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Quantitative and sensitive detection of SARS
coronavirus nucleocapsid protein using
quantum dots-conjugated RNA aptamer
on chip
Changhyun Roh∗ and Sung Kee Jo

Abstract

BACKGROUND: Globally, severe acute respiratory syndrome coronavirus (SARS-CoV) is a newly emerging virus that causes
SARS with high mortality rate in infected people. The nucleocapsid (N) protein of the severe acute respiratory syndrome
(SARS)-associated coronavirus (SARS-CoV) is an important antigen for the early diagnosis of SARS and the detection of diseases.
Here, a new quantum dots (QDs)-conjugated RNA aptamer with high sensitivity and rapidity is proposed for the detection of
SARS-CoV N protein using an on chip system.

RESULTS: A QDs-conjugated RNA aptamer can specifically hybridize on the immobilized SARS-CoV N protein on the surface of a
glass chip. Detection is based on the optical signal variation of a QDs-supported RNA aptamer interacting on an immobilized
protein chip. Using an optical QDs-based RNA aptamer chip, SARS N protein was detected at concentrations as low as 0.1 pg
mL−1.

CONCLUSIONS: It was demonstrated that the QDs-conjugated RNA aptamer could interact on a designed chip specifically
and sensitively. This device could form a QDs-conjugated biosensor prototype chip for SARS-CoV N protein diagnosis. The
proposed visual SARS-CoV N protein detection technique may avoid the limitations of other reported methods because of its
high sensitivity, good specificity, ease of use, and the ability to perform one-spot monitoring.
c© 2011 Society of Chemical Industry
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INTRODUCTION
Severe acute respiratory syndrome (SARS) is an infectious disease
that began in Guandong, China in November 2002, and has
caused serious infection in Asia, Europe and Canada.1 – 5 The
SARS coronavirus (CoV), which is a pathogenic virus of SARS,
is a single-strand RNA virus. It is known that this virus infects
animals other than humans.6 – 8 According to the World Health
Organization (WHO), mortality for patients afflicted with SARS is
about 15% on average, and can be 50% or higher in the case
of patients aged 65 and over.9 SARS-CoV is an enveloped and
positively single-stranded RNA virus with a typical genome size
29.7 kb, encoding a RNA directed RNA polymerase and structural
proteins including the spike (S), envelope (E), membrane (M) and
nucleocapsid (N) proteins.10 – 12 The N protein is a 422-amino-acid
alkaline protein with a short lysine-rich region suggested to be the
nuclear localization signal. It plays an important role in the process
of virus particle assembly by enveloping the entire genomic RNA.13

The nucleocapsid (N) protein of the SARS-associated coronavirus
(SARS-CoV) is an important antigen for the early diagnosis of SARS
and the detection of diseases.14 Since SARS broke out in 2003,
researchers have made great efforts in the development of fast
and accurate analytical methods for its early diagnosis.15 – 19

The Nucleocapsid (N) protein of SARS-CoV is a major patholog-
ical determinant in the host that may cause host cell apoptosis,

up-regulate pro-inflammatory cytokine production, and block in-
nate immune responses. Therefore, SARS-CoV N protein has long
been thought an ideal target for the detection of SARS. The mon-
itoring of SARS-CoV N protein has been of considerable interest
in the development of simple and reliable methods for the detec-
tion of SARS for applications in diagnostic medicine. At present,
the most widely used method of diagnosing SARS is the de-
tection of anti-SARS antibodies using a screening enzyme-linked
immunosorbent assay (ELISA), based on recombinant proteins
from the genome of SARS.18,19 Although it is highly specific, this
assay has limitations. For example, it cannot detect viruses dur-
ing the early stage of an infection, at a time when antibodies
against SARS antigens are not produced. In addition, the ELISA
method sometimes generates false-positive or false-negative re-
sults. In addition, using antibodies creates problem such as being

∗ Correspondence to: Changhyun Roh, Radiation Research Division for Biotech-
nology, Advanced Radiation Technology Institute (ARTI), Korea Atomic Energy
Research Institute (KAERI), 1266, Sinjeong-dong, Jeongeup, Jeonbuk 580-185,
Republic of Korea. E-mail: chroh@kaeri.re.kr

Radiation Research Division for Biotechnology, Advanced Radiation Technol-
ogy Institute (ARTI), Korea Atomic Energy Research Institute (KAERI), 1266,
Sinjeong-dong, Jeongeup, Jeonbuk 580-185, Republic of Korea

J Chem Technol Biotechnol 2011; 86: 1475–1479 www.soci.org c© 2011 Society of Chemical Industry



1
4

7
6

www.soci.org C Roh, SK Jo

temperature-sensitive, specific reactions conditions and requir-
ing secondary antibody conjugated with enzyme and fluorescent
dyes.

