of
99.1± 0.9%. In 2019, Turk and Ozerdem [17] obtained two-
dimensional frequency-time scalograms by applying Con-
tinuous Wavelet Transform (CWT) to EEG records con-
taining five different classes and used the CNN structure to
learn the properties of the scalogram images. On all the two-
class, three-class, and five-class classification problems in-
volving seizures, its recognition accuracy is 98.5%∼99.5%,
97.0%∼99.0%, and 93.6%, respectively. Moreover, Hussein
et al. [18] introduced a deep long short-term memory
(LSTM) network to learn the high-level representations of
different EEG patterns, using one FC layer to extract the
most robust EEG features relevant to epileptic seizures. 2is
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model achieved 100% accuracy of the two-class, three-class,
and five-class classification problems.

Despite the encouraging seizure detection results gained
using the CNN models mentioned above, several im-
provements can still be achieved. First, some of these CNN
models have relatively single model structures. 2e second
issue is the small number of available samples, which is not
enough to train a deep neural network model. As such, we
felt motivated to develop a CNN model for detecting sei-
zures efficiently with raw EEG signals. To address these
issues, first, we add the BN layer and dropout layer into the
traditional convolutional blocks for learning features, which
may help in detecting seizures efficiently. Second, the seg-
ments of raw EEG were divided into many nonoverlapping
chunks to increase the number of samples for training and
test, which may help in using a small amount of available
data for fully training a deep model. Research findings have
shown that the proposed approach is advantageous in
detecting seizures using EEG signals.

2. Materials and Methods

2.1. Description of EEG Dataset. Our seizure recognition
experiments are conducted using the widely used and
publicly available EEG database produced by Bonn Uni-
versity [19]. 2is database consists of five diverse subsets (set
A–E) denoted as Z, O, N, F, and S. Sets A and B are
composed of surface EEG recordings of healthy volunteers
in the wakeful state with eyes open and eyes closed, re-
spectively. On the other hand, Sets C, D, and E are gathered
from patients with epilepsy. 2ereinto, Sets C and D were
recorded during seizure-free intervals. Set C was recorded
from the hippocampal formation of the opposite hemisphere
of the brain. Set D was recorded from within the epilep-
togenic zone. Set E only included seizure activities. Each of
these sets contains 100 single-channel recordings of EEG
signals with a sampling rate of 173.61Hz and a duration of
23.6 s. 2e corresponding time-series is sampled into 4097
data points. Besides, the Rochester Institute of Technology
divided every 4097 data points into 23 chunks. Each chunk
contains 178 data points for 1 second (https://archive.ics.uci.
edu/ml/datasets/Epileptic+Seizure+Recognition). To in-
crease the number of samples for training a deep model, the
Bonn dataset in this format is adopted, whose amount of
sample increases 22 times. 2erefore, the number of each
category has 2300 EEG samples. Sample EEG signals of five
EEG classes are shown in Figure 1.

2.2. Architecture of the Proposed Network. 2e deep CNN
model [20] can automatically learn the features of EEG
signals and performs classification in an end-to-end
manner. 2e overall CNN architecture proposed in this
paper is shown in Figure 2, which can perform feature
extraction and classification. First, the input one-di-
mensional raw EEG data are normalized to zero mean and
unit variance. 2en, three convolutional blocks are
adopted to learn features of the EEG signals, where each
block consists of five layers. In detail, the first layer

computes multiple convolutions in parallel to generate a
set of linear activation responses. 2e second layer is BN,
which is used to solve the internal variable shift. Each
linear activation response passes a nonlinear activation
function in the layer. 2e activation function used in this
work is the rectified linear unit (ReLU) [21]. In the fourth
layer, the dropout technology [22] is employed to prevent
overfitting. 2e last layer of the block is the max-pooling
layer, which introduces translation invariance. In the
structure, the second and third convolutional blocks are
similar to the first.

