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SUMMARY Pathogenic microorganisms use various mechanisms to conserve energy
in host tissues and environmental reservoirs. One widespread but often overlooked
means of energy conservation is through the consumption or production of molecu-
lar hydrogen (H2). Here, we comprehensively review the distribution, biochemistry,
and physiology of H2 metabolism in pathogens. Over 200 pathogens and pathobionts
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carry genes for hydrogenases, the enzymes responsible for H2 oxidation and/or pro-
duction. Furthermore, at least 46 of these species have been experimentally shown
to consume or produce H2. Several major human pathogens use the large amounts
of H2 produced by colonic microbiota as an energy source for aerobic or anaerobic
respiration. This process has been shown to be critical for growth and virulence of
the gastrointestinal bacteria Salmonella enterica serovar Typhimurium, Campylobacter
jejuni, Campylobacter concisus, and Helicobacter pylori (including carcinogenic strains).
H2 oxidation is generally a facultative trait controlled by central regulators in re-
sponse to energy and oxidant availability. Other bacterial and protist pathogens pro-
duce H2 as a diffusible end product of fermentation processes. These include facul-
tative anaerobes such as Escherichia coli, S. Typhimurium, and Giardia intestinalis,
which persist by fermentation when limited for respiratory electron acceptors, as
well as obligate anaerobes, such as Clostridium perfringens, Clostridioides difficile, and
Trichomonas vaginalis, that produce large amounts of H2 during growth. Overall,
there is a rich literature on hydrogenases in growth, survival, and virulence in some
pathogens. However, we lack a detailed understanding of H2 metabolism in most
pathogens, especially obligately anaerobic bacteria, as well as a holistic understand-
ing of gastrointestinal H2 transactions overall. Based on these findings, we also eval-
uate H2 metabolism as a possible target for drug development or other therapies.

KEYWORDS Campylobacter, Clostridium, Helicobacter, Mycobacterium, Salmonella,
Trichomonas, bioenergetics, hydrogenase, pathogens, protists

INTRODUCTION

Pathogens can conserve energy through a wide range of mechanisms. Many con-
serve energy primarily through respiration, in which electron transfer generates a

proton-motive force (PMF), enabling ATP synthesis through oxidative phosphorylation.
A variety of electron donors (e.g., NADH, succinate, formate, and H2) and electron
acceptors (e.g., O2, fumarate, nitrate, and nitrite) have been shown to support their
respiration (reviewed in reference 1). Other pathogens primarily adopt a fermentative
lifestyle, in which organic carbon is incompletely oxidized and ATP is synthesized by
substrate-level phosphorylation. This results in the production of both organic and
inorganic end products (e.g., acetate, butyrate, H2, and CO2; reviewed in reference 2).
Studying pathogen bioenergetics is critical for resolving how pathogens grow and
survive in host tissues and other reservoirs. Hence, bioenergetics has emerged as a
promising target space, and new antibiotics targeting this particular field have even
been approved recently (1, 3). H2 metabolism by pathogens is a particularly important,
but relatively underexplored, area.

H2 is a desirable respiratory energy source for pathogens for two reasons. First,
reflecting its highly negative standard redox potential (�414 mV) (2), its oxidation is
highly exergonic and can be coupled to the reduction of all major physiological
electron acceptors (for a review, see reference 4). Second, this diffusible gas is abundant
and accessible in host tissues as a result of fermentative H2 production by colonic
microbiota (5–7). H2 is present in concentrations of �168 �M in the small intestine and
�43 �M in the stomach of mice (8, 9), with similar levels predicted in humans (5). This
amount far exceeds the apparent affinities of most pathogens for H2 (apparent Km, 1.8
to 2.5 �M) (8–10); hence, pathogens are thought to be saturated with H2 within host
tissues (11). Genetic studies have shown that the virulence of several major human
pathogens depends on H2 oxidation, notably Helicobacter pylori (9), Campylobacter
jejuni (12), and Salmonella enterica serovar Typhimurium (8, 13). These organisms use
specialized enzymes called hydrogenases to cleave H2 heterolytically into electrons and
protons; the derived protons contribute to PMF generation, whereas the electrons
enter aerobic or anaerobic respiratory chains. While these bacteria primarily assimilate
carbon heterotrophically (1), their ability to release energy through H2 oxidation gives
them a critical competitive advantage during colonization of the gastrointestinal tract
(9, 13). Moreover, we hypothesize that the flexibility conferred by H2 metabolism
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facilitates pathogen persistence within different host tissues and environmental reser-
voirs.

Many bacterial and protist pathogens also produce H2 in anoxic environments. The
production of this diffusible gas provides an efficient way to dispose of reductant. This
is especially beneficial in environments such as gastrointestinal tracts, where the
availability of fermentable carbon sources generally exceeds that of respiratory electron
acceptors (14). Obligate anaerobes such as Clostridium perfringens (15) and Trichomonas
vaginalis (16) can grow efficiently through hydrogenogenic fermentation. In contrast,
facultative anaerobes such as Escherichia coli (reviewed in reference 17) and Giardia
intestinalis (18) produce H2 as a strategy to survive electron acceptor limitation. Depending
on the organism, hydrogenases oxidize the formate, NADH, and reduced ferredoxin pro-
duced during carbohydrate oxidation and use the electrons derived to reduce protons to
H2 (15, 17, 19, 20). Microorganisms extensively regulate their H2-metabolizing pathways to
adapt to environmental change (21). Some bacteria with particularly flexible metabolism,
such as S. Typhimurium and E. coli, even switch between net production and consumption
of H2 depending on resource availability (22, 23). It is highly likely that, in the environment
of the human or animal body, the availability of H2 is a determinant that can influence the
composition and distribution of the body’s microbiota and in turn has a major impact on
pathogenesis.

Expanding on these principles, the following sections provide a comprehensive
assessment of H2 metabolism in pathogens. We use genome surveys to demonstrate
that the determinants of H2 metabolism are widespread among pathogens and are
universally distributed among gastrointestinal bacteria. Hydrogenase classes and gene
names are used per the hydrogenase database (HydDB) (24) system throughout the
review; this system predicts structural (e.g., subunit composition) and functional (e.g.,
H2-oxidizing versus H2-evolving) features of hydrogenases based on their primary
sequence. Thereafter, we explore the basis, role, and importance of H2 metabolism in
specific pathogens. Reflecting past and current literature, much of the review focuses
on well-studied bacteria within the Campylobacterales (H. pylori, C. jejuni, and Campy-
lobacter concisus), Enterobacteriales (E. coli, S. Typhimurium, and Shigella flexneri), and
Clostridiales (C. perfringens and Clostridioides difficile). It also summarizes our knowledge
regarding H2 metabolism in other established and emerging pathogens, including H2

production by protist parasites. We also consider how metabolic interactions between
H2-metabolizing pathogens and microbiota influence infection while acknowledging
considerable further research is needed in this area. Integrating these findings, we
evaluate the pros and cons of inhibiting pathogen H2 metabolism through future
development of small-molecule inhibitors or manipulation of the microbiota.

OVERVIEW OF H2 METABOLISM AND HYDROGENASES
Biochemistry: Two Distinct Hydrogenases in Pathogens

Hydrogenases are the enzymes that catalyze oxidation and production of H2 in
microorganisms. They catalyze the most fundamental chemical reaction:

H2º �H� � H��‡º 2H� � 2e�

Despite the apparent simplicity of this reaction, hydrogenases are highly complex in
structure and mechanism. This reflects the fact that, under cellular conditions, the
oxidation of H2 is thermodynamically favorable but kinetically challenging. Moreover,
sophisticated enzymatic mechanisms are required to use the electrons and protons
derived from this oxidation for chemiosmosis, i.e., the process of generating an ion
gradient (4). Bacteria use two distinct classes of hydrogenases to overcome these
challenges, the [NiFe]-hydrogenases and [FeFe]-hydrogenases, both of which are found
in pathogens (25, 26). In a remarkable example of convergent evolution, these hydro-
genases exhibit structural and mechanistic similarities despite their distinct phyloge-
netic origins. As detailed in a recent review (27), the bimetallic centers of both hydroge-
nases coordinate H2 and catalyze its heterolytic cleavage (by increasing its acidity in the
presence of the base) into a proton (H�), which is released, and a hydride anion (H�).
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The proton is initially accepted by a base associated with the catalytic center (28, 29)
and is subsequently transferred to the aqueous exterior through a series of amino acids
(28, 30, 31). In contrast, the two electrons on the hydride anion (28, 32) are relayed
through iron-sulfur clusters to downstream acceptors (e.g., respiratory cytochromes),
and the resultant proton is also released from the enzyme (25, 26). This reaction is
reversible, and many hydrogenases primarily catalyze the reduction of protons to
dihydrogen (4). Ultimately, the directionality of hydrogenases is determined by a
combination of their intrinsic redox chemistry (i.e., catalytic bias) and their coupling to
extrinsic electron donors or acceptors (33–35).

The [NiFe]-hydrogenases are widespread enzymes in bacteria (36). Broadly distrib-
uted among aerobic and anaerobic pathogens, they have been shown to have key roles
in the pathogenesis of H. pylori (9), C. jejuni (12), and S. Typhimurium (8). These enzymes
are relatively well understood as a result of extensive biochemical, structural, spectro-
scopic, and electrochemical studies (4, 27). As depicted in Fig. 1a, the large subunit of
these enzymes binds a nickel-iron catalytic center that is ligated by two CN, one CO,
and four cysteine ligands (25). The diatomic ligands (CN and CO) facilitate the cleavage
of H2 by modulating the redox chemistry of the two metals at this site (28). All
[NiFe]-hydrogenases also contain a small subunit containing up to three iron-sulfur
clusters (36); depending on the directionality of the enzymes, electrons are transferred
between the active site and the physiological electron donor or acceptor via these
clusters (25, 37). As elaborated below, there is an enormous diversity of these hydro-
genases in terms of features, such as catalytic parameters, subunit composition, and
redox partners (25, 37–43). This enables them to support a range of roles in bacterial
respiration and fermentation, among other processes (4, 36). While the active site of

FIG 1 Architecture and mechanism of [NiFe]- and [FeFe]-hydrogenases. (a) Dimer-of-dimer structure of
the group 1d [NiFe]-hydrogenase Hyd from S. Typhimurium (PDB entry 4C3O). The catalytic subunits are
shown in red, and the small electron-transferring subunits are in blue. One dimer of the large and small
subunit is shown as a partially transparent protein surface to aid clarity. The metal ions of the [NiFe]
cofactor and the iron-sulfur clusters are shown as sticks and spheres, respectively. A magnification of the
active-site NiFe(CN)2CO cofactor on the right shows the Ni ion in green, the Fe ion in orange, and the CN�

and CO diatomic ligands as red/blue and red/magenta spheres, respectively. The sulfurs of the cysteinyl
residues coordinating the cofactor are shown in yellow. (b) [FeFe]-hydrogenase from Clostridium pas-
teurianum CpI (PDB entry 4XDC) with a partially transparent protein surface to highlight the location of
the active-site H-cluster cofactor and the iron-sulfur clusters. The atoms of the cofactors are represented
using the same colors as those mentioned above. The iron ions of the H-cluster cofactor (expanded on
the right) are labeled Fed and Fep to indicate that they are distal and proximal, respectively, to the
attached iron-sulfur cluster. In contrast to the [NiFe] cofactor, the H cluster has 2 CN� and 3 CO diatomic
ligands, as well as an azadithiolate ligand (-S-CH2-NH-CH2-S-) group bridging the iron ions. Note that the
heterodimer of [NiFe]-hydrogenase and the monomer of [FeFe]-hydrogenase can interact with different
protein modules, depending on the bacterium. This determines whether the enzyme functions in
respiration (H2 oxidation), fermentation (H2 evolution), or electron bifurcation.
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[NiFe]-hydrogenases is generally inhibited by oxygen, various classes have been dis-
covered that function under ambient conditions, some of which support aerobic
respiration (36, 44, 45). Several mechanisms enable these enzymes to either exclude
or remove O2 from the active site, as described in several independent studies (37,
39–41, 44).

The [FeFe]-hydrogenases are typically associated with obligate anaerobes (36, 46,
47). They are distributed in numerous fermentative bacterial pathogens (e.g., C. per-
fringens) (15) and have also been acquired by many protist species (e.g., T. vaginalis)
(47). Based on structural studies (Fig. 1b), the main components of this hydrogenase
class are a conserved core domain that binds the catalytic cofactor (the H cluster) and
a variable C-terminal domain that binds two to four iron-sulfur clusters. The di-iron
catalytic center is ligated by two CN ligands, three CO ligands, an azadithiolate bridge,
and a [4Fe4S] cluster via a bridging cysteine (26, 29, 48). This site mediates heterolytic
cleavage of H2, with the hydride bound at the metal center and the proton accepted
by the azadithiolate nitrogen (29, 32). [FeFe]-hydrogenases are generally catalytically
biased toward H2 production and typically use reduced ferredoxin as their electron
donor; they are particularly desirable for obligate fermenters such as clostridia, given
their very high turnover rates (�10,000 s�1) (49). However, many bacteria also encode
trimeric [FeFe]-hydrogenases that reversibly bifurcate electrons from H2 to ferredoxin
(20, 50, 51). Several respiratory uptake [FeFe]-hydrogenases have also been character-
ized, notably fast-acting periplasmic hydrogenases in sulfate-reducing bacteria (48, 52).
In contrast to the [NiFe]-hydrogenase, [FeFe]-hydrogenases generally only function
under anoxic conditions and are irreversibly damaged by O2 exposure (53, 54).

For both types of hydrogenase, the H2-binding sites are complex structures com-
prising metal ions coordinated by unusual ligands. These are synthesized through
dedicated pathways. It is well established that maturation of [NiFe]-hydrogenases is a
multistage process that requires the concerted activity of at least seven factors (HypA,
HypB, HypC, HypD, HypE, HypF, and HupD) (55–57). More recently, the maturation
pathway of the [FeFe]-hydrogenase has largely been resolved and involves three key
enzymes (HydE, HydF, and HydG) (33, 58, 59). The details of the maturation of these
enzymes are beyond the scope of this review and have been extensively reviewed
elsewhere (27, 33, 56). Other proteins are also necessary for hydrogenase function,
including those involved in the transport of nickel and iron, the biosynthesis of
iron-sulfur clusters, and the translocation of hydrogenases to different cellular com-
partments (reviewed in references 60 and 61).

Physiology: Integration and Regulation of H2 Metabolism in Pathogens

Pathogens use hydrogenases in a wide range of physiological contexts. As summa-
rized in Table 1, the [NiFe]- and [FeFe]-hydrogenases have both extensively diversified
into multiple functionally and phylogenetically distinct groups. These groups differ in
key traits, such as catalytic behavior, genetic organization, redox partners, cellular
localization, and oxygen tolerance. At least 13 [NiFe]-hydrogenase subgroups and 5
[FeFe]-hydrogenase subgroups are known to be found in pathogens.

Pathogens that mediate hydrogenotrophic growth (as defined by the ability to
use molecular hydrogen as an energy source during growth) do so by coupling the
oxidation of H2 to the reduction of respiratory electron acceptors, such as O2 or
fumarate (1). This depends on the generation of a PMF across the cell membrane to
generate a proton gradient and, thus, energize ATP synthesis via the F1Fo-ATPase (i.e.,
oxidative phosphorylation); the PMF is the sum of two components generated by
proton translocation, the pH gradient (ΔpH; the difference in concentration of H�

across the membrane) and the membrane potential (Δ�; the difference in electrical
potential across the membrane) (62). Most hydrogenotrophic pathogens use membrane-
bound, periplasmically oriented hydrogenases to catalyze H2 oxidation (i.e., group 1b,
1c, and 1d [NiFe]-hydrogenases). The periplasmic protons derived from H2 oxidation
directly contribute to PMF generation. In parallel, the low-potential electrons released
are transferred through respiratory chains to terminal electron acceptors (4, 63). Several
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terminal electron acceptors are known to support hydrogenotrophic respiration in
pathogens, including O2 (e.g., H. pylori) (64), fumarate (e.g., S. Typhimurium) (13), nitrate
(e.g., Campylobacter rectus) (65), and sulfite (e.g., Bilophila wadsworthia) (66). Depending
on the respiratory chain components, electron flow energizes the translocation of
protons from the cytosol to the periplasm through either vectorial (i.e., direct pumping)
or scalar (i.e., redox loop) mechanisms (67). As elaborated below, certain pathogens also
depend on H2 oxidation to mediate carbon fixation (68–70) and to energize demanding
processes, such as substrate uptake (71–73), protein secretion (74), and swarming
motility (75).