Aptamers have become increasingly important molecular tools
for diagnostics and therapeutics. In particular, Aptamers exhibit
advantages as recognition elements in biosensing when compared
with antibodies and enzymes, thus making it possible to develop
a wide range of aptamer-based biosensors. Chemically stable and
cost-effective aptamers offer great flexibility in the design of novel
biosensors with high detection sensitivity and selectivity.20 – 24

Quantum dots (QDs), which are colloidal nanoparticles of semi-
conductor materials, have attracted much attention in the fields
of nanotechnology and biotechnology, especially in biological
imaging applications because of their remarkable optical char-
acteristics compared with conventional organic fluorophores in
terms of being bright, tunable and having narrow fluorescence
emission, and broad absorption spectra.25 – 27

In this study, it was established that optical QDs-conjugated
aptamer could be used as a probe for the detection of SARS-
CoV N protein using a chip system. Using an optical QDs-based
RNA aptamer chip, we could detect the SARS-CoV N protein at
concentrations as low as 0.1 pg mL−1. A biosensor assay for SARS-
CoV N protein detection based on an optical QDs-based aptamer
has attracted significant attention. It is a promising method for the
specific detection of oligonucleotide because of its high sensitivity,
low cost, rapid response, compatibility for miniaturization and low
labor requirements.

MATERIALS AND METHODS
Chemicals
EDC (N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydro-
chloride), bovine serum albumin (BSA), ampicillin and kanamycin
were purchased from Sigma–Aldrich Chemical Co. (St Louis, MO,
USA). Quantum dots (QDs 605) were purchased from Invitrogen
Corporation (Carlsbad, CA, USA). Prolinker terminated glass slides
from Proteogen (Seoul, Republic of Korea) were used. All other
chemicals were of the highest grade.

Preparation of aptamer
The aptamer sequence reported by Oh et al. was used.28 The
sequence is 5′-gggagagcggaagcgugcugggccugucgguucgcuguc
uugcuacguuacguuacacgguuggcauaacccagaggucgauggaucccccc-
3’. The production of designed aptamer and primer with T7
promoter sequence was synthesized by BIONEER Co. Ltd (Seoul,
Republic of Korea) and amplified by PCR. The template RNA
was prepared by in vitro transcription using T7 RNA polymerase
(Promega, WI, USA). All RNA transcript product was separated
by 8 mol L−1 urea 6% PAGE gel after phenol extraction and
ethanol precipitation procedures. The RNA aptamer produced
was dissolved in a DEPC solution.

Subcloning, expression and purification of SARS-CoV N protein
The gene was amplified by a PCR with the primer
set, sense: 5′- agtggatccatgtctgataatggacccca-3’, antisense: 5′-
gccgtcgacttatgcctgagttgaatcagc-3’, containing restriction enzyme
sites of BamHI/SalI. PCR was run with the following conditions on
a thermal cycler: denaturation at 94 ◦C for 1 min, annealing at
60 ◦C for 30 s, and an extension step at 72 ◦C for 2 min 30 s.
The sequence was repeated 35 times followed by a 7 min fi-
nal extension step at 72 ◦C. The PCR product was digested with

BamHI/SalI, and then ligated into BamHI/SalI digested expression
vector pET 24a+ (Novagen, Madison, WI), and transformed into E.
coli DH5α (Stratagene, La Jolla, CA). The transformed colony with
inserted gene was transformed into E.coli BL21 (DE3) (Stratagene,
La Jolla, CA). Then, it was plated on LB agar containing 50 µg mL−1

kanamycin. GroES/EL expressing plasmid from E.coli and SARS-CoV
N-expressing plasmid, which possessed ampicillin and kanamycin
resistant markers, respectively, were co-transformed into E. coli
BL21 (DE3) according to the biotransformation procedures. The
transformant was grown in a 250 mL flask containing 50 mL Luria-
Bertani (LB) medium supplemented with 50 µg mL−1 of kanamycin
and ampicillin at 37 ◦C until the cell concentration reached an
OD600nm of 0.6, and isopropyl-thio-β-D-galactopyranoside (IPTG)
of a final concentration of 0.1 mmol L−1, followed by growing for
an additional overnight at 25 ◦C with shaking at 180 rpm. The cells
were harvested by centrifugation at 4000 rpm for 30 min at 4 ◦C
and resuspended in 100 mmol L−1 potassium phosphate buffer
(pH 7.5) containing 1 mmol L−1 phenylmethylsulfonyl fluoride
(PMSF). The cells were lysed by Sonicator (F60 Sonic Dismem-
brator, Fisher Scientific, USA). The cell debris was removed by
centrifugation at 13 000 rpm for 30 min. The supernatant was
collected and the recombinant SARS-CoV N protein was purified
with Ni-nitrilotriacetic acid (Ni-NTA) affinity chromatography col-
umn (Qiagen, Germany). The supernatant was equilibrated with
buffer A (10 mmol L−1 Tri-HCl, 500 mmol L−1 NaCl, 50 mmol L−1