At the end of the third convolutional block, the feature
maps are flattened into a one-dimensional vector that is
connected to the FC layer for integrating features. 2e first
two FC layers employ ReLU as the activation function,
followed by a dropout layer. 2e third FC layer applies
softmax as the activation function which will output a vector
of probabilities corresponding to each category. To choose
better model parameters, we explored eight models with
different specifications. Details are described in the Exper-
imental Results and Discussion section. In this study, we
select model M7. Table 1 shows the details of the proposed
CNN structure.

2.3.ConvolutionOperation. A convolutional neural network
(CNN) is a neural network designed to process data with
similar network structures. 2e image can be regarded as a
two-dimensional pixel grid. Similarly, time-series data can
be considered as a one-dimensional grid formed by regularly
sampling on time axis. 2e convolutional block of con-
ventional CNN includes three layers: convolution, activation
function, and pooling. For the one-dimensional EEG data
used in this paper, the convolution operation is as follows:

s(t) � (x∗w)(t) � 􏽘
a

x(a)w(t − a). (1)

Convolution network has the characteristics of sparse
interaction. So, it means fewer parameters need to be stored,
which not only reduces the storage requirements of the
model but also simplifies the calculation. At the same time,
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Figure 1: Sample EEG signals in this study.
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the parameters shared by the convolution kernel ensure that
we only need to learn parameters that are many orders of
magnitude smaller. Convolution is a kind of special linear
operation, and activation function brings nonlinear char-
acteristics into the network. 2e Rectified Linear Unit
(ReLU) function is the most commonly used activation
function in CNN, which overcomes the vanishing gradient
problem, allowing models to learn faster and perform better.
Equation (2) shows the ReLU function:

f(x) � max 0, x{ }. (2)

2e pooling function can reduce the spatial size of the
representation to reduce the number of parameters and

computation in the network. It replaces the output of the
system at a specific position. For example, max-pooling gives
the maximum value in several neighborhoods. 2e pooling
can also help to make the representation approximately
invariant to small translations of the input.

2.4. Calculation of BN. In this study, the BN layer and
dropout layer are added to the traditional convolutional
blocks. When training the deep neural network, the
parameters of each layer are closely related to each other.
2e inconsistency in the distribution of layers’ inputs
causes a problem, called internal covariate shift. And the
internal vary shift makes it difficult for us to choose an
appropriate learning rate. To tackle this problem, Ioffe
and Szegedy [23] developed BN technology which can
almost reparametrize any deep networks, significantly
reducing the problem of coordinated updates between
multiple layers. 2e technology takes normalization as
part of the model architecture and normalizes each mini-
batch.

During training, BN calculates the sample mean and
standard deviation for the mini-batch response H in
backpropagation by

μ �
1
m

􏽘
i

Hi,

σ �

���������������

δ +
1
m

􏽘
i

(H − μ)
2
i

􏽳

,

(3)

where the delta component δ is kept at a small positive value
and is added only to avoid the gradient becoming undefined
where the true standard deviation is zero. And they are used
to normalize H by

H′ �
H − μ
σ

. (4)

BN is also very useful in accelerating the convergence of
the training phase and prevents overfitting. 2e technology
has become a common practice, and the detail can be found
in [23]. 2erefore, we employ BN after every convolutional
layer.

Conv 2
Conv 1

Co
nv

ol
ut

io
n

BN Re
LU

D
ro

po
ut

Po
ol

in
g

Conv 3
FC 1

1s EEG

N
or

m
al

iz
e

Co
nv

ol
ut

io
n

BN Re
LU

D
ro

po
ut

Po
ol

in
g

Co
nv

ol
ut

io
n

BN Re
LU

D
ro

po
ut

Po
ol

in
g

FC

D
ro

po
ut

Re
LU

FC 2

FC

D
ro

po
ut

Re
LU

FC 3

Feature extraction Classification

So
ftm

ax
FC

Figure 2: 2e proposed one-dimensional convolutional neural network architecture.

Table 1: Details of the CNN structure used in this research.

