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Abstract: Two natural products databases, the marine natural products database (MNPD) and the traditional Chinese
medicines database (TCMD), were used to find novel structures of potent SARS-CoV protease inhibitors through virtual
screening. Before the procedure, the databases were filtered by Lipinski’s ROF and Xu’s extension rules. The results
were analyzed by statistic methods to eliminate the bias in target-based database screening toward higher molecular
weight compounds for enhancing the hit rate. Eighteen lead compounds were recommended by the screening procedure.
They were useful for experimental scientists in prioritizing drug candidates and studying the interaction mechanism. The
binding mechanism was also analyzed between the best screening compound and the SARS protein.
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Introduction

Severe acute respiratory syndrome (SARS) is a serious epidemic
disease dispersed in many countries during the period of the time
from March to May 2003. In that extraordinary period, 5327
persons were infected, of whom 349 died (6.6%) in China (http://
www.china.com.cn/chinese/zhuanti/feiyan/318261.htm). The main
symptoms of SARS are hyperpyrexia, chilling, cough, and dyspnea.

Confronted with this new human coronavirus, many scientists
devoted themselves to related research. Marra1 and his coworkers
discovered the genome sequence of the SARS-associated corona-
virus, which lit a lamp for the perplexed investigators. Based on
Marra’s work, Anand et al.2 built a main proteinase structure using
the homology modeling approach. Jenwitheesuk3 indicated that
existing HIV-1 protease inhibitors have high binding affinity to the
SARS coronavirus (SARS-CoV) proteinase. His findings may help
scientists to design SARS inhibitors. De Groot4 also believed that
there were some similarities between SARS-CoV and HIV. Xiong
et al. found 73 available protease inhibitors from the MDDR
database (MDL Drug Data Report, http://www.mdl.com/) by vir-
tual screening.5 Lee et al.6 identified four potent compounds taken
from 16 antiviral drugs in the NCI database [National Cancer
Institute (NCI) Database (http://cactus.nci.nih.gov/ncidb2/)]. In a
recent report, Sirois et al. screened 3.6 million compounds through
virtual screening using the MOE software package.7 Wu et al.8

also contributed their excellent work by a cell-based assay, and 15
compounds with potent anti-SARS-CoV activity were found, in-
cluding two existing drugs.

At present, there are still no effective SARS-CoV protease
inhibitors on the market, and the available ligand databases used
for virtual screening are usually those of Western medicine data-
bases, such as MDDR, NCI, ACD, etc.

Traditional Chinese medicine has been playing an important
role in China for thousands of years, and now it is an valuable
source of complements in Western medicines. During the SARS-
spreading period, people in China used TCM to prevent the dis-
ease, with positive results. The prescriptions focus on Honeysuckle
[Lonicera japonica, Caprifoliaceae], Indigowoad Root [Isatis in-
digotica, Cruciferae], Forsythia [Forsythia suspensa, Oleaceae],
Swordlike Atractylodes [Atractylodes lancea, Compositae], Lico-
rice [Glycyrrhiza uralensis, Leguminosae], etc.

Along with the scale of isolating compounds from natural
sources being bigger and bigger, many novel structures have been
continually found. People are paying more attention to finding new
effective drugs from natural sources, especially from medicinal
plants and halobios.

Unlike land-dwelling living beings, owing to their unique hab-
itat such as high salinity, very little light, and high pressure, the
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marine organisms have different metabolism routes. These facts
result in remarkable structural diversity of marine natural products.
It is the character that makes marine natural products an invaluable
treasure. There are more than 12,000 new compounds that have
been isolated from sea living beings, adding 500 to 800 new
compounds each year.9,10 A new antineoplastic drug, ET-743, has
been synthesized by PharmaMar.11 The compound originally was
isolated from tunicates. It is undergoing its clinical test period II in
both Europe and America, and is expected to come onto the market
this year.

In this article, we used two new natural products databases: the
traditional Chinese medicines database (TCMD), and the marine
natural products (MNPD), for virtual screening.

Database

Marine Natural Products Database

MNPD was constructed by our laboratory.12 There are 8078 com-
pounds isolated from halobios, among them 3200 compounds are
with bioactivity data, some 1200 with CAS Registry Numbers, and
about 3700 with physical property data. This database runs on an
ISIS/Base (MDL Information Systems, Inc.) platform.

Traditional Chinese Medicines Database

TCMD is a commercial database built by our laboratory (http://
products.cambridgesoft.com/family.cfm?FID�57).13–15 It has
9127 entries. A typical entry includes detailed 3D molecular struc-
tures, English names and synonyms, physical properties, natural
sources, and references information. Bioactivity data are available
for 3000 of the entries. There are 3922 traditional Chinese medi-
cine plant species including standard expression on TCM effects
and indications.

There are many antivirus and anti-HIV compounds in TCMD.
According to Jenwitheesuk and De Groot’s findings, they are
helpful in finding SARS-CoV protease inhibitors.3,4 Honeysuckle,
Indigowoad Root, Forsythia, Swordlike Atractylodes, and Licorice
are also important effective components of the anti-SARS TCM
prescription. TCMD is run on an ISIS/Base platform.