imidazole, 1 mmol L−1 PMSF, pH 8.0). The bound protein was
eluted with buffer B (10 mmol L−1 Tris-HCl, 500 mmol L−1 NaCl,
250 mmol L−1 imidazole, 1 mmol L−1 PMSF, pH 8.0) at 4 ◦C. The
purity of the purified protein was estimated by SDS-PAGE in the
eluted fractions, using 12% polyacrylamide running gels.29 The
purity of the enzyme was estimated by SDS-PAGE. The protein
concentration was determined using the Bradford method.30 The
purified sample was supplemented with 50% glycerol and stored
at −20 ◦C until use.

Conjugation of quantum dots and aptamer
The amine group of RNA aptamer was first covalently conjugated
onto the surface of the carboxyl terminated QDs605 (10 pmol
L−1). That is, 10 pmol L−1 of QDs605 were conjugated with
400 pmol L−1 of aptamer with the coupling reagent EDC
(N-(3-dimethylaminopropyl)-N-ethyl-carbodiimide hydrochloride,
40 nmol L−1), which was used to activate amide bond formation
to produce QDs-conjugated aptamer (QDs based SARS-CoV N
aptamer) at a QDs : aptamer molar ratio of 1 : 40 for 1 h at room
temperature. Then, QDs-aptamer conjugate was collected using
centrifugal filtration at 15 000 rpm for 30 min, followed by several
washing steps with a Tris buffer (50 mmol L−1 Tris-HCl (pH 7.4),
5 mmol L−1 KCl, 100 mmol L−1 NaCl, 1 mmol L−1 MgCl2, and 0.1%
NaN3). After centrifugal filtration and washing, the pellet of QDs-
aptamer was dispersed by brief sonication (22 kHz, amplitude
12 µm, and sonication time 120 s) using a Sonic Dismembrator
Model F60 (Fisher Scientific, Fair Lawn, NJ, USA).

Confocal laser scanning microscopy
The recombinant SARS-CoV N protein was directly immobilized
onto the functional ProLinker-terminated surface. For the
binding of the specific aptamer, the conjugated QDs-conjugated
aptamer was facilitated by spotting on immobilized SARS-CoV N
protein chip. After incubation for 1 h at 25 ◦C, the chip was then
washed three times with phosphate buffer (pH 7.2) for 1 min. The
chip was analyzed using a confocal laser scanning microscope
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Figure 1. A representative scheme for detection of SARS-CoV N protein on chip: (A) scheme of SARS-CoV N protein assay on chip; (B) total procedures of
SARS-CoV N protein assay.

LSM510 META (Carl Zeiss, Jena, Germany). The signal intensity was
determined by software for the LSM510 (LSM Image Browser).
A histogram of the intensity was obtained for the region of the
spotted chip. The value of signal intensity was recorded calculating
and expressing it as the mean intensity.

RESULTS AND DISCUSSION
A schematic outline of aptamer chip assay
To ensure the feasibility of the targeting and imaging, we designed
QDs605 conjugates having RNA aptamer for specific SARS-CoV N
protein. We used a highly sensitive chip using a ProteoChip coated
with ProLinker, novel calixcrown derivatives with a bi-functional
coupling property that permits the efficient immobilization of
captured SARS-CoV N protein on solid matrixes and makes simple
analysis of protein–RNA interactions possible.31 Specific detection
of the SARS-CoV N protein was demonstrated by the QDs-
conjugated RNA aptamer on chip. The total procedure for the
detection on chip was as follows. First, the SARS-CoV N protein
was spotted on a glass chip with carboxyl as the functional group.
Second, the QDs-conjugated RNA oligonucleotide was bound
on an immobilized chip. Third, the bound chip was washed to
remove unspecific binding. Fourth, it was analyzed to recognize
the specific detection of SARS-CoV N on chip. The design of
targeting for effectively monitoring the SARS-CoV N protein on
chip is illustrated in Fig. 1.