An equally important role of hydrogenases is to dissipate reductant in the form of
H2 during fermentation. In this process, the energy derived from the incomplete
oxidation of carbohydrates to organic and gaseous end products is used to generate
ATP through substrate-level phosphorylation (2). This process sustains growth of
obligate fermentative pathogens such as clostridia and trichomonads. In these organ-
isms, cytosolic [FeFe]-hydrogenases (A1, A3, and B subtypes) mediate the reoxidation of
ferredoxin and nicotinamides reduced during carbon breakdown (35, 46; reviewed
in reference 75) (Table 1). Some protists, such as T. vaginalis, compartmentalize this
process within specialized organelles called hydrogenosomes (16, 76). A distinct system
operates in facultative fermenters such as E. coli (77) and C. concisus (78). It is thought
that these bacteria switch to use fermentation to survive insufficiency of their preferred
respiratory electron donors. They use specialized membrane-bound, potentially ion-
motive complexes (formate hydrogenlyases containing group 4a [NiFe]-hydrogenases)
to decompose the fermentation product formate into H2 and CO2 (17). This process is
thought to maintain redox homeostasis, regulate cytoplasmic pH, and potentially
generate PMF (23, 79).

In general, H2 metabolism is tightly regulated. Some obligate fermentative patho-
gens are thought to generate H2 throughout their life cycle and, hence, constitutively
synthesize their hydrogenases. However, for most other bacteria, H2 metabolism is a
facultative trait that is induced in response to cellular and environmental cues (4). A
good example in this regard is the production of multiple hydrogenases by S. Typhi-
murium (see “Salmonella Typhimurium: differential roles of hydrogenases during infec-
tion” below). This bacterium switches between three major modes of H2 metabolism,
which are each mediated by a different hydrogenase (80, 81): (i) growth by aerobic
hydrogenotrophic respiration (group 1d [NiFe]-hydrogenase) (82); (ii) growth by anaer-
obic hydrogenotrophic respiration (group 1c [NiFe]-hydrogenase) (83); and (iii) persis-
tence by hydrogenogenic fermentation (group 4a [NiFe]-hydrogenase) (84). S. Typhi-
murium hierarchically regulates the three hydrogenases by sensing levels of exogenous
electron acceptors. This allows maximization of ATP generation relative to resource
availability. It is proposed that this flexibility allows the bacterium to persist in envi-
ronments deficient in oxidants and rapidly invade host tissues when respiratory elec-
tron acceptors are available (23).

The genes controlling H2 metabolism are usually clustered together to enable their
coordinated expression. A straightforward example of this is the hyn and hyp operons
of C. jejuni. The hyn operon of this pathogen (hynABCD) encodes the three structural
subunits and a maturation endopeptidase of its group 1b [NiFe]-hydrogenase. A second
operon, hyp (hypFBCDEA), encodes the six proteins required for the synthesis of the
[NiFe] cofactor (12, 85). Both operons are induced during infection, with the maturation
genes being expressed at lower levels than the structural genes (86). A range of
activators and repressors can bind the promoters of hydrogenase operons in response
to internal and external signals. Indeed, various signals and regulators have been
shown to control hydrogenase operon expression across different bacteria, including
redox state (e.g., ArcA) (87), oxygen levels (e.g., FNR) (88), energy availability (e.g., CRP)
(89), metal availability (e.g., Fur and NikR) (90), and developmental stage (e.g., Spo0A)
(91). The cellular and molecular basis of this regulation is detailed elsewhere (4, 21, 23).
Some environmental organisms also regulate hydrogenase gene expression in re-
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sponse to hydrogen partial pressures (pH2), but this is less relevant for most pathogens,
given that H2 is usually abundant in host tissues (21).

Ecology: Subversion of Gastrointestinal Microbiota

It is becoming increasingly apparent that many pathogens, especially those of the
gastrointestinal tract (GIT), do not act in isolation. Their pathogenesis often involves
metabolic interactions, including H2 exchange, with nonpathogenic microbiota (92).
GIT microbiota generally protect against colonization from intestinal pathogens
through a range of mechanisms; for instance, competitive exclusion of energy sources
has been well documented (93, 94). However, many pathogens are adept at subverting
microbiota to obtain resources for their expansion. This is best exemplified by S.
Typhimurium, which uses sophisticated mechanisms to acquire respiratory electron
acceptors, including from the host and other microbial cells, during gut invasion (92,
95). Impairment of GIT microbiota and their associated metabolisms, for example, due
to antibiotic treatment, dietary factors, and inflammatory conditions, is often associated
with increased susceptibility to pathogen invasions. For example, pathogens often
cause antibiotic-induced diarrhea by exploiting microbiota-derived sugars released by
microbial lysis (96, 97). It is also thought that pathogens can orchestrate remodeling of
the microbiota toward a dysbiotic state, which favors their growth or persistence (98).
While these concepts have been studied mostly concerning carbon source acquisition,
they are also relevant for understanding the pathogenesis of H2-metabolizing bacteria.

For hydrogenotrophic pathogens, substrate availability is governed by the dynamics
and ecology of H2 metabolism in the GIT (Fig. 2). Despite recent interest in the
microbiota, relatively little is known about the processes and organisms that control H2

cycling (6, 7, 99). Genomic and metagenomic studies indicate that most gastrointestinal
microorganisms can metabolize H2, including members of all five dominant phyla
(Bacteroidetes, Firmicutes, Proteobacteria, Actinobacteria, and Verrucomicrobia) (7). It is
thought that most H2 is produced by carbohydrate-fermenting Clostridia and poten-
tially Bacteroidia via ferredoxin-dependent and electron-bifurcating [FeFe]-hydrogenases
(7, 100, 101). While some of the H2 produced is excreted in breath and flatus, much is
reoxidized by hydrogenotrophic microorganisms within the colon (5, 102). The human
colon is known to harbor hydrogenotrophic acetogenic, sulfate-reducing, and fumarate-
reducing bacteria, as well as methanogenic archaea; these bacteria produce the end
products acetate, hydrogen sulfide, succinate, and methane, respectively (7, 103–106)
(Fig. 2). The presence, abundance, and activities of these microorganisms vary greatly
between individuals (102, 103, 107). During hydrogenotrophic growth, for instance,
intestinal respiratory bacteria outcompete methanogens and acetogens because of
their higher substrate affinity and higher growth yield (104, 108). However, it is thought
that bacterial growth is oftentimes restricted by the low availability of respiratory
electron acceptors; hence, these bacteria rarely become dominant members of the
microbiota (109). These factors may explain why multiple hydrogenotrophic groups
typically coexist in the human GIT (7, 110).

Nevertheless, it is thought that hydrogen availability does not generally limit growth
of hydrogenotrophic pathogens. Microsensor studies of live anesthetized mice have
detected high levels of dissolved H2 in intestines (168 �M) (8). As a result of diffusion
from the colon, H2 is also abundant in other organs that pathogens colonize, such as
the stomach (43 �M), liver (43 �M), and spleen (55 �M) (9, 10). Although equivalent
measurements have not been performed in humans, various lines of evidence suggest
H2 is present at similarly high concentrations in the body (5, 111) (Fig. 3). The
concentrations reported in mice are between 20 and 80 times higher than reported for
the apparent Km of H2-oxidizing hydrogenase in the various pathogens (1.8 to 2.5 �M)
(8–10). To our knowledge, no study has investigated substrate competition between
pathogenic and commensal hydrogenotrophic microorganisms. Based on thermody-
namic theory, pathogens are likely to outcompete other microflora, given they can
monopolize the saturating levels of substrate and can generate large amounts of ATP
through hydrogenotrophic respiration (23, 61). However, as stated above, limitation for
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other resources (electron acceptors) is likely to restrict their growth. Hydrogenotrophs
that can generate respiratory electron acceptors, for example, Salmonella (13) and
Campylobacter (112) species, which can produce fumarate through the tricarboxylic
acid and urea cycles, therefore are likely to be especially competitive in the H2-rich,
oxidant-limited environment of the GIT. It is generally assumed that pathogens acquire
H2 from the bulk dissolved pool, although local variability in H2 concentrations in
tissues and the GIT is likely to occur. Consequently, it is plausible that some pathogens
engage in specific interactions with hydrogenogenic fermenters, which facilitates
interspecies hydrogen transfer, as has been described previously for certain methano-
gens (113) and sulfate reducers (114).

In contrast, fermentative pathogens face a major thermodynamic challenge in
H2-rich host tissues. Taking into account Le Chatelier’s principle, H2 production only
remains favorable if H2 is continuously removed (2). Thus, bacterial and eukaryotic
fermentative pathogens likely benefit from direct or indirect metabolic interactions
with hydrogenotrophic microbiota that maintain the local H2 concentration below
threshold levels, facilitating otherwise thermodynamically unfavorable reactions. Some

FIG 2 Outline of molecular hydrogen transactions in the human gastrointestinal tract. Diverse fermentative bacteria and eukaryotes produce H2 during
carbohydrate fermentation (hydrogenogenesis). These organisms couple the reoxidation of ferredoxin, nicotinamides, and formate to the reduction of protons.
Pathogens are known that can mediate all four H2 production pathways shown here, namely, the ferredoxin pathway, electron-bifurcation pathway, formate
pathway, and nicotinamide pathway. The H2 produced can be consumed by hydrogenotrophic bacteria and archaea, diffused to other tissues, or excreted to
the atmosphere. H2 oxidation can be used to support acetogenesis, methanogenesis, fumarate reduction, sulfate reduction, and, in oxic sites, aerobic
respiration. Pathogens are known that can mediate hydrogenotrophic aerobic respiration, fumarate respiration, sulfate reduction, and potentially acetogenesis.
Different classes of [NiFe]-hydrogenase and [FeFe]-hydrogenase mediate each of the outlined pathways.
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pathogens have evolved mechanisms to recycle endogenously produced H2, for ex-
ample, Salmonella (22). This notwithstanding, there is evidence that several pathogens
can rapidly produce H2 even at high concentrations of the gas. For example, hydrogen
can reach millimolar concentrations during growth of C. perfringens both in vitro and in
vivo (115, 116). It is conceivable that some pathogens remodel their fermentation
pathways to maintain H2 production at high partial pressures of H2, albeit with the
compromise of reduced ATP synthesis. This is exemplified by the saccharolytic rumen
bacterium Ruminococcus albus, which switches from using electron-bifurcating hydro-
genases at low pH2 (producing 4 ATP) to using a ferredoxin-dependent hydrogenase at
high pH2 (producing 3.3 ATP) by sensing and responding to H2 partial pressures (51,
100). Similar metabolic remodeling might explain why most hydrogenogenic patho-
gens, including C. perfringens, C. difficile, and T. vaginalis, encode multiple hydrogenases
(36, 117).

Distribution: H2 Metabolism as a Widespread Trait in Pathogens

We performed comprehensive genomic surveys and literature searches to gain a
broader understanding of the distribution of H2 metabolism in pathogens. In total,
genomes of 204 pathogens surveyed harbored the catalytic subunits of one or more
hydrogenases. There is published experimental evidence from cellular or biochemical
studies that at least 46 of these species can consume or produce H2. These findings are
reported in Table 2. Phylogenetic trees of the [NiFe]-hydrogenases and [FeFe]-
hydrogenases in key pathogens are also provided in Fig. 4.

The hydrogenase-positive pathogens are highly diverse in terms of their taxonomic
affiliation, the host tissues they target, and their broader metabolic traits. Hydrogenases

FIG 3 Human niches for H2-metabolizing bacteria and protists. Shown are the relative concentrations of H2 in the
gastrointestinal tract and other organs. Also shown are selected pathogens known to consume and/or produce H2 in each
organ.
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TABLE 2 Distribution of hydrogen metabolism in pathogens and pathobiontsa

Organism [NiFe]-hydrogenase(s) [FeFe]-hydrogenase(s) Predicted activity Key reference(s)
Bacteria

Actinobacteria
Coriobacteriaceae

Cryptobacterium curtum 1i, 4a, 4e U � P
Eggerthella lenta 1i, 3b, 4e U � P 286
Olsenella profusa A2, B P?
Slackia exigua 1i, 4a, 4e A1, A2 U � P

Corynebacteriaceae
Corynebacterium amycolatum 1f U
Corynebacterium diphtheriae 1f U
Corynebacterium durum 1f U
Corynebacterium freiburgense 1f U

Mycobacteriaceae
Mycobacterium avium 1h U
Mycobacterium chelonae 1h U
Mycobacterium colombiense 1h U
Mycobacterium fortuitum 1h U
Mycobacterium gordonae 1h, 2a, 3b U � P 68, 285
Mycobacterium haemophilum 3b P
Mycobacterium kansasii 1h, 3b U � P
Mycobacterium iranicum 2a, 3b U � P
Mycobacterium liflandii 1h U
Mycobacterium marinum 1h, 3b U � P
Mycobacterium parascrofulaceum 3b P
Mycobacterium phlei 2a U
Mycobacterium smegmatis 1h, 2a, 3b U � P 19, 45
Mycobacterium tusciae 1h, 2a U
Mycobacterium ulcerans 3b P
Mycobacterium xenopi 1h, 3b U � P
Mycobacterium yongonense 1h U

Nocardiaceae
Rhodococcus equi 1h, 3b U � P 283

Bacteroidetes
Bacteroidaceae

Bacteroides fragilis B U? 101, 273
Odoribacteraceae

Butyricimonas virosa A3, B, C P?
Porphyromonadaceae

Porphyromonas asaccharolytica B P?
Porphyromonas gingivalis B P?
Porphyromonas levii B P?
Porphyromonas macacae B P?

Betaproteobacteria
Neisseriaceae

Laribacter hongkongensis A2 P?
Deltaproteobacteria

Desulfovibrionaceae
Bilophila wadsworthia 1a � 2, 1b, 1d, 4c A1 U � P 66
Desulfovibrio desulfuricans 1a, 1b, 4c, 4e � 2 A1 U � P 48, 453
Lawsonia intracellularis 1d U 274

Epsilonproteobacteria
Helicobacteraceae

Helicobacter bizzozeronii 1b U
Helicobacter canadensis 1b U
Helicobacter canis 1b U
Helicobacter cinaedi 1b U
Helicobacter felis 1b U
Helicobacter fennelliae 1b U
Helicobacter heilmannii 1b U
Helicobacter hepaticus 1b U 10, 71
Helicobacter pullorum 1b U
Helicobacter pylori 1b U 9, 64, 69, 74
Helicobacter suis 1b U
Helicobacter wighamensis 1b U

Campylobacteraceae
Arcobacter butzleri 1b � 2, 2d U
Arcobacter cryaerophilus 1b U
Arcobacter skirrowii 1b U

(Continued on next page)
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TABLE 2 (Continued)

Organism [NiFe]-hydrogenase(s) [FeFe]-hydrogenase(s) Predicted activity Key reference(s)
Campylobacter coli 1b U
Campylobacter concisus 1b, 4a U � P 78, 188
Campylobacter curvus 1b, 4a U � P
Campylobacter fetus 1b, 4a A1 U � P
Campylobacter gracilis 1b U
Campylobacter helveticus 1b U
Campylobacter hyointestinalis 1b, 4a A1 U � P
Campylobacter jejuni 1b U 12, 169, 172
Campylobacter lanienae 1b U
Campylobacter lari 1b U
Campylobacter mucosalis 1b U
Campylobacter rectus A1 U 65, 201
Campylobacter showae 1b, 4a U � P
Campylobacter sputorum 1b, 4a U � P 200
Campylobacter upsaliensis 1b, 4a U � P
Campylobacter ureolyticus 1b A1 U

Firmicutes
Clostridiaceae

Clostridium botulinum 1a A3, B � 2 U � P
Clostridium cadaveris 1a A1 � 2, A3, B � 2, C U � P
Clostridium chauvoei A1, B P
Clostridium intestinale A1 � 2, A3, B � 2 P
Clostridium perfringens A1 � 2, B � 2 P 15, 344, 345
Clostridium septicum A1 � 2, B � 2 P 101, 340
Clostridium tetani B P?