All compound 2D structures in MNPD and TCMD were trans-
formed to 3D molecules files by CONCORD standalone 4.016 at an
SGI workstation.

Drug-Like Filter

According to the Lipinski’s Rule of Five (ROF), drug-like com-
pounds should have an appropriate molecular weight (MW), H-

Table 1. Drug-Like Filter Rules.

Parameters Drug-like values

Number of H-bond donors (HDN) 0–5
Number of H-bond acceptors (HAN) 0–8
Number of aromatic bonds (AB) 0–28
Number of smallest set of smallest rings (SSSRS) 1–9
Average atomic numbers (AZ) 6–10
Number of rotating bonds (RB) 0–14
Average electronegativity (AE) 2.55–3.02
Molecular weight (MW) �900
Octanol–water partition coefficient (LogP) 0–5

Figure 1. Dock energy score distribution of MNPD. [Color figure can
be viewed in the online issue, which is available at www.inter-
science.wiley.com.]

Figure 2. Dock energy score distribution of TCMD. [Color figure can
be viewed in the online issue, which is available at www.inter-
science.wiley.com.]
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Table 2. Best 18 Compounds Found via Virtual Screening (Dock, kcal/mol; AutoDock, kcal/mol).

Compound HAN HDN AB SSSRS AZ RB AE MW LogP Dock AutoDock Structure

M3927 3 3 6 1 8.79 7 2.76 465.18 0.763 �39.1 �10.46

M4367 4 5 12 2 6.44 12 2.75 469.54 1.553 �41.07 �10.7

M4890 7 6 6 3 6.48 14 2.77 642.75 3.42 �44.24 �11.76

M5410 6 5 12 2 6.49 11 2.77 512.56 1.464 �41.71 �11.21

M5789 7 3 6 4 6.49 7 2.77 578.7 3.615 �43.43 �10.3

M6601 1 2 6 1 9.65 4 2.71 370.13 3.39 �36.23 �9.67

M6602 3 5 6 2 8.88 5 2.8 461.11 2.565 �35.53 �7.06

T1434 7 2 6 4 6.43 9 2.74 580.67 2.83 �37.54 �12.36

T1441 6 2 6 4 6.39 9 2.72 566.69 3.75 �36.73 �11.67

T2826 7 3 6 7 6.36 4 2.71 575.71 1.83 �39.20 �11.21

T2831 7 3 6 7 6.38 3 2.72 547.65 1.17 �37.98 �12.49

T4744 4 2 24 7 6.24 3 2.66 449.53 2.66 �38.38 �12.41

T537 8 3 6 4 6.38 11 2.72 623.79 2.16 �39.57 �12.11

T5656 8 2 6 7 6.35 5 2.71 589.73 2.35 �38.03 �12.31

(Continued)
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bond donors, H-bond acceptors, and LogP value.17 It has been
difficult for molecules with larger molecular weight and lower
LogP value to cross through the cell membrane. With larger LogP
value, the drug will be difficult to dissolve in water, which is a
necessary condition for drugs to be absorbed by an organism. Xu
has extended that rule by definition of a drug-like cluster center.18

The criteria we adopted here (see Table 1) for the filter of the two
databases combined the ROF with Xu’s regulations. Due to SARS-
CoV protease’s larger active pocket, we expanded the MW to less
than 900. Compounds with all their parameters meeting the drug-
like rules were picked out and written into a single molecules file.
Then the databases were quickly narrowed to 3861 (MNPD) and
5454 (TCMD), respectively. LogP was calculated by the XLogP
program.19

Virtual Screening Calculation

Virus Target

Rao20 and his coworkers reported a 1.90-Å crystal structure of the
SARS-CoV protease (PDB entry code: 1UJ1). It is a dimer, and the
active pocket located at protomer A, which contains three domains
and the substrate-binding site, is in a cleft between domain I and
II (residues 8–101 and 102–184, respectively). The active site has
a Cys–His catalytic dyad, which is composed of Cys145 and
His41. Also, the substrate-binding pocket consists of the side
chains of His163 and Phe140, and the main-chain atoms of
Met165, Glu166, and His172.

Dock Parameters

The Dock4.02 package of the Linux version was used in the first
step of the virtual screening procedure,21,22 and computations were
carried out in the cluster of the PC servers. Each computational
node has an HP/Compaq DL360 industrial standard server with

dual pentium III 1.13-GHz CPUs and a 512-kb L2 cache. Residues
around the sulfur atom of Cys145 at a radius of 13 Å were isolated
for constructing the grids of the docking screening. Energy scoring
grids were obtained using an all-atom model and a distance-
dependent dielectric function with a 10-Å cutoff. The macromol-
ecule was a loaded Kollman charge, with Gasteiger–Huckel
charges for small molecules on the SYBYL6.8.23 An anchor
fragment orientation method was performed, and 25 conformations
were produced per cycle.