Quantum dots (QDs)-conjugated aptamer
The QDs-supported RNA aptamer was conjugated in the reaction
for the amide formation from the coupling of 5′-end-amine-
modified RNA aptamer at the surface of QDs displaying carboxyl
groups via standard EDC coupling. The QDs-conjugated RNA
aptamer was confirmed on a 2.5% agarose gel at 100 V in TAE
buffer. Agarose gel electrophoresis showed a band with mobility,
showing a different band pattern between the free QDs and the
QDs-conjugated RNA aptamer, confirming the formation of QDs-
conjugated RNA oligonucleotide. The mobility shifts are compared
in Fig. 2. On agarose gel, the QDs-conjugated RNA aptamer showed
less mobility shift than free QDs, thus demonstrating the amide
formation between QDs and RNA aptamer for conjugation.

Figure 2. The conjugation pattern on 2.5% agarose gel electrophoresis
was examined at UV excitation wavelength 345 nm, showing a different
band pattern between free QDs (lane 1) and QDs-conjugated aptamer
(lane 2).

Sensitive detection of SARS-CoV N protein on chip
To improve the solubility of bacterially overexpressed recombinant
N protein, the co-expression of N protein with E. coli molecular
chaperone GroES/EL was performed. The SARS-CoV N protein was
purified by a single chromatography step on a Ni2+ affinity column.
The C-terminally his-tagged SARS-CoV N protein was visualized
with a molecular mass of approximately 48 kDa on a SDS-PAGE
(Fig. 3(A)). Figure 3(B) shows the sequence and secondary structure
of RNA aptamer that binds to SARS-CoV N protein. The RNA
secondary structure of the used aptamer was analyzed using the
Mfold program.32

We demonstrated the specific interaction between QDs-
conjugated RNA aptamer and immobilized SARS-CoV N protein on
a chip. Preferential binding of QDs-conjugated RNA aptamer for
the detection of SARS-CoV N protein was determined by analyzing
the fluorescence intensity measured by confocal microscopy. As
illustrated in Fig. 4(B), the QDs-supported RNA aptamer conjugates
showed high fluorescence signals on the chip. No fluorescence
signal was detected with BSA protein, due to its lack of affinity
(Fig. 4(A)). The signal of QDs-conjugated RNA oligonucleotide for
BSA protein binding affinity was very similar to the background
signal. Figure 4(C) and 4(D) shows that QDs-conjugated RNA
aptamer is selective against SARS-CoV N protein due to protein
concentrations. The binding affinity was examined by confocal
assay with varying concentrations of the SARS-CoV N protein.
It was observed that the signal intensity of the QDs-conjugated
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Figure 3. Purification of SARS-CoV N protein: (A) 12% SDS-PAGE gel
showing SARS-CoV N protein with his-tag. lane 1, protein marker; lane 2,
his-tag form of SARS-CoV N protein; (B) sequence and secondary structure
of RNA aptamer that binds to N protein.

RNA aptamer could be detected even at the lowest concentration
(0.1 pg mL−1). The signal intensity was found to increase gradually
by up to 0.1 pg mL−1 of SARS-CoV N protein concentration.
These results suggest the QDs-conjugated RNA aptamer could
specifically target the SARS-CoV N protein on an immobilized chip.
The detection limit was improved at least 10-fold compared with
the aptamer-based chemiluminescence immunosorbent assay.28

Furthermore, this system may be useful for rapid detection of
SARS-CoV N protein within 1 h. These results suggest that the
QDs-conjugated RNA oligonucleotide could be effective for the

quantification of SARS-CoV N protein. The immobilized BSA protein
chip showed no binding to RNA aptamer, thus demonstrating
selectivity for SARS-CoV N protein. The remarkable imaging by
semiconductor nanocrystals QDs allows for monitoring with the
intense light emission and accuracy.

In summary, we showed that QDs-conjugated RNA oligonu-
cleotide can specifically recognize the SARS-CoV N protein. We
demonstrated that this QDs-conjugated RNA aptamer could in-
teract on a designed chip specifically and sensitively. This device
could form a QDs-conjugated biosensor prototype chip for SARS-
CoV N protein diagnosis. The proposed visual SARS-CoV N protein
detection technique may avoid the limitations of other reported
methods because of its high sensitivity, good specificity, simplicity,
and speed.

CONCLUSIONS
The results of this study suggest that the QDs-conjugated RNA
aptamer can recognize the SARS-CoV N protein with a detection
limit of 0.1 pg mL−1 on a designed chip. Thus, it could be developed
as a sensitive diagnostic tool. Furthermore, this QDs-conjugated
aptamer chip might have application potential as a simple and
rapid diagnosis tool. This technique has potential applications in
many fields, especially in multiple diseases detection.
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