Enterococcaceae
Enterococcus avium A3 P?
Enterococcus gilvus A3 P?
Enterococcus raffinosus A3 P?

Erysipelotrichaceae
Bulleidia extructa A1 P
Erysipelatoclostridium innocuum A1 P
Erysipelatoclostridium spiroforme A3, B P?

Eubacteriaceae
Eubacterium yurii A3, B P?
Pseudoramibacter alactolyticus A2, B P?

Lachnospiraceae
Anaerostipes caccae A1, A2, A3, B P
Lachnoclostridium bolteae A1, A3 � 2, B � 2, C � 2 P
Lachnoclostridium citroniae A1, A3 � 2, B � 2, C � 2 P
Lachnoclostridium clostrioforme A1, A3, B � 2, C � 2 P
Lachnoclostridium hathewayi A1, A3, B, C � 2 P
Lachnoclostridium gnavus A3, B P?

Peptoniphilaceae
Peptoniphilus duerdenii A2, B P?

Peptostreptococcaceae
Clostridioides difficile A3, A4, B � 2 U � P 70, 101, 117
Filifactor alocis B P?
Peptostreptococcus anaerobius A2, B � 2 P?
Terrisporobacter glycolicus A1, A3, A4, C P

Ruminococcaceae
Anaerotruncus colihominis A3, B � 2, C P

Veillonellaceae
Centipeda periodontii 1d U
Megasphaera micronuciformis A1, B P
Selenomonas artemidis 1d U
Selenomonas infelix 1d U
Selenomonas sputigena 1d A3, B U � P
Veillonella dispar 1d A1 � 2 U � P
Veillonella montpellierensis 1d A1 U � P
Veillonella parvula 1d A1 U � P 454

Fusobacteria
Fusobacteriaceae

Fusobacterium gonidiaformans A1, A3 P
Fusobacterium necrophorum A1, A3 P
Fusobacterium ulcerans A1, A3 P
Fusobacterium varium A1, A3 P

Gammaproteobacteria

(Continued on next page)

Benoit et al. Microbiology and Molecular Biology Reviews

March 2020 Volume 84 Issue 1 e00092-19 mmbr.asm.org 12

https://mmbr.asm.org


TABLE 2 (Continued)

Organism [NiFe]-hydrogenase(s) [FeFe]-hydrogenase(s) Predicted activity Key reference(s)
Aeromonadaceae

Aeromonas caviae 1c, 4a U � P
Aeromonas hydrophila 1c, 4a U � P
Aeromonas veronii 1c, 4a U � P

Enterobacteriaceae
Budvicia aquatica 1c, 4a U � P
Cedecea davisae 4a P
Citrobacter freundii 1c, 1d, 4a U � P 303
Citrobacter koseri 1c, 4a U � P
Citrobacter rodentium 1c, 4a U � P
Cronobacter dublinensis 4a P
Cronobacter malonaticus 4a P
Cronobacter pulveris 4a P
Cronobacter sakazakii 4a P
Cronobacter turicensis 4a P
Edwardsiella tarda 1c, 1d, 4a U � P 258
Enterobacter aerogenes 4a P 296, 297
Enterobacter agglomerans 4a P 258
Enterobacter cloacae 1c, 4a U � P
Enterobacter gergovia 4a P
Escherichia albertii 1c, 1d, 4a U � P
Escherichia coli 1c, 1d, 4a � 2 U � P 17, 77, 206, 212, 213
Escherichia fergusonii 1c, 1d, 4a U � P
Escherichia hermannii 1c, 4a U � P
Hafnia alvei 1c, 4a � 2 U � P
Klebsiella oxytoca 4a P 302
Klebsiella pneumoniae 1c, 4a � 2 U � P 254, 300
Leminorella grimontii 1c, 4a U � P
Morganella morganii 1c, 4a U � P
Pleisomonas shigelloides 1c, 1d U
Proteus hauseri 1c U
Proteus mirabilis 1c, 4a U � P 75, 256, 262
Proteus penneri 1c, 4a U � P
Proteus vulgaris 1c, 4a U � P 257, 263, 264
Providencia alcalifaciens 1c, 4a U � P
Providencia heimbachae 1c, 4a U � P
Providencia rettgeri 1c U
Providencia rustigianii 1c, 4a U � P
Providencia stuartii 1c U
Rahnella aquatilis 4a P
Salmonella bongori 1c, 1d, 4a U � P
Salmonella enterica 1c, 1d � 2, 4a U � P 8, 13, 81, 238, 243
Serratia fonticola 1c, 4a U � P
Serratia liquefaciens 4a P
Serratia marcescens 4a P 258
Serratia plymuthica 4a P
Shigella boydii 1c, 1d, 4a � 2 U � P
Shigella dysenteriae 1c, 1d, 4a U � P
Shigella flexneri 1c, 1d, 4a � 2 U � P 251
Shigella sonnei 1c, 1d, 4a U � P
Yersinia aldovae 1c, 4a U � P
Yersinia bercovieri 1c, 4a U � P
Yersinia christensenii 1c, 4a U � P
Yersinia enterocolitica 1c, 4a U � P
Yersinia frederiksenii 1c, 4a U � P
Yersinia intermedia 1c, 4a U � P
Yersinia mollarotii 1c, 4a U � P
Yersinia rohdei 1c, 4a U � P
Yersinia ruckeri 4a P
Yokenella regensburgei 1c, 4a U � P

Francisellaceae
Francisella philomiragia 3b P?

Legionellaceae
Legionella pneumophila 3b P?

Pasteurellaceae
Actinobacillus pleuropneumoniae 1c U 269, 270
Aggregatibacter actinomycetemcomitans 1c, 4a U � P
Aggregatibacter aphrophilus 1c, 4a U � P

(Continued on next page)
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are a universal trait of bacterial and protist pathogens known to colonize the GIT, but
they are also present in pathogens that target other niches (Fig. 3). The next two
sections of the review provide deeper insights into H2 metabolism of the referenced
pathogens. As well as those with at least partially characterized H2 metabolism,
numerous bacterial pathogens harbor hydrogenase genes but that have not been
studied concerning H2 metabolism, at least based on our current knowledge. These

TABLE 2 (Continued)

Organism [NiFe]-hydrogenase(s) [FeFe]-hydrogenase(s) Predicted activity Key reference(s)
Haemophilus haemolyticus 1c, 4a U � P
Haemophilus parainfluenzae 1c, 4a U � P
Haemophilus pittmaniae 1c, 4a U � P
Pasteurella bettyae 1c, 4a U � P
Pasteurella dagmatis 4a P

Pseudomonadaceae
Pseudomonas aeruginosa 1d U

Vibrionaceae
Grimontia hollisae 2c, 3d U?
Photobacterium damselae 1b U
Vibrio furnissii 4a P

Spirochaetes
Brachyspiraceae

Brachyspira alvinipulli A3, B P
Brachyspira hampsonii A3, B P
Brachyspira hyodysenteriae A3, B P
Brachyspira intermedia A3, B P
Brachyspira murdochii A3, B P
Brachyspira pilosicoli B P

Spirochaetaceae
Treponema brennaborense A3, C � 2 P
Treponema denticola A2, B P
Treponema pedis A3 P

Eukarya
Blastocystida

Blastocystis sp. strain ST1 A1 � 2 ? 420
Blastocystis sp. strain ST4 A1 ? 420
Blastocystis sp. strain ST7 A1 ? 420, 421

Centramoebida
Acanthamoeba castellanii A1 P 416

Diplomonadida
Giardia intestinalis A1 P 18, 407, 409
Spironucleus barkhanus A1 � 6 P
Spironucleus salmonicida A1 � 7 P 382, 384
Spironucleus vortens A1 � 20 P 381, 383

Entamoebidae
Entamoeba dispar A1 � 2, B P
Entamoeba histolytica A1 � 2, B P 407
Entamoeba invadens A1 � 3, B P
Entamoeba nuttallii A1 � 2, B P

Schizopyrenida
Naegleria fowleri A1 P 418

Trichomonadida
Dientamoeba fragilis A1 � 3 P 373, 374
Histomonas meleagridis A1 � 6 P 376, 378
Pentatrichomonas hominis A1 � 14 P 375
Tetratrichomonas gallinarum A1 � 35 P
Trichomonas gallinae A1 � 5 P
Trichomonas stableri A1 � 3 P
Trichomonas tenax A1 � ? P 372
Trichomonas vaginalis A1 � 13 P 363, 371, 393
Tritrichomonas foetus A1 � 9, B P 76, 370, 455

aThe list shows the phylogenetic lineages of the [NiFe]-hydrogenases and [FeFe]-hydrogenases encoded by the genomes based on the classification scheme shown in
Table 1. These data are primarily derived from the hydrogenase database (HydDB) (24) but are also expanded with information from newly sequenced genomes.
Based on this information and the wider literature, we can predict whether the organisms can mediate H2 uptake (U), H2 production (P), or both (U � P).
Multiplication signs (�) are used when more than one copy of a hydrogenase subgroup is encoded in a genome. Question marks are used where activity cannot be
predicted. References are only provided where hydrogenase activity has been experimentally demonstrated through physiological or biochemical studies. Note that
listed microorganisms include both common human pathogens and occasional opportunistic pathogens. Strain-level differences are not accounted for, and
organisms are classified based on NCBI taxonomy.
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FIG 4 Phylogenetic tree of hydrogenases from selected pathogens. The trees are based on the amino acid
sequences of the catalytic subunits of [NiFe]-hydrogenases (a) and [FeFe]-hydrogenases (b). The trees were

(Continued on next page)
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include the major pathogens Corynebacterium diphtheriae, Pseudomonas aeruginosa,
Haemophilus influenzae, Legionella pneumophila, and Brachyspira pilosicoli. There is also
a distinct paucity of literature relating to anaerobic bacterial pathogens, especially from
the phyla Spirochaetes, Fusobacteria, Bacteroidetes, and Firmicutes, where H2 metabo-
lism is often assumed to occur but has been rarely measured or studied.

Based on our surveys, many major pathogens nevertheless lack hydrogenases.
These include most pathogens that adopt an intracellular lifestyle, notably Myco-
bacterium tuberculosis, Mycobacterium leprae, Chlamydia trachomatis, and Rickettsia
rickettsii, which have reduced genomes and, in turn, limited metabolic flexibility.
Hydrogenases are also absent from major pathogens, such as Staphylococcus
aureus, Streptococcus pneumoniae, Listeria monocytogenes, Bacillus anthracis, Borde-
tella pertussis, Neisseria meningitidis, and Mycoplasma pneumoniae. The reason why
these species lack hydrogenases is not clear. However, it is worth noting that
several of them invade niches, such as the human respiratory mucosa, epidermis, or
the brain, where H2 levels might be more scarce than in other parts of the human
body (Fig. 3). Among eukaryotes, hydrogenase genes are absent from the genomes
of pathogenic fungi, trypanosomads, apicomplexans, and helminths. It should be
noted that we did not incorporate the findings of a large-scale study reporting
hydrogenase activity in anaerobic pathogens, given it is potentially unreliable (118);
the assay used to detect hydrogenase activity is nonspecific, and potential false-
positive activity has been detected in several organisms that do not encode
hydrogenases (e.g., S. aureus). In the next sections, we focus on these findings and
consider the broader distribution of H2 metabolism, suggesting opportunities for
further research to address these gaps in our knowledge.

H2 CONSUMPTION IN PATHOGENS
Campylobacterales

Helicobacteraceae and Campylobacteraceae are the two families within the order
Campylobacterales. An apparent ancestral trait of these families is the capacity to
oxidize H2 via membrane-bound respiratory hydrogenases (group 1b [NiFe]-hydro-
genases). Note that the Campylobacterales hydrogenases belonging to group 1b are
traditionally referred to as HydABC (9); however, according to HydDB, this group should
be annotated HynABC to avoid confusion with an unrelated group of enzymes (group
A3 [FeFe]-hydrogenases) (24). These Hyn enzymes, in addition to being encoded by
various commensal and environmental strains, have been retained in various patho-
gens within these families (36). These include the major human pathogens H. pylori and
C. jejuni. Nevertheless, the role of these enzymes significantly differs between species
and even among different strains. Some species have also acquired additional hydro-
genases, including those that support fermentative H2 production (65, 78) (see “Other
H2-producing bacteria” below).

Helicobacter pylori: H2-dependent PMF generation in the gastric mucosa. Helico-
bacter pylori was the first pathogen to be shown to use H2 during infection (9). This
bacterium primarily colonizes the human gastric mucosa and is a major causative agent
of gastric ulcers, chronic gastritis, and gastric cancers (119–121). As a microaerophilic
bacterium, H. pylori is usually cultured in the presence of CO2 (5 to 10%) and limited
amounts of O2 (2 to 10%). While H2 is rarely added to gas mixtures, its addition causes
an approximate doubling in growth yields in both complex and defined liquid media
(69). Hydrogenase activity was first detected in H. pylori in 1996, a year before the
genome sequence was released (64). Maier and colleagues detected H2-uptake activity

FIG 4 Legend (Continued)
constructed using the neighbor-joining method using 500 bootstrap replicates. For each sequence, the
organism and protein accession number are shown. The colored rings show the subgroup that each
hydrogenase affiliates with. Note that, for group A [FeFe]-hydrogenases, subgroup designation (A1, A2, and
A3) is based on genetic organization rather than phylogeny; hence, there are multiple radiations of some
subgroups.
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in whole cells of microaerobically grown H. pylori using oxygen as the terminal electron
acceptor (Table 3). This activity was subsequently shown to be specifically associated
with membrane fractions (64).

The genome sequence confirms the presence of a single group 1b [NiFe]-
hydrogenase in H. pylori (36, 122). The three structural subunits of the hydrogenase
(HynABC) are transcribed as part of the hyn operon (hynABCDE) (123) (Fig. 5). While the
hydrogenase has not yet been purified, we can predict aspects of its interaction with
the aerobic respiratory chain based on its behavior in whole cells and homology (�70%
identity) with the well-characterized hydrogenase from the phylogenetically related
species Wolinella succinogenes (124–126). As summarized in Fig. 6a, it is probable that
the catalytic subunits of the hydrogenase are oriented toward the periplasm; thus, the
oxidation of H2 to protons generates PMF. Electrons derived from H2 oxidation are
transferred from the [NiFe] cofactor at the catalytic center of the large subunit (HynB)
through the three [FeS] clusters of the small subunit (HynA) and to the heme of the
membrane-bound cytochrome b subunit (HynC). It is predicted that the electrons are
subsequently relayed from the cytochrome b subunit to the menaquinone pool. This
model is consistent with the potent inhibition of hydrogenase activity by the quinone
analog 2-n-heptyl-4-hydroxyquinoline-N-oxide (HQNO) (74). The electrons ultimately
are used by the proton-pumping cytochrome cbb3 oxidase to reduce O2 (127–129). On
this basis, aerobic hydrogenotrophic respiration by H. pylori should result in the net
translocation of eight protons per H2 molecule oxidized, although this remains to be
proven. An outstanding question is how the H. pylori hydrogenase tolerates poisoning
by O2. Based on studies on related bacteria, the group 1b [NiFe]-hydrogenases are
typically highly sensitive to oxygen (130, 131). However, H. pylori appears to have
evolved cellular or molecular mechanisms to protect the enzyme from oxygen expo-
sure and, hence, can use it under microoxic conditions.