Block Type

Number of
neurons

Kernel size for
each Stride

(Output layer) Output feature
map

Conv 1

Convolution 139× 20 40 1
BN 139× 20 — —
ReLU 139× 20 — —

Dropout 139× 20 — —
Max-
pooling 70× 20 2 2

Conv 2

Convolution 51× 40 20 1
BN 51× 40 — —
ReLU 51× 40 — —

Dropout 51× 40 — —
Max-
pooling 26× 40 2 2

Conv 3

Convolution 17× 80 10 1
BN 17× 80 — —
ReLU 17× 80 — —

Dropout 17× 80 — —
Max-
pooling 9× 80 2 2

FC 1
FC 64 — —

ReLU 64 — —
Dropout 64 — —

FC 2
FC 32 — —

ReLU 32 — —
Dropout 32 — —

FC 3 FC 2 or 3 or 5 — —
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2.5. Feature Fusion and Classification. A deep neural net-
work needs to learn a large number of parameters, which is
likely to cause overfitting in the case of a small dataset. To
address this issue, the authors [22] developed dropout
technology to prevent the coadaptation of feature detectors.
2e critical idea of dropout is to randomly drop units with a
predefined probability (along with their connections) from
the neural network during training. It significantly reduces
overfitting and gives significant improvements over other
regularization methods. In the proposed model, we add the
dropout lay after each ReLu activation function.

2e output of the last convolutional block represents
high-level features in the EEG signals. 2e fully connected
layer is a usual manner of learning nonlinear combinations of
these features. All the neurons in the last max-pooling layer
are connected with all the neurons of the first FC layer. We
used three FC layers. 2e number of neurons in the final FC
layer (FC3) relies on the detection problem, e.g., for the two-
class, three-class, and five-class epileptic classification prob-
lem, the number of neurons in FC3 is 2, 3, and 5, respectively.

2e softmax activation function is a generalization of the
binary form of logistic regression. It is commonly applied to
the last layer of a deep neural network for constituting a
categorical distribution over class labels and obtaining the
probabilities of each input element belonging to a label. 2e
softmax function, denoted by hθ(x(i)), is defined as equation
(5), which represent the respective probabilities of the i-th
sample (denoted by x(i)) belonging to each category:

hθ x
(i)

􏼐 􏼑 �

p y(i) � 1 x(i); θ
􏼌􏼌􏼌􏼌􏼐 􏼑

p y(i) � 2 x(i); θ
􏼌􏼌􏼌􏼌􏼐 􏼑

⋮

p y(i) � k x(i); θ
􏼌􏼌􏼌􏼌􏼐 􏼑

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�
1

􏽐
k
l�1e

θT
l x(i)

eθ
T
1 x(i)

eθ
T
2 x(i)

⋮

eθ
T
k x(i)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(5)

where θ1, θ2, . . . , θk are the softmax model parameters.

2.6. Training of CNN Model. Training the proposed model
needs the weight parameters to be learned from the EEG
data. For learning these parameters, we employed the
conventional backpropagation algorithm with cross-entropy
as the loss function. And, we used the stochastic gradient
descent method with Adam optimizer that is based on the
adaptive estimation of first-order and second-order mo-
ments. 2e hyperparameters of Adam algorithm are as
follows: learning rate (0.0005), beta1(0.9), and beta2(0.999).
2e model was implemented in Keras, a powerful deep
learning library, which runs on top of TensorFlow.2e batch
size of 100 is chosen in this work, which is used for each
training update. To compare the performance measure, we
trained all the models that are present in this work with 300
epochs.

2.7.PerformanceMeasures. For evaluation, we adopted well-
known performance metrics, such as accuracy (Acc),

precision (Pre), sensitivity (Sen), and specificity (Spe), F1.
2ereinto, accuracy is one of the most commonly used
metrics in the literature, and it is defined as a ratio between
the correctly classified samples to the total number of
samples. 2e definitions of these performance metrics are as
follows:

Acc �
TP + TN

TP + TN + FP + FN
,

Pre �
TP

TP + FP
,

Sen �
TP

TP + FN
,

Spe �
TN

FP + TN
,

F1 �
2 × Pre × Sen
Pre + Sen

,

(6)

where TP (true positive) is the number of abnormal EEG
records, which are correctly identified as abnormal; TN (true
negative) is the number of normal EEG cases that are
correctly predicted as normal; FP (false positive) is the
number of normal EEG cases that are predicted as abnormal;
and FN (false negative) is the number of abnormal EEG
records that are incorrectly classified as normal.

