Table 1.
Details of the CNN structure used in this research.
Block | Type | Number of neurons | Kernel size for each | Stride |
---|---|---|---|---|
(Output layer) | Output feature map | |||
Conv 1 | Convolution | 139 × 20 | 40 | 1 |
BN | 139 × 20 | — | — | |
ReLU | 139 × 20 | — | — | |
Dropout | 139 × 20 | — | — | |
Max-pooling | 70 × 20 | 2 | 2 | |
| ||||
Conv 2 | Convolution | 51 × 40 | 20 | 1 |
BN | 51 × 40 | — | — | |
ReLU | 51 × 40 | — | — | |
Dropout | 51 × 40 | — | — | |
Max-pooling | 26 × 40 | 2 | 2 | |
| ||||
Conv 3 | Convolution | 17 × 80 | 10 | 1 |
BN | 17 × 80 | — | — | |
ReLU | 17 × 80 | — | — | |
Dropout | 17 × 80 | — | — | |
Max-pooling | 9 × 80 | 2 | 2 | |
| ||||
FC 1 | FC | 64 | — | — |
ReLU | 64 | — | — | |
Dropout | 64 | — | — | |
| ||||
FC 2 | FC | 32 | — | — |
ReLU | 32 | — | — | |
Dropout | 32 | — | — | |
FC 3 | FC | 2 or 3 or 5 | — | — |