Multiple proteins are required for the synthesis of the redox centers of the H. pylori
hydrogenase. In common with other H2-metabolizing bacteria, the genome has a
six-cistron operon (hypABCDEF) whose gene products mediate synthesis of the [NiFe]
cofactor. Genetic studies have shown that each protein is required for the manifestation
of H. pylori hydrogenase activity (132, 133); unexpectedly, two of these gene products
(HypA and HypB) were found to be involved in nickel mobilization for both hydroge-
nase and urease; hence, disruption of either gene causes pleiotropic phenotypes (132,
134–139). Two other proteins required for assembly, HynD and HynE, are encoded by
the same operon as the structural subunits (133); the former is an endopeptidase
specific for the hydrogenase catalytic subunit (i.e., HupD homolog), and the latter is a
unique hypothetical protein potentially involved in nickel mobilization or periplasmic
targeting (133, 140) (Fig. 5). Other components required for hydrogenase assembly
include a series of nickel and iron transporters (133, 141–143) and the Nif system (NifS,
NifU, and Nfu), which mediates [FeS] cluster assembly (144, 145). In addition, H. pylori
possesses three histidine-rich proteins involved in nickel sequestration (146–148). Hpn
and Hpn-2, which are both only found in gastric Helicobacter species, are multimeric

TABLE 3 Rates and affinities of H2 uptake among various pathogenic bacteriaa

Organism (strain)

Uptake activity
(nmol H2 min�1

[109 cells]�1)
Apparent
Km (�M)

Key
reference

Campylobacter concisus (13826) 113 � 6 NA 78
Campylobacter concisus (51562) 199 � 9 NA 78
Helicobacter pylori (26695) 33 � 4 1.8 9
Helicobacter pylori (43505) 37 � 2 1.8 9
Helicobacter hepaticus (51449) 3.2 � 0.2 2.5 10
Salmonella Typhimurium (14028s) 12 � 2 2.1 8
Shigella flexneri 68 � 12 NA 251
aH2 uptake activities are expressed as means � standard deviations. All activities reported in this table were
determined amperometrically with whole cells using O2 provided as the terminal electron acceptor. NA,
affinity not measured.
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high-affinity nickel-binding proteins. The third nickel-binding protein, HspA, is related
to the heat shock protein GroES but has a unique histidine-rich nickel-binding terminus.
Knockout studies show all proteins are either required or important for hydrogenase
and urease maturation (147, 149, 150). Based on the presence of a Tat (twin-arginine
translocase)-dependent signal peptide on HynA, the assembled hydrogenase is
thought to be translocated to the membrane (151). While the Tat system appears to be

FIG 5 Structure of the operons encoding hydrogenase structural subunits and associated proteins from selected pathogens. Each gene
is shown to scale and is colored based on its predicted function per the legend in the bottom-right corner.
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FIG 6 Integration of hydrogenase into the respiratory chains of selected pathogens. (a) Model of H2 oxidation by the Hyn [NiFe]-hydrogenase in three
pathogens within the Campylobacterales, Campylobacter jejuni, Helicobacter pylori, and Campylobacter concisus. The [NiFe] center of the hydrogenase large
subunit (HynB) oxidizes H2 produced exogenously or, in C. concisus, through the formate hydrogenlyase reaction (C. concisus only). Electrons are relayed through
the small subunit (HynA; via iron-sulfur clusters) and the membrane subunit (HynB; via a b-type cytochrome) to the menaquinone (MQ) pool. Electrons are
transferred to the terminal electron acceptor O2 (via cytochrome cbb3 oxidase) or fumarate (C. jejuni only; via fumarate reductase). These processes theoretically
lead to the net translocation of eight and four protons per H2 molecule oxidized, respectively. Note that some pathogens, for example, Campylobacter rectus,
instead oxidize H2 using the [FeFe]-hydrogenase HydASH. (b) Model of H2 oxidation by the Hya and Hyb [NiFe]-hydrogenases in three pathogens within the
order Enterobacteriales, Escherichia coli, Salmonella Typhimurium, and Shigella flexneri. These bacteria oxidize H2 produced either exogenously or endogenously

(Continued on next page)
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essential in H. pylori, conditional tatC mutants have greatly reduced hydrogenase
activity, supporting this contention (152).

Transcription of the hyn operon is controlled by various regulatory proteins in
response to distinct stimuli. In axenic cultures, the structural genes encoding this
hydrogenase are among the most strongly upregulated during the transition from the
exponential to the stationary phase (153, 154). This suggests that H2 oxidation facili-
tates persistence of this bacterium when other energy sources are limited. Synthesis of
the hydrogenase is also induced following exposure to acidic pH levels equivalent to
those found in the gastric mucosa (155). Consistent with the metal composition of the
hydrogenase, transcription of the hyn operon is differentially regulated in response to
both iron and nickel. This is mediated by the ferric uptake regulator (Fur) (156–158) and
the nickel uptake regulator (NikR) (90, 159, 160). Indeed, the hyn operon is transcrip-
tionally repressed by the apo (iron-free) form of Fur, meaning the presence or addition
of Fe2� leads to increased transcription (156). In addition, the hyn operon is transcrip-
tionally repressed by the nickel-specific regulator NikR (90, 160). Both the Fur and NikR
transcription factors are central hubs of the H. pylori regulatory network and, thus, have
pleiotropic roles and undergo extensive cross talk. There is also evidence, based on
promoter-reporter fusions, that hyn transcription is stimulated by H2 (9); however, given
that H. pylori lacks a regulatory hydrogenase, it is unclear whether this induction is due
to direct sensing of H2 or indirect redox effects of this gas on cellular physiology.

Genetic studies have shown that gastric colonization of H. pylori depends on the
hydrogenase. A mutant of H. pylori lacking the gene encoding the hydrogenase
catalytic subunit (ΔhynB strain) was not nearly as efficient as the parental strain at
colonizing the gastric mucosa of mice; only 24% of the mice inoculated with the mutant
were colonized (9 of 38 mice) compared to 100% colonization for the wild type (37 of
37 mice) (9). Based on genome sequence analysis and hydrogenase assays, H. pylori is
unable to produce H2 and therefore must rely solely on exogeneous H2 produced by
gastrointestinal microbiota to conserve its energy (64, 122). Nevertheless, H. pylori is
probably continuously exposed to saturating levels of H2 throughout infection in the
human stomach. Indeed, dissolved H2 has been detected at high concentrations
(average, 43 �M; range, 17 to 93 �M) in the stomach of live, anesthetized mice, and a
substantial fraction of the H2 produced by colonic bacteria is known to diffuse to the
human stomach (5, 102, 111). Given that the apparent Km for H2 of the hydrogenase in
whole cells is approximately 1.8 �M, H. pylori is likely to be saturated with H2 in host
tissues. After colonization, H2 oxidation may also energize persistence of H. pylori within
the gastric mucosa, but this research area has yet to be systematically explored.

In recent years, H2 oxidation by H. pylori has been implicated in the development of
gastric cancer (74). CagA-positive H. pylori strains are strongly associated with an
increased risk of developing adenocarcinoma of the stomach (120, 161). This reflects
the fact that the CagA protein (cytotoxin-associated gene A), encoded by the Cag
pathogenicity island (PAI), causes biochemical and morphological changes in gastric
epithelial cells, which promote carcinogenesis. Briefly, CagA is delivered to gastric

FIG 6 Legend (Continued)
by the formate hydrogenlyase reaction. Despite being from a distinct phylogenetic subgroup, the Hya hydrogenase has an architecture and mechanism similar
to those of the Hyn hydrogenase. For the architecturally distinct Hyb hydrogenase, electrons are thought to be transferred through the large subunit (HybC;
containing NiFe center), small subunit (HybO; containing iron-sulfur clusters), and an additional periplasmic subunit (HybA; containing a b-type cytochrome)
to ubiquinone or menaquinone (Q). The membrane-anchoring subunit, HybB, does not participate in electron transfer, given that it lacks a cofactor; however,
evidence suggests that it is proton motive. It is thought that electrons are primarily transferred to fumarate reductase under physiological conditions, but other
terminal reductases are also known to support H2 oxidation in laboratory experiments. This leads to the net translocation of at least four protons per H2

molecule oxidized. (c) Model of H2 oxidation by the Hhy and Huc hydrogenases within three pathogens in the Actinomycetales, Mycobacterium smegmatis,
Mycobacterium gordonae, and Rhodococcus equi. These organisms oxidize H2 available exogenously or endogenously through activity of the Hyh hydrogenase.
Electrons are relayed through the cytosolically oriented large (HhyL and HucL) and small (HhyS and HucS) hydrogenase subunits to the menaquinone pool.
Electrons then are transferred to the terminal electron acceptor O2 via the proton-translocating cytochrome bcc-aa3 supercomplex (6 H� translocated per H2

molecule oxidized). Electrons can also be transferred from Hhy to the nontranslocating cytochrome bd oxidase (2 H� translocated per H2 molecule oxidized).
Note that Huc is absent from R. equi, and some pathogens, for example, Corynebacterium diphtheriae, encode the distinct hydrogenase HyoLSE. Note that other
hydrogenotrophic respiratory chains are known, for example, the sulfite-reducing chains of Bilophila wadsworthia, but these are not sufficiently well understood
to be depicted here.
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epithelial cells by the bacterium’s type IV secretion system (162), where it undergoes
tyrosine phosphorylation within epithelial cells (163). Upon phosphorylation, it interacts
with multiple host signaling molecules, including the pro-oncogenic phosphatase SHP2
(164, 165). The PMF generated through hydrogenotrophic aerobic respiration appears
to drive CagA translocation. Wang et al. have shown that a carcinogenic strain with a
greater ability to translocate CagA has higher hydrogenase activity than its noncarci-
nogenic parent (74). Concordantly, a ΔhynABCDE hydrogenase deletion mutant was
unable to translocate CagA into human gastric epithelial AGS cells and did not induce
gastric cancer in gerbils, while 50% of the animals infected with the wild-type strain
(hydrogenase positive, CagA translocating) developed gastric cancers (74). In agree-
ment with these results, significantly higher hydrogenase activity was measured in a
series of H. pylori strains isolated from cancer patients compared to those measured in
strains isolated from gastritis patients (74). Nevertheless, a wider sampling of clinical
strains is needed to explore the correlations between hydrogenase activity and carci-
nogenesis.

Additionally, a recent study by Kuhns et al. found a link between H2 utilization and
CO2 fixation in H. pylori (69). H. pylori can assimilate CO2 in an ATP-dependent reaction
using acetyl-coenzyme A (CoA) carboxylase (acetyl-CoA � HCO3

� � ATP ¡ malonyl-
CoA � ADP � Pi), and this enzyme has been correlated with the growth enhancement
of the bacterium on elevated CO2 (166). Proteomic studies revealed that the biotin
carboxylase subunit of this enzyme is among the most highly induced proteins when
H2 is added to the medium. Likewise, there was a 3-fold increase in acetyl-CoA
carboxylase activity and an increased uptake of radiolabeled HCO3

� in H2-supplemented
cultures (69). This indicates that ATP generated by aerobic hydrogenotrophic respiration
energizes carbon fixation. Overall, this suggests that H. pylori is a mixotroph that can use H2

and organic carbon as energy sources and CO2 and organic compounds as carbon sources.
Campylobacter jejuni: niche expansion through hydrogenotrophic aerobic and

anaerobic respiration. Campylobacter jejuni is the principal causative agent of human
gastroenteritis in developed countries. It resides in the GIT of many wild and domes-
ticated animals but is most frequently transmitted through the handling and consump-
tion of contaminated poultry (167). As recently reviewed (1, 168), this versatile patho-
gen can use a wide range of respiratory electron donors (e.g., NADH, H2, formate,
succinate, and sulfite) and electron acceptors (e.g., O2, fumarate, nitrate, nitrite, and
tetrathionate) (112, 169–171). This respiratory flexibility presumably allows the patho-
gen to maintain a membrane potential and, thus, viability in a range of host and
environmental reservoirs. The genome of C. jejuni carries a set of genes for respiratory
hydrogen oxidation similar to those used by H. pylori (85) (Fig. 5). These include the
structural subunits of the group 1b [NiFe]-hydrogenase (hynABC) (12), a complete set of
genes encoding hydrogenase maturation factors (hynD and hypFBCDEA), and those
encoding a Ni-uptake ABC transporter (nikZYXWV) (172). Strong benzyl viologen-linked
hydrogenase activity has been measured in C. jejuni whole cells (173). Consistent with
their respective annotation, mutagenesis of the hydB structural gene or nikZ, which
encodes the periplasmic nickel-binding protein, abolished hydrogenase activity in this
strain (12, 172). It is also established that the hydrogenase is targeted to the cytoplas-
mic membrane in a Tat-dependent manner (174).

Several in vitro studies have demonstrated that H2 is a major electron donor for C.
jejuni. In a seminal study, Carlone and Laschelles demonstrated in 1982 that H2

supplementation enhanced growth of C. jejuni strain C-61 (169). The strain grew
optimally when incubated with agitation under an atmosphere of 30% H2, 5% O2, and
10% CO2, with formate and fumarate also enhancing growth (12, 169). Subsequent
studies have verified that this growth stimulation is hydrogenase dependent (12).
Furthermore, respirometry studies have shown that H2 oxidation can support both
aerobic respiration and fumarate reduction in this strain (169, 175) (Fig. 6). In fact,
oxygen consumption in membrane vesicles is 50- to 100-fold higher with H2 or formate
as the substrate than with NADH or succinate (175). Little is known about how
hydrogenase synthesis is regulated in this organism, but it has been shown that
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environmental cues such as oxygen deprivation and acidic shock induce expression
(176, 177). The synthesis and activity of the hydrogenase, together with the formate
dehydrogenase and alternative terminal reductases, are particularly high under mi-
croaerophilic conditions (177, 178). Altogether, this suggests that C. jejuni can adapt to
a wide range of environments through a combination of hydrogenotrophic aerobic and
anaerobic respiration.

Several studies have also indicated that H2 oxidation is important for virulence of C.
jejuni. Using a galline model of infection, Weerakoon and colleagues showed that
strains carrying a mutation in genes encoding hydrogenase (ΔhydB) or formate dehy-
drogenase (ΔfdhA) colonized ceca at reduced rates compared to those of wild-type
strains. While differences were modest for single mutants, a severe colonization defi-
ciency was observed for the ΔhydB ΔfdhA double-null mutant (12). Thus, the authors
concluded that while the loss of either the hydrogenase or the formate dehydrogenase
can be compensated by the presence of the other enzyme, both H2 and formate are
important electron donors, and at least one of them needs to be present for normal
colonization efficiency. In other work, it was shown that a hydB deletion renders C. jejuni
unable to interact either with human intestinal cell lines (INT-407) or with primary
chicken intestinal epithelial cells; cell division and morphology were also affected (179).
Transcriptome profiling has confirmed that the structural and maturation genes are
expressed during colonization (86), and it was recently observed that certain matura-
tion factors are highly upregulated during human infection (180).

Nevertheless, having hydrogenase among the respiratory repertoire of a pathogen
does not necessarily mean better host colonization capacity. For instance, a study by
Hiett and colleagues, aimed at comparing genomic and proteomic differences between
a robust chicken gastrointestinal colonizer (strain A74/C) and a weak colonizer (refer-
ence strain NCTC1168), found that the hydrogenase large subunit was absent from the
former (181). Since all results point to the importance of H2 uptake in C. jejuni
metabolism and virulence, the absence of hydrogenase in the A74/C strain is probably
compensated by the presence of other respiratory complexes, as discussed above. In
agreement with this hypothesis, A74/C but not NCTC1168 carries genes for a putative
dimethyl sulfoxide (DMSO) reductase, which could account for the robust colonizer
phenotype (181). The fact that C. jejuni can access more respiratory electron donors
than H. pylori (1) suggests it is less heavily reliant on H2.

Campylobacter concisus: essentiality of uptake hydrogenases for growth. In most
pathogens investigated to date, H2 uptake is important but not essential for growth. C.
concisus was recently reported to be an exception (78). First isolated from a patient with
gingivitis (182), this bacterium has since been shown to commonly inhabit the human
oral cavity and GIT (183–185). Its presence has been tentatively associated with a range
of other diseases and ailments, including periodontitis, enteritis, inflammatory bowel
diseases, and Barrett’s esophagus syndrome (186, 187). Since its isolation, it has been
known that this bacterium grows using H2 as an energy source (182), and it has since
become standard practice to isolate and grow C. concisus strains on H2-enriched
microoxic gas mixtures (183). Interestingly, while the bacterium respires a wide range
of electron acceptors (78), H2 is always critical for growth: it is required under microoxic
conditions and greatly enhances yields under anoxic conditions (78, 188). Consistent
with this, whole-cell hydrogenase assays have revealed that C. concisus has the highest
H2-uptake hydrogenase activity measured among pathogenic bacteria (Table 3). Under
H2-replete conditions, there are higher levels of proteins associated with the growth-
related processes of protein synthesis (elongation factor EF-Tu) and nutrient transport
(various outer membrane proteins) (78).