To reduce the statistical uncertainty of test error esti-
mation caused by small-scale test datasets, we adopted 10-
fold cross-validation for evaluation. 2e 2300 EEG signals of
each category are randomly divided into ten nonoverlapping
fold. During the i-th test, the i-th fold of the EEG signals is
used for testing while the remaining 9 folds are used for
training. 2e accuracy, sensitivity, and specificity values
reported in the paper are the average values obtained from
ten evaluations.

3. Experimental Results and Discussion

Datasets are grouped with different combinations for ex-
ploring a general classification model, which is classified into
two classes (nonseizures and seizures), three categories
(normal, interictal, and ictal), and five classes (A, B, C, D,
and E). To choose better model parameters, we considered
eight models with different configurations.

3.1. Selection of Model. We explored models with different
parameters, including the size of the receptive field, the
number of neurons, and the dropout probability of the FC
layer, for comparison. Taking the five-class classification
problem, for example, the experimental results using 10-fold
cross-validation are shown in Table 2.

Experiments show that within experimental parameters,
a larger size of the receptive field andmore neurons in the FC
layer make the recognition more effective. 2e dropout
probability of 20% in the FC layers is more effective than a
rate of 50%.2erefore, the parameters of the model M7 with
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the best performance are used for experiments of two-class
and three-class classifications with various combinations.

3.2. Performance of the Proposed Model. A multiple classi-
fication problem can be decomposed into multiple binary
classification problems. 2e result of each classification can
be listed as a confusion matrix, which reflects the original
and predicted labels of each category. Table 3 shows the
confusion matrix and evaluation metrics of classification
normal (B) vs. preictal (D) vs. seizure (E), as well as the
overall classification result. All the metrics are over 96%,
especially the specificity, which is above 98% in each cate-
gory, and the overall classification.

To check the robustness of the proposed model, we
tested 20 combinations. 2e detail of 10-fold cross-valida-
tion results is shown in Table 4, in which the average ac-
curacy is employed as overall accuracy. 2e accuracy of the
two-class classification varies from 97.63% to 99.52%, which
has the best performance for A vs. E and the worst per-
formance for D vs. E. 2e accuracy of the three-class rec-
ognition problem is between 96.73%∼98.06%. Notably, the
accuracy is as high as 98.06% for B vs. D vs. E. 2e five-class
classification problem is more complicated and harder to
solve than the two-class and three-class problems but has an
advantage in numerous clinical applications, and the pro-
posed model still obtains an overall accuracy of 93.55%. 2e
proposed model is suitable for various classification prob-
lems of the Bonn dataset and has a strong generalization
ability.

3.3. Comparisons with Previous Studies. Numerous ap-
proaches have been presented in the literature for automated
detection of epileptic seizures using the Bonn EEG database.
Table 5 shows the results of the comparison of the recog-
nition rate of this work with them on various classification
problems. 2e binary classification problem is the problem
of identifying nonseizures and seizures. Classification of
healthy volunteers and seizures is A vs. E, B vs. E, and AB vs.

E. Due to the significant differences in this classification, the
classification results of the various methods that appear in
Table 5 are generally outstanding, all above 99%. 2e
classification accuracy of interictal and ictal (C vs. E, D vs. E,
and CD vs. E) is slightly lower than the first binary classi-
fication. In particular, both sets D and E are from the ep-
ileptogenic zone; therefore, it is difficult to distinguish. In the
conventional methods of Table 5, Zhang et al. [1] obtained
the best performance, which achieved 98.1% accuracy. In
CNN-based technology, Ullah et al. [2] employed CNN and
the majority-vote module to classify and gain 99.4% accu-
racy. Turk and Ozerdem [17] used CWT and CNN to rec-
ognize and achieved 98.50% accuracy. 2e proposed model
of this work just employed CNN and obtained 97.63%
accuracy.