AutoDock Study

The top 200 candidates filtered by the Dock procedure in both
databases were then studied by the AutoDock3.05 program, re-
spectively. The computations were processed on an SGI Octane 2
graphics workstation. The grid has the space of 0.375 Å and a size
of about 60 Å � 49 Å � 63 Å. The macromolecule and the small
molecules were loaded on Kollman and Gasteiger-Huckel charges,
respectively, on the SYBYL6.8. The GA-LS method was adopted
using the default settings. Compounds with better AutoDock
scores and binding conformations will be selected as lead com-
pounds of SARS for next project.

Results and Discussion

Docking Data

Energy score (ES) is an important criterion to evaluate the binding
affinity for the target protein with a ligand of certain orientation
and conformation. With the shortcoming of scoring functions of
the Dock program,24–32 the energy score is biased toward the
selection of high molecular weight.33 Liu has provided a new
arithmetic to eliminate this bias (unpublished data, Liu, Z. M; Shi,
L; Lai, L. H. Considering Molecule Weight in Virtual Docking
Screening: Implication for Inhibitors Selection). He found that

Table 2. (Continued)

Compound HAN HDN AB SSSRS AZ RB AE MW LogP Dock AutoDock Structure

T6791 5 3 18 6 6.38 8 2.72 566.61 1.94 �39.28 �11.71

T8593 5 3 24 7 6.33 2 2.7 580.68 2.16 �31.64 �11.61

T3091 3 5 6 2 6.52 9 2.78 434.49 2.571 �37.51 �6.91

T5242 7 3 12 4 6.36 5 2.71 575.71 1.52 �31.78 �12.51
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most molecules with heavy atom number (HA) between 5 and 15
interact with the target protein in a proper binding mode. Those
compounds usually represent the correct interacting mode of the
whole data sets, whereas the energy scores of the molecules with
a larger HA spread out partly because of more choices to escape
from the “binding site” or pocket capacity limitation. HA numbers
and the average energy scores have the relationship described as in
eqs. (1) (MNPD) and (2) (TCMD).

The HA–AE exponential decay fit curve of MNPD:

AE � �39.14 � 33.82e��HA/ 22.58� �R2 � 0.98� (1)

The HA–AE exponential decay fit curve of TCMD:

AE � �38.21 � 35.78e��HA/ 20.02� �R2� � 0.99� (2)

Figures 1 and 2 give the distribution curve of heavy atoms and
energy scores.

Best Compounds In Silico

After repetitive evaluation of by AutoDock, 18 compounds of high
affinity in silico were selected (7 from MNPD and 11 from TCMD).
They will be useful for experimental scientists in prioritizing drug
candidates and studying the interaction mechanism. These structures
and their drug-like parameters are listed in Table 2.

Conformation Analysis

The coronavirus family exhibits one main protease, called 3CL,
because of the nature of the catalytic site that acts a crucial role in
the regulation of the virus life-cycle.2 Cys145 and His41 residues
are considered to be essential for the normal function of SARS
protein. The docking simulation of compound M4367, which was
isolated from Pseudomonas sp. or Alteromonas sp. in sponge
Dysidea fragilis (Black Sea), showed that the inhibitor is folded
into a ring-like structure in the active site that was similar with that
of Wu’s compound 2 (Wu-2).8 The Ki value of Wu-2 against the
SARS-CoV 3CL protease is 0.6 �m. One phenyl group of com-

Figure 3. Schematic representation of SARS–M4367 interactions. The ligand atoms serving as the corre-
spondence points in the subsequent structural alignment processes were marked with the atom type beside it.
[Color figure can be viewed in the online issue, which is available at www.interscience.wiley.com.]
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pound M4367 fits into the pocket defined by Leu27, Thr25, etc.
One carbonyl instead of Wu-2’s phenyl fits into the pocket defined
by the hydrophobic residues (Met165, Pro-168, and Leu-167). The
M4367 groups interact with Cys145 and His41 directly by hydro-
gen bond interaction and hydrophobic contact. There are also four
other hydrogen bonds between M4367 and Phe140, Ser144,
Cys44, and Thr25, respectively. The complex was analyzed by the
Ligplot 4.22 to identify some specific contacts (Fig. 3).34

The SARS target was so novel that there are still no effective
inhibitors available in the market. Marra1 reports that the deriva-
tives of AG7088 might be good starting points for the design of
anticoronavirus drugs. AG7088 has already been clinically tested
for treatment of the common cold. Its docking complex with
SARS-CoV protease also has multiple interactions, which is sim-
ilar to that of our recommended compounds (Fig. 4).

Conclusion

Eighteen novel-structure compounds with best binding affinities
and conformations were found via virtual screening and statistic

methods. The interaction and binding mechanism were elucidated
by the complex structure of SARS–M4367. The similarity of the
protein binding mode between our screened compounds and Wu-2,
AG7088, which were reported as possible molecules of SARS
inhibitors, showed certain values of our research for experimental
scientists in prioritizing drug candidates. The results show that
high-affinity drugs for the SARS protein may have the character-
istic of direct interaction with the functional residues, His41 and
Cys145, which act as a crucial role in the regulation of the SARS
life cycle.
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