The essentiality of H2 uptake has recently been inferred genetically. In contrast to
the previously discussed Campylobacterales (H. pylori and C. jejuni), genome sequencing
has revealed that C. concisus encodes two distinct hydrogenases (36, 189) (Fig. 5). The
hyn operon encodes an H2-consuming respiratory hydrogenase (group 1b [NiFe]-
hydrogenase) closely related to those of C. jejuni and H. pylori. The hyf operon encodes
an H2-producing formate hydrogenlyase (FHL) complex (group 4a [NiFe]-hydrogenase)
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similar to that of E. coli. Whereas hyf genes could be deleted, attempts to delete the hyn
genes failed under a range of growth conditions, suggesting the respiratory hydroge-
nase is essential. Consistent with this hypothesis, attempts to delete the hypE gene
required for the synthesis of the catalytic centers of both hydrogenases also failed (78).
In conjunction with the growth data, this strongly suggests that H2 uptake is essential
for viability of this organism. The ability of the bacterium to endogenously generate H2

through the formate hydrogenlyase complex might explain why exogenous H2 is not
required for growth under anoxic conditions (78, 188). Nevertheless, the essentiality of
H2 for C. concisus is still not well understood and will require further studies, especially
given that the pathogen encodes primary dehydrogenases to use alternative electron
donors (e.g., formate).

Other Campylobacterales

In addition to H. pylori, hydrogenase genes have been widely detected in the
genomes of other Helicobacter species (Table 2). These include both gastric strains (e.g.,
H. suis, H. bizzozeronii, H. heilmannii, and H. felis) and enterohepatic strains (e.g., H.
cinaedi, H. fennelliae, H. bilis, and H. canis), primarily of zoonotic origin (190–192). The
murine enterohepatic pathogen H. hepaticus (193, 194) is the only other species where
H2 metabolism has been comprehensively studied. In common with H. pylori, whole
cells of this bacterium contain a membrane-bound hydrogenase (195–197) that is
kinetically adapted to high concentrations of H2 (Km � 2.5 �M) (10). It couples H2

uptake to oxygen (10) or nitrate reduction (R. J. Maier, unpublished data), enhancing
growth in an H2-rich atmosphere (71). While mutant strains lacking this hydrogenase
(ΔhyaB) efficiently colonized the liver and cecum of A/JCr mice, they did not produce
the liver lesions (lymphoplasmacytic hepatitis with hepatocytic coagulative necrosis)
observed in mice infected with the wild-type strain (71). Labeling experiments dem-
onstrated that the hydrogenase facilitates amino acid transport in this strain by
generating a PMF (71). While the role of H2 in other Helicobacter species is not yet
known, the conservation of H2-uptake hydrogenase genes suggests it is central to
metabolism and pathogenesis. Therefore, the use of an H2-enriched atmosphere to
increase the likelihood of recovering Helicobacter species from biopsy specimens and
other samples has become a clinical best practice (198).

Other than C. concisus and C. jejuni, a wide range of other Campylobacter species
also encode uptake hydrogenases (Table 2). For example, the zoonotic pathogen
Campylobacter sputorum grows optimally under H2-enriched microaerophilic condi-
tions (199) and harbors the activity of a respiratory [NiFe]-hydrogenase (200). In an
interesting exception among hydrogenotrophs, the periodontal pathogen Campylo-
bacter rectus (182) lacks a [NiFe]-hydrogenase and instead harbors an [FeFe]-hydro-
genase with an unusual genetic organization (36) (Fig. 5). This pathogen supports
growth on H2 and can couple H2 oxidation to the reduction of fumarate, nitrate, and
elemental sulfur (65, 201). Despite [FeFe]-hydrogenases typically being associated with
H2 production, some are catalytically biased toward H2 oxidation (52, 202). The struc-
tural proteins for this hydrogenase include a small subunit with a Tat signal peptide and
a cytochrome b subunit predicted to relay electrons into the respiratory chain. Several
strains, notably Campylobacter ureolyticus and Campylobacter fetus, encode both [NiFe]-
and [FeFe]-hydrogenases. Further studies are required to distinguish these hydroge-
nases concerning their catalytic activities and physiological functions.

Finally, uptake hydrogenases are widespread in Arcobacter species, including the
emerging human pathogens A. butzleri, A. cryaerophilus, and A. skirrowii (203). A. butzleri
encodes two respiratory hydrogenases (group 1b [NiFe]-hydrogenases) and another of
unknown function (group 2d [NiFe]-hydrogenase). The uptake hydrogenases are en-
coded in adjacent loci, suggesting that gene duplications happened at some point in
the evolutionary history of this species (204). Although H2 metabolism has yet to be
studied in this organism, the presence of multiple H2-uptake enzymes may enable the
organism to oxidize H2 efficiently across the range of concentrations encountered in
the various niches (animal, human, and environmental) that they inhabit.
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Enterobacteriales

The Enterobacteriales include H2-metabolizing pathogens from four currently rec-
ognized families, Enterobacteriaceae, Aeromonadaceae, Pasteurellaceae, and Vibrion-
aceae. Of these, by far the most intensively studied are E. coli and S. Typhimurium from
the Enterobacteriaceae. Both E. coli and S. Typhimurium have become model systems
for studying H2 uptake in general and medical contexts, respectively (23, 205). These
organisms, as well as many other members of the Enterobacteriales, encode two classes
of uptake hydrogenases (group 1c [NiFe]-hydrogenase and group 1d [NiFe]-hydro-
genase) with distinct properties and physiological roles (36, 206).

Escherichia coli: insights from a metabolically flexible model organism. A wide
range of studies has investigated the genetics, physiology, regulation, maturation,
biochemistry, and structural biology of E. coli hydrogenases (23, 205). In contrast to H.
pylori and C. jejuni, which each encode a single hydrogenase, E. coli encodes four
hydrogenases (Fig. 5): two H2-oxidizing enzymes (Hya and Hyb) (207, 208), which are
discussed below, and two H2-producing enzymes (Hyc and Hyf) (77, 209), which are
discussed in “Escherichia coli and Salmonella Typhimurium: formate-dependent H2

production by [NiFe]-hydrogenases” below. Although most E. coli strains do not cause
illness, there are several pathogenic strains (pathotypes) associated with diarrhea,
urinary tract infections, bloodstream infections, and meningitis (210, 211). As far as is
known, all physiological knowledge gathered on E. coli hydrogenases comes from
studies on nonpathogenic strains (primarily the laboratory workhorse K-12), and no
study has linked H2 metabolism to E. coli pathogenicity (23). However, given that
hydrogenases are highly conserved in pathogenic strains and closely related Entero-
bacteriaceae, knowledge derived from these studies has proven useful for understand-
ing the role and basis of H2 metabolism in pathogens.

The two uptake hydrogenases of E. coli share some similarities but also many
differences. In common with the H. pylori and C. jejuni enzymes, both are periplasmi-
cally oriented, membrane-bound enzymes that liberate protons in the periplasm and
transfer electrons derived from H2 oxidation into the anaerobic respiratory chain (212,
213) (Fig. 6b). However, the enzymes are divergent at the primary sequence level
(�43% sequence identity) and affiliate with distinct [NiFe]-hydrogenase subgroups
(group 1d for Hya, also known as Hyd-1; group 1c for Hyb, also known as Hyd-2) (36)
(Table 1). Moreover, they differ in subunit composition: whereas Hya is a heterotrimeric
enzyme containing a cytochrome b anchor (212), Hyb is a tetrameric enzyme with a
proton-translocating subunit (213). These differences are reflected in the catalytic
behavior of the hydrogenases. Pioneering electrochemical work from Lukey and col-
leagues shows that Hya operates optimally within a relatively high redox potential
range (�50 to �150 mV) in a strictly oxidative direction (206). In contrast, Hyb functions
optimally at lower redox potentials (�200 to �100 mV) and even mediates significant
H2 production under reducing conditions (206, 214). As elaborated below, this distinct
behavior reflects the contrasting structural features of the enzymes and likely is
relevant for the adaptation of E. coli to different environmental conditions.

The physiological role of Hya has remained controversial. Somewhat paradoxically,
the enzyme is highly tolerant toward oxygen (215) and can even support hydrogen-
driven aerobic respiration in membrane preparations (216–220), yet its synthesis is
optimal in anoxic stationary-phase cultures (87, 221, 222). The enzyme potentially
maintains redox homeostasis in response to changes in energy and oxidant availability
during transitions to and from stationary phase (23, 205, 223). As recently reviewed (23),
transcription of the hya operon (hyaABCDEF) (224, 225) is controlled by a network of
regulators; it is activated by both the redox-sensing two-component system ArcAB and
the stationary-phase sigma factor RpoS (87, 221, 222). The operon encodes the three
structural subunits of the enzyme (212), a specific endopeptidase (HyaD), and two
hypothetical proteins required for Tat translocation (226) (Fig. 5). While its biological
function remains enigmatic, Hya is the best-characterized hydrogenase from a struc-
tural perspective among pathogens. Periplasmically oriented large subunits (HyaB) and
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small subunits (HyaA) form a 2:1 complex with a membrane-bound cytochrome b
anchor (HyaC) (Fig. 6b). As with other group 1d [NiFe]-hydrogenases (36, 131), the small
subunit contains an unusual proximal [4Fe3S] cluster, coordinated by six cysteinyl
residues. This cluster enables reactivation of an O2-inhibited active site of the enzyme
(212, 215) through a reverse electron flow mechanism, as detailed elsewhere (44).

The physiological role of Hyb is better understood. The enzyme primarily sustains
anaerobic hydrogenotrophic growth of E. coli using fumarate as an electron acceptor
(77, 214, 219, 227). It is thought that this hydrogenase can also generate PMF by
coupling electron transfer to vectorial proton translocation via its transmembrane
subunit (213, 214, 228). On some fermentable substrates, this complex can also act in
reverse as a PMF-driven quinol-dependent proton reductase in a process thought to
counterbalance an overreduced redox state of the quinone pool (206, 214). The
transcription of the hyb operon (hybOABCDEFG) (229) (Fig. 5) is induced in response to
carbon limitation and anaerobiosis (87). The enzyme contains four structural compo-
nents: the large subunit (HybC), the small subunit (HybO), a ferredoxin-like protein
(HybA), and the proton-pumping transmembrane subunit (HybB) (213, 230) (Fig. 6b).
The crystal structures of the large and small subunits of the hydrogenase were recently
solved, but it currently remains unclear how this enzyme couples electron transfer to
proton translocation (213). The hyb operon also encodes a specific endopeptidase
(HybD) (231), a Tat-targeting chaperone (226, 232), and isoforms of the maturation
proteins HypA (HybF) (233) and HypC (HybG) (234).

Salmonella Typhimurium: differential roles of hydrogenases during infection. Of
all pathogens, we have the most sophisticated understanding of H2 metabolism in the
major foodborne enteric pathogen S. Typhimurium. This reflects the synergy achieved
through in vitro and in vivo physiological studies, combined with biochemical charac-
terization of purified enzymes. Like E. coli, four hydrogenases are encoded in the
genome of S. Typhimurium (8, 235). Three are homologs of Hya, Hyb, and Hyc
(236–238). However, Hyf is absent from the genome and a third uptake hydrogenase,
Hyd, is present instead (82) (Fig. 5). Thus, the bacterium contains three respiratory
hydrogenases and one fermentative hydrogenase. An equivalent set of genes is also
found in the genomes of Salmonella Typhi, the causative agent of typhoid fever, among
other serotypes (239). Together with collaborators, we have shed some light on the
respective roles of the enzymes in S. Typhimurium through work with pure cultures and
murine models. This was achieved using reporter gene fusions to measure gene
expression and by constructing mutant strains to compare activities and pheno-
types of the enzymes with those of the wild-type strain (8, 13, 22, 80, 81, 83, 84). A
summary of the roles and regulation of each enzyme, based on these studies, is
provided in Table 4.

Culture-based studies have provided strong insights into the physiological roles of
the uptake hydrogenases in S. Typhimurium (23). Genetic dissection shows all three
enzymes support hydrogenotrophic respiration (8), and a triple mutant lacking these
hydrogenases is devoid of H2-oxidizing activity (8, 84). In contrast to E. coli, a clear
physiological role can be attributed to Hya: it consumes exogenously available or
endogenously produced H2 during fermentative conditions when respiratory electron
acceptors are available (22, 84). It also contributes to acid resistance (22). In contrast,
Hyb is the dominant enzyme during anaerobic growth and couples to either fumarate,
trimethylamine N-oxide (TMAO), or dimethyl sulfoxide (DMSO) as respiratory electron
acceptors (83). Consistent with this, H2 supplementation significantly enhances the
growth rate and yield of S. Typhimurium on low-nutrient media (83). Based on
transcriptome studies, the PMF generated from Hyb activity is also thought to energize
uptake of various nutrients, including the major serum organic acid glucarate (72, 73).
In line with these roles, expression of the genes encoding both Hya and Hyb is induced
under anaerobiosis and appears to be regulated either directly or indirectly by the
oxygen sensor FNR and redox sensor ArcA (240, 241). Hyb is also subject to catabolite
repression by the cyclic AMP (cAMP) receptor protein (CRP) (89), suggesting S. Typhi-
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murium uses H2 to supplement its energetic demand when preferred organic energy
sources are limiting (Fig. 7).

The unique hydrogenase in S. Typhimurium, traditionally called Hyd or Hyd-5, is
strongly linked to supporting aerobic hydrogenotrophic growth. As a group 1d [NiFe]-
hydrogenase (36), the enzyme is closely related to Hya, has similar biochemical prop-
erties, and can even be matured by the same endopeptidase (242). The overriding
factor that differentiates Hyd from Hya, however, is that they are differentially synthe-
sized in oxic and anoxic conditions: hya expression is induced during fermentative
growth, whereas hyd is optimally expressed during oxic growth and is subject to anoxic
repression by ArcA (80) (Fig. 7). Biochemical and electrochemical characterization of
purified Hyd confirms that it is a highly O2-tolerant uptake hydrogenase (82). Moreover,
structural characterization confirms that it contains various adaptations associated with
oxygen tolerance, including the characteristic proximal [4Fe3S] cluster coordinated by
six cysteinyl residues in its small, electron transfer subunit (243) (Fig. 1a). The operon
encoding this enzyme (hydABCDEFGHI) encodes several accessory proteins essential for
hydrogenase maturation (244); these include two proteins implicated in synthesizing

TABLE 4 Summary of the expression and role of the four hydrogenases in Salmonella Typhimuriuma

Hydrogenase Feature(s) Reference(s)

Hya (Hyd-1) Expressed during fermentative survival and regulated by FNR, ArcA 80, 240
Recycles exogenous and endogenous H2 under fermentative conditions 81, 84
Important for acid resistance and macrophage colonization 81
Expressed at low levels in liver, spleen, and ileum in mice 81

Hyb (Hyd-2) Expressed during anaerobic growth and regulated by FNR, ArcA, CRP 80, 89, 240
Supports growth by hydrogenotrophic fumarate respiration 83, 238
Expressed in phagocytes and likely gastrointestinal tract 81
Uses microbiota-derived H2 to invade gastrointestinal tract in mice 13, 248, 456

Hyd (Hyd-5) Expressed under aerobic growth and repressed by ArcA 8, 81
Mediates hydrogenotrophic aerobic respiration and is oxygen tolerant 8, 82, 243
Strongly expressed in macrophages 81
Expressed early in liver and spleen, later in ileum of mice 81

Hyc (Hyd-3) Expressed during fermentative survival and regulated by FNR, FhlA 238, 240
Forms formate hydrogen lyase complex that produces H2 237, 238
Important for anaerobic acid resistance 84
Not required for colonization in murine model 84

aFindings are based on studies in pure culture and mouse models.

FIG 7 Regulation of hydrogenase operon expression in Salmonella Typhimurium in response to O2. The four
hydrogenase operons are shown and have the same color coding as that shown in Fig. 5. Four regulators are
shown: the redox sensor ArcA, the oxygen sensor FNR, the cAMP-binding protein CRP, and the formate sensor FhlA.
Positive regulation by the FNR, ArcA, or FhlA transcription factor is indicated by arrows, while negative regulation
by CRP and ArcA is indicated by lines ending in a turnstile (T). The horizontal dashed line depicts the aerobic-
anaerobic interface.
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the [4Fe3S] cluster under oxic conditions (244–246) (Fig. 5). Thus, whereas Hya is an
oxygen-tolerant enzyme operating under anoxic conditions, the activity of Hyd is both
oxygen tolerant and oxygen dependent.