2e three-class classification problem further subdivides
the EEG records to distinguish normal, interictal, and ictal
EEG. We compared two types of three-class problem (B vs.
D vs. E and AB vs. CD vs. E). 2e proposed model also
achieved good performance. Especially in the case of B vs. D
vs. E, its performance reaches the best accuracy of 98.06%,
which is obviously better than another model [16] based on
CNN only.

2e five-class classification problem is more complicated
and harder to classify than the two-class and three-class
problems. It needs to identify the differentiation between
EEG epochs belonging to the same class (e.g., sets A and B,
which are both normal; sets C and D, which are both
interictal). 2erefore, in the literature, relatively some
methods were proposed to address these three types of
problems at the same time. 2e proposed CNN model
achieved an accuracy of 93.55%, which is very close to the
results of Turk and Ozerdem [17] and better than the
conventional methods.

2e experiment still needs to be implemented in re-
ducing the learning rate and increasing the number of
epochs, which will undoubtedly increase the accuracy of
epilepsy recognition but, at the same time, will cost more
time for training. For a limited number of training samples,

Table 2: Configurations of 8 models using 10-fold cross-validation for the A vs. B vs. C vs. D vs. E cases.

Block Parameter M1 M2 M3 M4 M5 M6 M7 M8

Conv 1
Number of kernels 20 20 20 20 20 20 20 20

Size of receptive field 5 5 5 5 40 40 40 40
Dropout rate 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Conv 2
Number of kernels 40 40 40 40 40 40 40 40

Size of receptive field 3 3 3 3 20 20 20 20
Dropout rate 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

Conv 3
Number of kernels 80 80 80 80 80 80 80 80

Size of receptive field 3 3 3 3 10 10 10 10
Dropout rate 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2

FC 1 Number of neurons 32 32 64 64 32 32 64 64
Dropout rate 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5

FC 2 Number of neurons 16 16 32 32 16 16 32 32
Dropout rate 0.2 0.5 0.2 0.5 0.2 0.5 0.2 0.5

A vs. B vs. C vs. D vs. E
Acc 90.47 88.61 91.89 91.20 93.37 91.62 93.55 92.92
Sen 75.98 70.86 79.66 77.79 83.33 78.85 83.73 82.30
Spe 94.00 92.72 94.92 94.45 95.83 94.71 95.93 95.57
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Table 3: Confusion matrix for the three-class problem (B vs. D vs. E.) across 10-folds.

Predicted
Acc Sen Spe Pre F1

Normal Preictal Seizure

Original
Normal 2263 36 1 98.32 98.39 98.28 96.63 97.50
Preictal 49 2220 31 97.54 96.52 98.04 96.10 96.31
Seizure 30 54 2216 98.32 96.35 99.30 98.58 97.45

Overall — — — — 98.06 97.09 98.54 97.10 97.09

Table 4: Accuracies (%) of 10-fold cross-validation using model M7.