Four research groups have independently demonstrated that hydrogen uptake is
central to the virulence of S. Typhimurium (8, 13, 247, 248). In 2004, a study found that
double and triple mutants of the uptake hydrogenases had reduced virulence in mice.
In fact, the triple mutant was completely avirulent and was rapidly cleared from tissues
(8). Craig et al. also observed a severe attenuation of the triple mutant (247). Also
supporting these findings, it has been observed through resolvase in vivo expression
technology (RIVET) that hya and hyd are differentially expressed in organs during
mouse infection (81). Reflecting their distinct but overlapping roles, single hydrogenase
mutants are also profoundly impaired in survival under some conditions. The Δhya
strain is unable to colonize murine macrophages, perhaps reflecting its importance for
acid tolerance (81). In contrast, the Δhyb strain is highly defective in colonization of
mice. During competitive infection experiments, this strain grew 100-fold more slowly
than the wild type and had considerably reduced bacterial loads in the cecum, spleen,
and liver (13, 248). Moreover, hydrogenase mutants are highly defective in distal gut
invasion and fecal shedding, thereby limiting host-to-host transmission (248). Alto-
gether, these findings suggest that S. Typhimurium coutilizes organic compounds with
hydrogen to meet its energy demands during colonization.

It is now recognized that gastrointestinal colonization of S. Typhimurium depends
on interactions with H2-metabolizing commensal microbiota. In mouse models, this
bacterium primarily consumes H2 from exogenous sources (i.e., commensal microbiota)
rather than from endogenous sources (i.e., FHL reaction) (13, 84). This requires that the
bacterium simultaneously exploits H2 producers and outcompetes other H2 consumers
in the intestinal tract (elaborated in “Ecology: subversion of gastrointestinal microbiota”
above) (Fig. 2). Consistent with these findings, this strain fails to colonize mice if the H2

supply is disrupted either by antibiotic treatment (presumably removing hydrogeno-
gens) or through inoculation of a nonpathogenic hydrogenotrophic strain (possibly
through competitive exclusion) (13). This is part of a wider array of approaches that S.
Typhimurium uses to acquire electron donors and acceptors from the host and the
microbiota for expansion within the mammalian intestine (95). These findings empha-
size that unraveling microbiota-pathogen metabolic interactions is critical for under-
standing pathogenesis and may provide options for preventing or treating infections.

Shigella flexneri: conditional essentiality of an uptake hydrogenase. S. flexneri, a
major cause of diarrhea, especially in the developing world (249), encodes the same set
of four hydrogenases as E. coli (Hya, Hyb, Hyc, and Hyf) (36, 250). However, knockout
studies have revealed that the physiological roles of the uptake enzymes differ between
the two organisms. McNorton and Maier showed that the Hya enzyme is the dominant
H2-uptake enzyme in S. flexneri. Following anaerobic growth, a Δhya mutant did not
consume H2, whereas the Δhyb mutant strain rapidly consumed H2 at levels indistin-
guishable from that of the wild-type strain (251). Loss of H2 oxidation profoundly affects
the bioenergetics of S. flexneri. Based on fluorescence measurements, the membrane
potential of the Δhya strain is approximately 15 times lower than that of the wild
type and similar to that of cells treated with the protonophore carbonyl cyanide
m-chlorophenylhydrazone (CCCP) (251).

Consistent with this profound difference in energetic parameters, the hydrogenase
mutant fails to persist under stressful conditions. Following acid shock (pH 2.5), CFU
counts for the Δhya strain decreased by 7 orders of magnitude within 6 h. In contrast,
the wild type was highly tolerant of acid shock and increased rates of H2 oxidation to
compensate (251). Under anaerobic conditions, the hydrogenase-negative mutant was
even more acid sensitive than mutants of the acid-combating glutamate-dependent
acid resistance (GDAR) pathway involved in removing intracellular protons (252). While
the mechanism underlying this phenotype is unclear, the authors proposed that the
periplasmic deposition of protons by the hydrogenase (H2 ¡ 2 H�) helps to resist
proton influx from outside the cell or maintain a membrane potential between the
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periplasm and cytosol (251). Performing this acid-combating function is critical for S.
flexneri, as the bacterium encounters extreme acid conditions after ingestion by mac-
rophages in the colon (253). These observations are also consistent with the increased
acid sensitivity observed for the S. Typhimurium Δhya mutant strain (81).

Other Enterobacteriales

As summarized in Table 1, a wide range of other Enterobacteriaceae encode uptake
hydrogenases. Whereas Hyb is distributed in most of these pathogens, Hya is only
encoded in six genera and always together with Hyb. This is consistent with the finding
that Hyb is the major uptake hydrogenase in both E. coli and S. Typhimurium (23).
Several other species have been experimentally shown to support hydrogenotrophic
anaerobic growth, including Klebsiella pneumoniae (254), Citrobacter freundii (255),
Proteus mirabilis (256), and Proteus vulgaris (257). There is also indirect evidence that H2

metabolism is important for the zoonotic pathogen Edwardsiella tarda (258, 259);
deletion of a putative hydrogenase maturation factor, Sip2, caused loss of virulence,
acid resistance, serum survival, and intracellular replication (259).

The hydrogenases of Proteus, a genus frequently associated with nosocomial urinary
tract infections (260), are of special interest. The genomes of these pathogens each
encode just two hydrogenases (261), namely, a Hyb-type uptake hydrogenase and a
Hyf-type H2-evolving hydrogenase (36), both of which have been shown to be active in
whole cells (75, 257, 262). Both P. mirabilis and P. vulgaris support hydrogenotrophic
growth using fumarate derived from either the tricarboxylic acid or urea cycles (75,
257). In both species, the H2-uptake hydrogenases responsible have been purified from
membrane fractions and biochemically characterized (256, 263, 264). More recently, it
was demonstrated that hydrogenotrophic fumarate respiration supports the energet-
ically demanding process of swarming motility. Transposon mutants in the hydroge-
nase subunit hybB, together with genes involved in fumarate production, were defec-
tive in motility. This suggests that hydrogenase activity maintains a sufficient PMF to
drive the flagellar motor (75). These findings are likely to be clinically important, given
swarming underlies the ability of P. mirabilis to colonize medical devices (e.g., catheters)
and invade the human urinary tract (265). Although the presence of H2 in the urinary
tract has not been formally established to our knowledge, it is likely that some of the
gas produced by the colonic microbiota can diffuse to this niche (Fig. 3), thereby being
available for consumption by P. mirabilis.

In common with species from the Enterobacteriaceae family, many pathogens within
the Pasteurellaceae and Aeromonadaceae also encode group 1c [NiFe]-hydrogenases,
including Actinobacillus pleuropneumoniae, Aggregatibacter actinomycetemcomitans,
Haemophilus haemolyticus, Pasteurella bettyae, and Aeromonas hydrophila (36). To our
knowledge, they have only been studied in the major porcine pathogen A. pleuropneu-
moniae. The hydrogenase is expressed in cell culture under anoxic conditions in an
FNR-dependent manner (266) and has also been detected during acute infection (267,
268), although mutational studies indicate the enzyme is dispensable for virulence (269,
270).

Other Bacteria

As summarized in Table 2, a wide range of other pathogens beyond the Enterobac-
teriales and Campylobacterales also encode putative H2-uptake hydrogenases. Several
obligately anaerobic pathogens have been shown to mediate H2 oxidation, notably the
opportunistic colonic agents Bilophila wadsworthia (family Desulfovibrionaceae) (271)
and Bacteroides fragilis (family Bacteroidaceae) (272). H2 supports rapid growth of B.
wadsworthia using taurine-derived sulfite as the terminal electron acceptor (66). Its
genome encodes some seven hydrogenases (24) that are differentially active depend-
ing on the growth conditions (66). B. fragilis cultures have also been reported to possess
soluble hydrogenase activity and mediate hydrogenotrophic fumarate reduction (273).
However, these findings should be treated with caution given that it is mechanistically
unclear how H2-derived electrons are transferred into the respiratory chain. The organ-
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ism encodes a group B [FeFe]-hydrogenase typically associated with H2 production (7),
and indeed other studies have reported low-level H2 production by this species (101).
The intracellular animal pathogen Lawsonia intracellularis (family Desulfovibrionaceae)
has also been reported to require H2 for growth under both oxic and anoxic conditions
(274).

A range of aerobic bacteria can also oxidize H2. Opportunistic pathogens within the
genus Mycobacterium (family Mycobacteriaceae) encode oxygen-tolerant, high-affinity
uptake hydrogenases (group 1h and 2a [NiFe]-hydrogenases) associated with the
aerobic respiratory chain (275, 276) (Fig. 5 and 6c). Based on genetic studies in
Mycobacterium smegmatis, the expression of their genes is induced during starvation
and hypoxia, and they enhance survival by oxidizing H2 to subatmospheric levels (19,
45, 277, 278). While M. smegmatis is rarely pathogenic (279), the hydrogenases are also
conserved in more serious pathogens, such as M. avium, M. marinum, M. fortuitum, and
M. gordonae (280); they have apparently been lost, however, during evolution of the
obligate human pathogens M. tuberculosis and M. leprae. It is probable that H2

facilitates persistence of these organisms in environmental reservoirs, but its role within
host tissues is unclear. It should be noted that many mycobacteria, including M.
tuberculosis, also oxidize the reduced gas carbon monoxide (280–282), and this process
has recently been linked to persistence (282). Among other aerobes, Rhodococcus equi
(family Nocardiaceae) also scavenges atmospheric H2 during persistence (283). Hydro-
genase lineages that support aerobic respiration are also encoded by the major
pathogens Corynebacterium diphtheriae (group 1f [NiFe]-hydrogenase) (284) and Pseu-
domonas aeruginosa (some strains only; group 1d [NiFe]-hydrogenase) (36), but their
roles have yet to be investigated.

The sections above demonstrate that a wide variety of pathogens can use H2 to
support aerobic or anaerobic respiration. However, there is growing evidence that
some pathogens can grow chemolithoautotrophically by using electrons derived from
H2 to support carbon fixation. A subset of mycobacteria containing ribulose 1,5-
bisphosphate carboxylase (RuBisCO), including M. gordonae (68, 285), can grow chemo-
lithoautotrophically and mixotrophically on H2/CO2 under oxic conditions. Among
anaerobes, preliminary evidence suggests the colonic bacteria Eggerthella lenta (family
Coriobacteriaceae) (286, 287) and C. difficile (family Peptostreptococcaceae) (70) are
capable of hydrogenotrophic acetogenesis through the Wood-Ljungdahl pathway.
However, systematic studies are ultimately needed to confirm the biochemical activity,
physiological role, and medical significance of these enzymes. Indeed, a role for
autotrophic pathways of pathogens within host tissues or environmental reservoirs has
yet to be convincingly demonstrated.

H2 PRODUCTION IN PATHOGENS
Bacteria

H2-producing bacterial pathogens fall broadly into two groups. The facultative
anaerobes, typified by Enterobacteriales such as E. coli (77) and S. Typhimurium (238),
survive limitation for electron acceptors by dissipating excess reductant as H2. This
process is mediated by a unique set of [NiFe]-hydrogenases that form formate hydro-
genlyases (FHL). In contrast, the obligate anaerobes, typified by members of the order
Clostridiales such as C. perfringens (15) and C. difficile (117), grow by fermenting organic
carbon to H2. This process depends on kinetically highly active, albeit oxygen-labile,
[FeFe]-hydrogenases.

Escherichia coli and Salmonella Typhimurium: formate-dependent H2 production
by [NiFe]-hydrogenases. At times and in places where respiratory electron acceptors
are scarce, Enterobacteriaceae survive by activating mixed-acid fermentation. During
this process, formate is produced from glycolytically derived pyruvate (pyruvate
formate-lyase, or PFL) and is eventually disproportionated to H2 and CO2 by the FHL
complex (23, 288–290) (Fig. 8a). The determinants of this process are encoded by the
vast majority of pathogenic enterobacteria (Table 2). Formate-dependent H2 produc-
tion has been most comprehensively studied in E. coli (17, 77, 291–293) and S.
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Typhimurium (84, 237, 238, 294, 295). However, this process has also been experimen-
tally observed in other pathogenic Enterobacteriaceae, notably Enterobacter aerogenes
(296–299), K. pneumoniae (254, 258, 300, 301), K. oxytoca (302), and Citrobacter freundii
(258, 303, 304).

Formate disproportionation is mediated by the membrane-bound enzyme complex
FHL (17, 77, 305). The purified enzyme complex from E. coli, Hyc (also known as Hyd-3
and FHL-1), contains four core components: a molybdenum-dependent formate
dehydrogenase-H that catalyzes formate oxidation (FdhF), a group 4a [NiFe]-hydro-
genase that catalyzes proton reduction (HycE), three iron-sulfur cluster subunits that
relay electrons between the catalytic centers (HycBFG), and two subunits that anchor
the complex to the membrane (HycCD) (17) (Fig. 5). While the purified enzyme is
physiologically reversible (77, 306–308), it is strongly biased toward H2 production and
maintains this activity even under high partial pressures of H2 (17). While H2-uptake
hydrogenases of the Enterobacteriaceae can theoretically act in the reverse direction
(206, 214), knockout studies have validated that FHL complexes are solely responsible
for H2 production under most physiologically relevant conditions (84, 309).

In E. coli, the FHL complex is only synthesized when carbon sources are available but
respiratory electron acceptors are absent (291, 310, 311). There are two reasons for this
regulation. First, E. coli hierarchically regulates use of its electron acceptors to maximize
ATP generation in the following order of preference: aerobic respiration, nitrate respi-
ration, fumarate respiration, and finally fermentation (312). Second, the reaction is only
thermodynamically favorable under fermentative conditions when formate accumu-
lates and the pH decreases (292). To facilitate this control, the nine-gene hyc operon
(encoding the hydrogenase structural subunits), the five-gene hyp operon and sepa-
rately encoded hypF gene (maturation factors), and the fdhF gene (formate dehydro-
genase component) are tightly transcriptionally coupled (313, 314). Genetic studies
have demonstrated that hydrogenogenic fermentation occurs when the following
three conditions are met: (i) O2 is absent (FNR induced; signals absence of electron

FIG 8 Metabolic processes resulting in fermentative hydrogen production in key bacterial pathogens. The schemes show the key fermentation processes in
Salmonella Typhimurium (a), Clostridium perfringens (b), and Trichomonas vaginalis (c). The fermentation products are boldfaced, the enzymes responsible for
H2 production are colored blue, and the electron donors for H2 production are colored red. PFL, pyruvate-formate lyase; FHL, formate hydrogenlyase (containing
group 4a [NiFe]-hydrogenase); PFOR, pyruvate:ferredoxin oxidoreductase; HydA, group A [FeFe]-hydrogenase; and Fd, ferredoxin. Note that other fermentation
pathways are known, for example, the NADPH- or NADH-coupled hydrogenase of Mycobacterium smegmatis, but they are insufficiently understood to be
depicted here.
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acceptors for aerobic respiration) (77, 292, 315); (ii) nitrate is absent (Nar system
repressed; signals the absence of electron acceptors for nitrate respiration) (292, 316);
and (iii) formate is present (FhlA induced; signals absence of other electron acceptors)
(317–319). In common with the H2-uptake hydrogenases, synthesis of the FHL complex
is also regulated through the Hyp maturation factors (55, 88, 320, 321). Likewise, the
FHL of S. Typhimurium was shown to be regulated by anaerobiosis, nitrate, and formate
(294) (Fig. 7).

Accumulating evidence suggests that FHL complexes have a multifaceted role in the
physiology of Enterobacteriaceae. The apparent primary role of the enzyme complexes
is to dissipate reductant and detoxify formate during persistence under anoxia. How-
ever, three independent studies have indicated that FHL complexes are also critical for
acid tolerance in E. coli and S. Typhimurium (79, 84, 322). These complexes mediate the
net consumption of protons from the cytosol (HCOO� � H� ¡ CO2 � H2) and, hence,
may provide a simple but elegant mechanism to regulate internal pH. It has also been
proposed that FHL complexes generate a PMF through a chemiosmotic mechanism (17,
323, 324). Multiple lines of evidence suggest this, most notably their transmembrane
localization (17, 77), their uncoupler sensitivity (325, 326), their ATP synthase depen-
dence (327), and their conservation with ion-motive hydrogenases (36, 328). Generation
of a PMF would only be thermodynamically feasible under specific conditions, given
that the standard redox potentials of the formate/CO2 and H2/2H� couples are similar
(17). In addition to a possible direct role of FHL in chemiosmotic energy coupling, the
H2 generated from this reaction can be recycled through nitrate or fumarate respiration
when electron acceptors become available (22, 262).

While the in vitro role of FHL has been established in pathogens, it is less clear what
role these enzymes play in vivo. The only insights have come from genetic dissection
of the four hydrogenases in S. Typhimurium (Table 4). As expected, a Δhya Δhyb Δhyd
triple mutant lacking the three uptake hydrogenases produces, but does not oxidize, H2

(8, 84), whereas no H2 production occurs in a Δhya Δhyb Δhyd Δhyc quadruple mutant
also lacking the FHL complex (84). In a murine model, single mutants lacking Hyc
structural subunits behaved identically with respect to organ colonization, morbidity, or
mortality (84). This suggests that the organism either does not produce H2 during
infection or compensates for loss of this process. These findings also support the
prevailing model that the pathogen primarily oxidizes H2 derived from exogenous
sources (i.e., gut microbiota) rather than endogenous sources (i.e., FHL) during infection
(13, 22, 84). However, given the multifaceted physiological role and wide conservation
of FHL complexes, it nevertheless seems probable that these enzymes confer a signif-
icant competitive advantage on Enterobacteriaceae. Most plausibly, they likely confer
the capability to survive oxidant limitation or acidic pH in host or environmental
reservoirs.

Many Enterobacteriaceae encode a distinctive FHL complex, Hyf (also known as
Hyd-4 or FHL-2). This enzyme complex differs from the Hyc-based FHL-1 concerning the
presence of three additional transmembrane subunits (HyfDEF) present in FHL-2 (209)
(Fig. 5). These subunits are homologous to the proton-translocating subunits of com-
plex I (NADH dehydrogenase), ND2, ND4, and ND5; this suggests the enzyme serves as
a formate-driven proton pump, but this is unlikely to be thermodynamically favorable
under physiological conditions (209, 329). Phylogenetic analysis suggests that Hyf
(FHL-2) is the ancestral complex and that Hyc (FHL-1) evolved through the loss of these
additional subunits (36). FHL complexes are variably conserved in the genomes of
pathogenic enterobacteria (Table 1) (36). Many species encode both (e.g., Citrobacter
spp. and Escherichia spp.), others encode either Hyc (e.g., Salmonella spp., Enterobacter
spp., and Klebsiella spp.) or Hyf (e.g., Proteus spp., Morganella morganii, and Yersinia
enterocolitica), and a few lack both (e.g., Yersinia pestis and Providencia stuartii) (36, 330).
Most Shigella species also do not produce H2 and have lost the capacity to synthesize
FHL; the reported exceptions are strains of S. boydii serotypes 13 and 16 and S. flexneri
serotype 6 (251).

As recently reviewed, it remains controversial as to whether Hyf is a fossil or a
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functional enzyme in E. coli (205). Under most conditions, its expression is silent (331,
332) and its activity is negligible compared to that of Hyc (333). However, formate-
dependent H2 production by Hyf has been observed under alkaline conditions (334–
336). Nevertheless, some pathogens that encode only Hyf can mediate formate-
coupled H2 evolution, including P. mirabilis (262) and potentially Serratia marcescens
(258). Thus, Hyf enzymes are active under physiological conditions in some pathogens
and may contribute to transmission or infection.

Clostridium perfringens and Clostridioides difficile: obligate fermenters with mul-
tiple [FeFe]-hydrogenases. As outlined in Table 2, a wide range of obligately anaerobic
pathogens also have the coding capacity for hydrogenogenic fermentation. The most
notable of these are the human pathogens within the order Clostridiales. These include
C. difficile (pseudomembranous colitis), C. perfringens (gas gangrene), Clostridium tetani
(tetanus), and Clostridium botulinum (botulism) (101). Clostridial fermentation has also
been linked to necrotizing enterocolitis (337). It is thought that these pathogens adopt
an obligately fermentative lifestyle in which carbohydrates and proteins are degraded
to organic acids (e.g., butyrate) and molecular hydrogen (Fig. 8b), with ATP being
generated through substrate-level phosphorylation (15, 338). C. perfringens is a partic-
ularly efficient H2 producer and sustains doubling times of less than ten minutes in pure
culture through fermentation alone (339). In a dramatic example of this, H2 can
accumulate to millimolar levels during advanced gas gangrene infection (116, 340).
However, while H2 metabolism has been comprehensively studied in several environ-
mental clostridia, surprisingly little dedicated research has been performed on the
metabolism of these pathogens.

Some insights into hydrogen metabolism in clostridia come from genome sequencing
(Table 2). Whereas facultative anaerobes produce H2 using formate- or nicotinamide-
coupled [NiFe]-hydrogenases, obligate anaerobes primarily use ferredoxin-dependent
[FeFe]-hydrogenases. In an important study, Calusinska and colleagues showed that
both pathogenic and environmental clostridia encode multiple [FeFe]-hydrogenases
(117). These enzymes vary in terms of their phylogenetic grouping, domain architec-
ture, and the presence of additional subunits (36, 117) (Fig. 5). A feature common to all
pathogenic clostridia appears to be the presence of one or more group B [FeFe]-
hydrogenases; these can be present in either a short form containing two [4Fe4S]
clusters (C. perfringens, C. difficile, C. botulinum, and C. tetani) or a long form containing
one [2Fe2S] and three [4Fe4S] clusters (C. difficile, C. perfringens, and C. botulinum) (36,
117). Hydrogenases from this group have yet to be purified but are thought primarily
to couple ferredoxin oxidation to H2 production (7, 36). Other hydrogenases can also be
present. C. perfringens contains two group A1 [FeFe]-hydrogenases, one standard and
one atypical (117, 341). C. difficile and C. botulinum both encode trimeric electron-
bifurcating group A3 [FeFe]-hydrogenases, which are predicted to couple ferredoxin
and NADH reoxidation to H2 production (117, 342). Finally, C. difficile encodes group A4
[FeFe]-hydrogenases that are predicted to relay electrons between formate and H2

(343).
One hydrogenase of pathogenic clostridia, the standard group A1 [FeFe]-

hydrogenase of C. perfringens, has been investigated through genetic and biochemical
studies (15). In axenic cultures, the genes encoding this hydrogenase are transcribed as
part of an operon along with a gene encoding butyrate kinase, and expression is highly
induced during growth on carbohydrates. Genetic deletion of the hydrogenase struc-
tural genes eliminated H2 production and caused a 3-fold reduction in growth yield. In
addition, the hydrogenase has been recombinantly synthesized, purified, and charac-
terized (344). The enzyme mediates rapid and efficient H2 production in both colori-
metric and electrochemical assays (344, 345). Altogether, this indicates the enzyme is
the primary a hydrogenase involved in saccharolytic fermentation to butyrate and H2

(15) (Fig. 8b). The high activity of this enzyme makes it ideally suited to support rapid
fermentative growth. There is currently no information, however, regarding the phys-
iological roles of the other three hydrogenases of this organism.

Transcriptomic and proteomic studies have shown that clostridial hydrogenases are
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differentially synthesized both in vitro and in vivo. In C. perfringens, [FeFe]-hydrogenases
are differentially regulated during necrotic enteritis of the chicken intestine (346). In C.
difficile, hydrogenase gene expression is linked to both sporulation and nutrient
availability (91, 347–349). A proteomic analysis identified approximately 300 core
proteins in C. difficile endospores, including a short-form group B [FeFe]-hydrogenase
(347). Other studies indicate that the formate-coupled hydrogenase is also activated by
the key sporulation entry regulator Spo0A (91), while the long-form group B [FeFe]-
hydrogenase is regulated by the catabolite control protein CcpA (348). Hydrogenases
are also differentially expressed during infection in murine and porcine models (350–
352). In the murine model, formate dehydrogenase and the short-form group B
hydrogenase are also among the induced enzymes during infection, concomitant with
production of short-chain fatty acids (Fig. 1) (351). In further support of their impor-
tance for virulence, the C. difficile hydrogenases are highly conserved across clinical
isolates (353). While these findings suggest clostridial pathogenesis involves H2 me-
tabolism, there are numerous unanswered questions regarding the role, regulation, and
importance of the hydrogenases involved.

While it is assumed that the clostridial hydrogenases are primarily involved in H2

production, some may have an oxidative role. For C. perfringens, the strongest candi-
date for an uptake enzyme is its atypical group A1 [FeFe]-hydrogenase. Its N-terminal
domain shares more than 60% amino acid sequence identity to a C. pasteurianum
hydrogenase (CpII), which is catalytically biased toward H2 oxidation (202). Its
C-terminal domain is homologous to rubredoxins, which mediate deactivation of
reactive oxygen species and anaerobic respiration in C. perfringens (354, 355). Hence, a
conceivable role for this enzyme is the use of H2-derived electrons to reduce peroxide
species, thereby contributing to the relative aerotolerance of this species. With respect
to C. difficile, formate dehydrogenase-linked hydrogenases and electron-bifurcating
[FeFe]-hydrogenases are both known to be physiologically reversible in other species
(20, 343, 356, 357). Given recent reports that this species is a facultative autotroph (70),
these hydrogenases may support CO2 fixation via the Wood-Ljungdahl pathway. Ulti-
mately, dedicated physiological and biochemical studies are needed to understand the
specific roles of the multiple hydrogenases in pathogenic clostridia.

Other H2-producing bacteria. Several other facultative anaerobic pathogens en-
code Hyf-type FHL complexes (Table 2). These complexes are present in the gamma-
proteobacterial pathogens Aggregatibacter actinomycetemcomitans, Haemophilus hae-
molyticus, and Pasteurella bettyae. Studies in the former organism indicate that these
enzymes are also under the control of carbon- and oxygen-sensing regulators (358,
359). However, no study to our knowledge has reported formate-coupled H2 produc-
tion in these organisms. Several strains within the Campylobacteraceae also encode
these enzymes, most notably C. concisus (36). The operon encoding FHL in C. concisus
is similar to the hyf operon of E. coli, although the hyfD gene (encoding the ND2-like
subunit) is absent (78). Genetic and biochemical studies have shown that this organism
indeed mediates H2 production using this enzyme under anoxic conditions; however,
it is still not clear whether formate or another organic acid is the electron donor (78).
By analogy with E. coli and S. Typhimurium, we hypothesize that C. concisus can also
recycle endogenous H2 using its uptake hydrogenase under anoxic conditions. In turn,
the ability of this pathogen to switch between aerobic respiration, anaerobic respira-
tion, and fermentation may enable it to adapt to various niches within the human body,
for example, in response to changes in electron acceptor availability.

A wide range of obligately anaerobic pathogens are also predicted to mediate
hydrogenogenic fermentation. Putative [FeFe]-hydrogenases are encoded in opportu-
nistic pathogens from the phyla Spirochaetes (e.g., Brachyspira pilosicoli and Treponema
denticola), Fusobacteria (e.g., Fusobacterium nucleatum), Firmicutes (e.g., Veillonella dis-
par), and possibly Bacteroidetes (e.g., B. fragilis) (Table 2). In common with clostridial
pathogens, these organisms generally encode the electron-bifurcating group A3 [FeFe]-
hydrogenases in concert with a ferredoxin-dependent group A1 or B [FeFe]-hydrogenase
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(36). However, to our knowledge, H2 production has yet to be investigated in these
organisms.

Finally, it has recently been recognized that some obligately aerobic bacteria switch
to hydrogenogenic fermentation as a last resort. Some mycobacteria, after entering
stationary phase due to oxygen deprivation, maintain redox balance by producing
large amounts of H2. This process is mediated by a cytosolic group 3b [NiFe]-
hydrogenase that is predicted to directly transfer electrons from NAD(P)H to protons
(19) (Fig. 5); this is only thermodynamically favorable if the NAD(P)H/NAD(P)� ratio is
high (e.g., due to the absence of respiratory electron acceptors) and H2 levels remain
low (e.g., due to reoxidation or dissipation). The enzyme responsible is activated under
low oxygen and redox states by the well-characterized response regulator DosR (19,
275, 277). Deletion of the genes encoding the enzymes responsible results in impaired
redox homeostasis and reduced hypoxic survival. In common with E. coli and S.
Typhimurium, this H2 is recycled by uptake hydrogenases when electron acceptors for
aerobic or anaerobic respiration are available (19). Such hydrogenases are present in a
range of nontuberculous mycobacteria, including M. marinum, M. gordonae, M. kansasii,
and some M. ulcerans isolates (36), as well as Legionella pneumophila and Rhodococcus
equi (Table 2). It is tempting to speculate that fermentation contributes to the persis-
tence of these pathogens within natural and constructed environments. A further area
to be explored is whether facultative fermentation contributes to the persistence of
mycobacteria in response to new antimycobacterial drugs targeting aerobic respiration
(360, 361). While M. tuberculosis lacks these hydrogenases, it expresses a complex
related to FHL in a DosR-dependent manner (362); however, it is unlikely that this
enzyme can produce H2 given that the subunit homologous to hydrogenase catalytic
subunits lacks cysteine residues to bind a [NiFe] center (275).

Eukarya

Various human and animal infections are also caused by protists (i.e., unicellular
eukaryotes). A phylogenetically and physiologically diverse subset of these pathogens
grows or survives by mediating the hydrogenogenic fermentation of organic carbon
compounds. [FeFe]-hydrogenase activity has been detected in several major human
parasites, including T. vaginalis (363), G. intestinalis (18), and Naegleria (364) (Table 2).

Trichomonas vaginalis: fermentation within hydrogenosome organelles. Various
fermentative eukaryotes contain H2-producing organelles known as hydrogenosomes
(365). These organelles are now thought to have evolved multiple times from a mitochon-
drial ancestor across diverse eukaryotic lineages (366–369). Research on the bovine para-
basalid pathogen Tritrichomonas foetus led to the landmark discoveries of eukaryotic H2

production in 1957 (370) and the hydrogenosome in 1973 (76). Since then, equivalent
organelles have been reported in other pathogenic parabasalids, such as T. vaginalis (16,
371), Trichomonas tenax (372), Dientamoeba fragilis (373, 374), Pentatrichomonas hominis
(375), and Histomonas meleagridis (376–378). Group A1 [FeFe]-hydrogenases and their
maturation factors are localized in these organelles, where they mediate H2 production
(379, 380). It has also been shown that diplomonads from fish pathogens within the genus
Spironucleus also contain hydrogenosomes and mediate rapid H2 production under mi-
croaerophilic conditions (381–384).

Most of our understanding of hydrogenosomal metabolism comes from studies on
the human sexually transmitted parasite T. vaginalis (reviewed in references 365 and
368). In this organism, pyruvate produced during glycolysis is imported into the
hydrogenosome, oxidized to acetyl-CoA via pyruvate-ferredoxin oxidoreductase (PFO),
and converted to the fermentative end product acetate (Fig. 7c). The ferredoxin
reduced by the PFO reaction (385, 386) is then reoxidized via a group A1 [FeFe]-
hydrogenase (363, 387), resulting in formation of H2. In addition, ferredoxin can be
reduced by NADH dehydrogenase subunits (NuoE and NuoF) in T. vaginalis (388, 389),
possibly through an electron-bifurcating mechanism (390). It has also been proposed
that one or more hydrogenases in T. vaginalis form a complex with the NADH
dehydrogenase subunits, directly accepting electrons from NADH oxidation (389, 391).
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This proposal is consistent with the observation that T. vaginalis mutants lacking
ferredoxin retain some hydrogenase activity (392). A ferredoxin-dependent hydroge-
nase has also been purified from T. vaginalis and exhibits features similar to those of
bacterial group A1 [FeFe]-hydrogenases, including significant activity, sensitivity to
carbon monoxide inhibition, and the spectroscopic signatures of an H cluster (393).