Data sets combination K1 K2 K3 K4 K5 K6 K7 K8 K9 K10 Mean
A vs. E 100 99.57 99.57 99.35 99.35 99.57 99.13 99.57 99.35 99.78 99.52
B vs. E 99.78 99.13 99.57 98.91 99.13 99.35 98.70 98.70 98.70 99.13 99.11
C vs. E 99.35 98.04 98.04 96.96 98.26 97.39 97.39 97.83 98.48 98.48 98.02
D vs. E 97.61 98.04 98.26 98.04 97.17 98.04 96.52 97.17 96.52 98.91 97.63
AB vs. E 99.57 99.13 99.57 99.57 99.57 99.13 99.57 99.13 99.57 98.99 99.38
AC vs. E 99.28 98.70 99.13 98.84 99.13 98.70 98.99 99.57 99.42 98.55 99.03
AD vs. E 98.12 97.83 98.41 98.70 98.41 98.41 98.55 98.55 99.13 98.84 98.50
BC vs. E 98.70 98.41 97.68 98.55 98.55 98.99 98.84 99.28 99.57 98.26 98.68
BD vs. E 97.39 97.10 97.54 98.84 98.26 97.54 98.41 97.97 97.83 97.39 97.83
CD vs. E 97.68 97.54 98.41 97.83 98.41 97.25 98.84 98.41 97.97 97.97 98.03
ABC vs. E 99.24 98.26 99.24 98.91 98.80 99.02 98.91 99.24 98.91 98.37 98.89
ABD vs. E 98.80 98.37 98.80 98.26 98.80 99.35 98.48 97.93 98.15 98.26 98.52
BCD vs. E 98.26 97.61 98.59 98.26 98.59 99.24 98.04 98.70 97.93 98.37 98.36
ABCD vs. E 98.96 99.22 98.70 98.52 98.35 99.22 98.78 98.61 99.13 98.09 98.76
A vs. C vs. E 96.04 97.05 97.00 97.39 94.98 97.58 97.00 96.09 96.81 97.39 96.73
A vs. D vs. E 97.63 97.10 97.54 95.94 97.00 96.67 97.39 97.87 96.81 96.43 97.04
B vs. C vs. E 97.63 97.97 98.12 97.68 98.36 97.20 97.87 99.03 97.68 97.58 97.91
B vs. D vs. E 98.35 98.30 98.07 97.49 98.26 97.97 97.20 98.45 98.45 98.06 98.06
AB vs. CD vs. E 96.70 97.10 97.74 96.43 96.72 97.97 94.96 97.91 96.96 97.25 96.97
A vs. B vs. C vs. D vs. E 92.99 94.37 94.00 93.41 93.36 92.73 93.74 93.25 93.74 93.91 93.55

Table 5: Comparison between the proposed method and other methods using the same dataset.

Data sets combination Methodology Study Acc (%) Our Acc (%)

A vs. E

TFA+ANN Tzallas et al. [4] 100

99.52

DWT+Kmeans +MLPNN Orhan et al. [6] 100
1-D-LBP + FT/BN Kaya et al. [8] 99.50
DWT+NB/KNN Sharmila and Geethanjali [10] 100

TQWT+KNNE+ SVM Bhattacharyya et al. [11] 100
LMD+GA-SVM Zhang and Chen [1] 100
CNN+M-V Ullah et al. [2] 100
CWT+CNN Turk and Ozerdem [17] 99.50

B vs. E

DWT+NB/KNN Sharmila and Geethanjali [10] 99.25

99.11TQWT+KNNE+ SVM Bhattacharyya et al. [11] 100
CNN+M-V Ullah et al. [2] 99.6
CWT+CNN Turk and Ozerdem[17] 99.50

C vs. E

DWT+NB/KNN Sharmila and Geethanjali [10] 99.62

98.02TQWT+KNNE+ SVM Bhattacharyya et al. [11] 99.50
CNN+M-V Ullah et al. [2] 99.1
CWT+CNN Turk and Ozerdem [17] 98.50

D vs. E

1-D-LBP + FT/BN Kaya et al. [8] 95.50

97.63

DWT+NB/KNN Sharmila and Geethanjali [10] 95.62
TQWT+KNNE+ SVM Bhattacharyya et al. [11] 98

LMD+GA-SVM Zhang and Chen [1] 98.10
CNN+M-V Ullah et al. [2] 99.4
CWT+CNN Turk and Ozerdem [17] 98.50
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we can also try to enhance the dataset, which may be useful
for the generalization ability of the model. For example, we
can divide the 23.6 seconds of EEG data into many over-
lapping chunks to further increase the number of samples.

4. Conclusion

A novel model for robust detection of seizures has been
proposed, which deals with two-class, three-class, and five-
class classification problems. 2e proposed approach has
been developed based on the one-dimensional convolutional
neural network model, which takes the raw EEG signal as
input. To improve the learning ability of the model, the BN
and dropout layers have been introduced to the traditional
convolutional block. To address the issue of the small
datasets, the EEG has been divided into many nonover-
lapping chunks for training and test.2e experimental result
shows that the proposed model performs well on various
EEG classification problems on the Bonn dataset.
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