Nevertheless, it remains unclear whether hydrogenases are essential for viability of
T. vaginalis. To our knowledge, no studies to date have investigated the effects of
deleting the genes encoding hydrogenases or their maturation factors on T. vaginalis
pathogenesis, although some insights into their essentiality have come from investi-
gations on the effects of pharmaceuticals on hydrogenosomal metabolism. It has been
reported that resveratrol is a specific inhibitor of hydrogenase activity and causes
cytotoxicity at high concentrations (394). However, a more nuanced picture has
emerged from studies into the development of resistance to metronidazole, still the
first-line treatment for trichomoniasis. Metronidazole is a nitroimidazole prodrug that is
reductively activated by the hydrogenosomal ferredoxin and effectively competes for
electrons with hydrogenase (395, 396). However, metronidazole-resistant strains of
trichomonads have been characterized with reduced levels of hydrogenase synthesis or
activity (397–399). One way this is achieved is through rewiring metabolic flux away
from H2 and acetate production and toward ethanol production (397). Hence, while
hydrogen production is a core feature of T. vaginalis metabolism, the pathogen may
harbor sufficient metabolic flexibility to bypass it.

An unexpected revelation from the T. vaginalis genome is that it encodes up to 13
[FeFe]-hydrogenases (400–402). Similar findings have been made from the genomes of
Tritrichomonas, Histomonas, and Spironucleus species (384, 403) (Table 2). It is currently
unclear whether some of these hydrogenases are functionally redundant or whether
they all have unique physiological roles in the cell. However, results of proteomics
studies indicate at least five of them are simultaneously present in the hydrogenosomal
proteome (402). Possible factors that may differentiate them include synthesis patterns,
subcellular localization, enzyme kinetics, and redox partners. While all eukaryotic
hydrogenases described to date produce H2, it cannot be ruled out that some also
act in the oxidative direction, as was recently proposed for T. vaginalis (404).
Consistent with having distinct physiological roles, these hydrogenases show con-
siderable differences in the structure of the domains flanking the catalytic H-cluster:
some are of a short form with two [4Fe4S] clusters at the N terminus; others are of
a long form with three [4Fe4S] clusters and one [2Fe2S] cluster at the N terminus;
and yet others are fusion proteins with C-terminal domains homologous to CysJ (36,
403, 405, 406). The functional significance of these differences remains unclear,
highlighting the need for further biochemical and physiological studies on this
fascinating system.

Giardia intestinalis and Entamoeba histolytica: evidence for H2 production in
parasites lacking hydrogenosomes. Hydrogenases are also present in some parasitic
protists that lack hydrogenosomes. Their presence was first documented in the prev-
alent diarrheal pathogens G. intestinalis (synonym Giardia lamblia) and Entamoeba
histolytica, to the considerable surprise of researchers in the field (18, 407). Both
organisms lack mitochondria and hydrogenosomes, although they possess remnant
organelles, called mitosomes, that do not participate in ATP production (408, 409). In
Giardia, it has been shown that the single group A1 [FeFe]-hydrogenase encoded by
this organism is primarily localized to the cytosol rather than the mitosome (409).
Hydrogenase activity in this organism is induced under anoxic conditions and is highly
sensitive to oxygen poisoning (18). On this basis, it has been proposed that H2

production enables the organism to dissipate excess reductant under anaerobic con-
ditions (18).

In contrast, the genome of E. histolytica and related species contains three
hydrogenases: two group A1 [FeFe]-hydrogenases and a group B [FeFe]-
hydrogenase (407, 410, 411) (Table 2). Two have been shown to be synthesized, and
a group A1 [FeFe]-hydrogenase has been shown to be active in recombinant systems
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(407). Transcriptome profiling has revealed that hydrogenase gene expression varies
between Entamoeba strains and is sometimes correlated with increased virulence
(412–415). Comparative transcriptome studies indicated that hydrogenase gene ex-
pression is higher in the virulent E. histolytica than in the avirulent E. dispar (412).
Likewise, in a gerbil model, increased expression of the group B [FeFe]-hydrogenase
genes is associated with increased pathogenicity (413). However, for both Giardia and
Entamoeba spp., genetic studies are required to provide unequivocal evidence for the
roles of these hydrogenases in growth, survival, and virulence.

Acanthamoeba castellanii and Naegleria fowleri: flexibility dependent on respira-
tion versus fermentation. Some pathogenic amoebas also contain mitochondria with
apparent dual capabilities for aerobic respiration and hydrogenogenic fermentation
(368). For example, the nuclear genome of the opportunistic pathogen Acanthamoeba
castellanii encodes a complete pathway for hydrogenogenic fermentation, including a
mitochondrially targeted [FeFe]-hydrogenase, its maturases, and pyruvate-ferredoxin
oxidoreductases (47, 416). Proteomic and antibody-staining studies have confirmed
these enzymes are preferentially localized to the mitochondria (416). Naegleria species,
including the deadly pathogen N. fowleri (causing primary amoebic meningoenceph-
alitis), have a similar genetic capacity. The nuclear genome of the nonpathogenic
species N. gruberi encodes genes for aerobic respiration together with an [FeFe]-
hydrogenase with a mitochondrial import signal (417). Surprisingly, however, the genes
encoding the hydrogenase apparently are expressed under aerobic conditions and the
enzyme is reportedly localized to, and active in, the cytosol (364). A similar hydrogenase
has also been detected in the genome and proteome of N. fowleri (418). Altogether,
these findings suggest that both Naegleria and Acanthamoeba switch from respiration
to fermentation depending on oxygen partial pressures in different environmental
reservoirs and host tissues. However, more in-depth studies are required to systemat-
ically test these hypotheses.

Stramenophiles such as Blastocystis species are among the most prevalent enteric
protists, although their actual pathogenicity continues to be a source of debate (419),
as does their capacity to metabolize H2. Blastocystis contains mitochondrion-related
organelles (MRO) with features resembling both hydrogenosomes and mitochondria,
including the presence of an organellar genome (368, 420). Through an analysis of
three different isolates, Stechmann and colleagues demonstrated that putative [FeFe]-
hydrogenases and pyruvate-ferredoxin oxidoreductases are synthesized and function in
the MRO. The localization of a putative hydrogenase within the MRO was also con-
firmed by epifluorescence microscopy (420). However, the activity of these enzymes
was not detected in whole-cell biochemical assays in cultures of subtype 7 (421).
Moreover, Blastocystis genomes lack two of the maturation factors required for [FeFe]-
hydrogenase assembly (HydF and HydG) (390). Together, these findings have led to
speculation that the putative hydrogenases in fact have functions distinct from H2

production (422).

POTENTIAL OF H2 METABOLISM AS A THERAPEUTIC TARGET SPACE
Promises and Challenges of Inhibitor Development

The above sections demonstrate that the consumption and production of H2 are
critical for growth, survival, and virulence of several major pathogens. This suggests
that there is clinical value in developing small-molecule inhibitors targeting hydro-
genases or their maturation factors. However, both considerable promise and
significant limitations are associated with this potential target space. Based on their
physiological roles, inhibition of respiratory hydrogenases would theoretically
cause membrane depolarization and ATP depletion, whereas inhibiting fermenta-
tive hydrogenases may cause reductive stress. Inhibiting hydrogenases may also
affect intracellular pH homeostasis (22, 79, 222, 251). It has previously been
speculated that hydrogenases are a promising drug target (1, 61, 423), and this area
is subject to patents (424). A range of compounds, such as carbon monoxide,
acetylene, and formaldehyde, competitively inhibit the active sites of hydrogenases

Benoit et al. Microbiology and Molecular Biology Reviews

March 2020 Volume 84 Issue 1 e00092-19 mmbr.asm.org 36

https://mmbr.asm.org


(425–427). However, with the possible exception of studies using resveratrol (394),
to our knowledge no dedicated research has been performed to develop or test
drug-like inhibitors of these enzymes.

Two developments suggest that hydrogenases are worth exploring as drug
targets. The first is the emergence of drug-resistant pathogens. Several antibiotic-
resistant bacteria designated priority pathogens by WHO harbor hydrogenases,
notably carbapenem- and cephalosporin-resistant Enterobacteriaceae (critical prior-
ity) and clarithromycin-resistant H. pylori, fluoroquinolone-resistant Campylobacter
spp., and fluoroquinolone-resistant Salmonella spp. (all high priority) (428). Drugs with
novel targets and modes of action therefore are urgently required to treat multidrug-
resistant infections. The second is the recent validation that energetics is a fruitful
target space for antibiotic development (1, 3). This is reflected by the landmark FDA
approval of the ATP synthase inhibitor bedaquiline and the clinical development of
respiratory chain inhibitors for tuberculosis treatment (360, 429, 430). Whereas most
drugs target growth-related processes, inhibitors of energy metabolism can be bacte-
ricidal for pathogens during growth and persistence (429, 431).

However, inhibiting H2 metabolism still is likely to be a challenge for several reasons.
First, given H2 oxidation is a facultative process in most pathogens, hydrogenase
inhibition may not exert effects as severe as those targeting core oxidative phosphor-
ylation complexes. Hydrogenase inhibitors are likely to be most effective against
H2-dependent respiratory pathogens with limited metabolic flexibility, for example, H.
pylori (9) and C. concisus (78), as well as obligate fermenters, such as C. perfringens (15)
and T. vaginalis (16). However, as evidenced by metronidazole-resistant mutants of T.
vaginalis (399), even organisms that obligately metabolize H2 potentially can bypass
this pathway when subject to intense selection. Hence, therapies solely reliant on
hydrogenase inhibition may fail, but there is promise in therapies that inhibit hydro-
genases together with other targets (either through combination therapies or mono-
therapies with pleiotropic effects). Inhibitor development is also complicated by the
presence of multiple hydrogenases in many pathogens that can potentially cross-
compensate, for example, in S. Typhimurium and T. vaginalis (Table 2). This may be
overcome by the products of single-copy genes required for hydrogenase function,
such as certain maturation factors and nickel importers.

Finally, administration of hydrogenase inhibitors is likely to lead to some off-target
effects. While hydrogenases are absent from human cells, most gut bacteria encode
hydrogenases (particularly [FeFe]-hydrogenases) (7), and disruption of normal H2 cy-
cling is strongly linked to gastrointestinal dysbiosis (6). Such effects theoretically could
be alleviated by specifically targeting hydrogenase classes primarily associated with
pathogens (e.g., group 1b [NiFe]-hydrogenases). Moreover, off-target effects are also
likely to be justified under certain circumstances, for example, in patients with severe
infections or those already exhibiting significant gut dysbiosis.

Strategies for Inhibitor Development

Several options exist to develop hydrogenase inhibitors. The most promising is to
screen purify enzymes or whole cells using colorimetric hydrogenase assays (e.g.,
viologen assays) (432, 433). Structure-based drug design is also an option in some
cases, given X-ray crystal structures are now available for the three different uptake
hydrogenases of Enterobacteriaceae (212, 213, 215, 243). There may also be value in
exploring synergies of hydrogenase inhibitors in combination therapies, given H2

metabolism is strongly linked to energy conservation during persistence in multiple
pathogens (9, 18, 275, 294). In addition to their clinical potential, the availability of
specific hydrogenase inhibitors would also provide much insight into the biochemistry,
physiology, and ecology of H2 metabolism for researchers within and outside biomed-
ical disciplines.

Another avenue to explore is the use of quinone analogs to inhibit the quinone
reductase site of uptake hydrogenases. Such inhibitors are likely to have pleiotropic
effects. However, a range of studies suggests that such hydrogenases are dispropor-
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tionately more sensitive to quinone analogues than other primary dehydrogenases
(e.g., complex I) (125, 434–436). This is particularly reflected by both laboratory and
clinical strains of H. pylori, which are highly sensitive to inhibition by HQNO (74). As
many quinone reductase inhibitors and quinone analogs are already available, screen-
ing them for inhibition of H2-oxidizing activity and inhibition of H2-dependent cell
growth (32) is likely to yield hydrogenase inhibitors and reveal promising leads for
antibiotic development. In this regard, it is notable that coenzyme Q and some of its
analogs are already considered safe by the FDA for use as health supplements.
Furthermore, other quinone analogs are currently used as antibiotics, although it is
worth noting that their complete, or even primary, mode of action is not known
(437–440). Hence, there are precedents for successful drug development and regula-
tory approval in this space.

Another potentially fruitful approach is to target one of the specific metals required
for hydrogenase activity, namely, nickel. Targeting iron is not a valid option, given the
ubiquitous importance of the metal for both microbial and mammalian cellular pro-
cesses. In contrast, nickel is an attractive target, given no major effect on host cells is
expected, because mammals are not known to synthesize Ni-dependent enzymes.
Several groups, including our own, have previously proposed that nickel sequestration
is a possible therapeutic approach (148, 441–443). Sequestering nickel from cells is
predicted to prevent the maturation of [NiFe]-hydrogenases. We fully acknowledge
this approach will not uniquely inhibit the hydrogenases; nickel inhibitors would
also pleiotropically act to prevent the synthesis and/or activity of a range of
other Ni-requiring enzymes. Other than [NiFe]-hydrogenases, urease- and nickel-
dependent superoxide dismutase, acireductone dioxygenase, and glyoxalase I are
among the bacterial enzymes that use nickel as cofactors. In fact, it is estimated that
Ni-requiring enzymes are important for the virulence of at least 40 bacterial and
nine eukaryotic pathogenic species (443). At least five of these species contain more
than one nickel enzyme that is important in pathogenesis, for example, H. pylori,
which depends on both [NiFe]-hydrogenase and urease for virulence (9, 444).
Nickel-chelating chemicals, as well as histidine-rich peptides, are among candidate
chelators to explore; the challenge is to use those that are highly specific for nickel
over other metals.

The Ni chelation approach has already been tested against S. Typhimurium. Besides
[NiFe]-hydrogenases, nickel-dependent acireductone dioxygenase and glyoxalase I are
present in the pathogen, although urease is missing. A recent study from our laboratory
revealed that the nickel-specific chelator dimethylglyoxime (DMG) (i) inhibits H2-uptake
activity in S. Typhimurium; (ii) is safe, even at high (millimolar) levels both in mamma-
lian (mouse) and insect (wax moth larva) models; and (iii) protects against S. Typhimu-
rium infection. Indeed, DMG treatment led to reduced mouse colonization (decreased
bacterial burden in the spleen and liver of DMG-treated mice), as well as reduced
mortality in both mice (50% survival) and wax moth larvae (60% survival) compared to
that of the control group (100% mortality in both mice and insects) (445). While
DMG-mediated hydrogenase inhibition might only partially account for the observed
reduced virulence, these findings nevertheless validate that a nickel chelation strategy
is a promising approach against hydrogenase-containing pathogens. One caveat is that
beneficial Ni-requiring prokaryotic and eukaryotic microorganisms may be an impor-
tant component of a healthy human gut, so multiple aspects of host physiology could
be affected by nonspecific disruption of nickel homeostasis.

Other Intervention Strategies

Beyond small-molecule inhibitors, other experimental approaches are available to
prevent or treat infections of H2-metabolizing pathogens. One is to manipulate micro-
nutrient availability through dietary modulation or chelation therapy. For example,
there is evidence from animal and human studies that low-nickel diets help to prevent
H. pylori infection, which reflects the critical roles of hydrogenase and urease in this
pathogen (148, 446, 447). Manipulating H2 metabolism by gastrointestinal microbiota
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may also help to prevent or treat infections (Fig. 2). Although an underexplored area,
H2 metabolism in pathogens can be both positively and negatively influenced by
interactions with other H2 consumers or producers. This is best reflected by the
hydrogenotroph S. Typhimurium, which depends on hydrogenogenic bacteria but
competes with hydrogenotrophs to invade the GIT (see “Salmonella Typhimurium:
differential roles of hydrogenases during infection” above). Likewise, H2 producers
depend on interactions with hydrogenotrophs to maintain H2 partial pressure at
sufficiently low concentrations for secondary fermentations to remain thermodynam-
ically favorable (7, 99, 100, 107). A range of strategies is possible to influence H2

dynamics in the GIT, including dietary manipulation, probiotic intake, and fecal trans-
plants (6). However, the development of sophisticated interventions depends on
advancing our currently rudimentary understanding of the physiology and ecology of
H2 metabolism in the human GIT.

CONCLUSIONS

H2 metabolism is still oftentimes referred to as a side metabolism characteristically
associated with anaerobes. We hope that this broad perspective, in a manner similar to
that of our recent work highlighting the environmental importance of H2 metabolism
(36, 100, 448, 449), will help to change this narrative by emphasizing the central role of
H2 metabolism in pathogenesis. Here, we definitively show that H2 metabolism is a
widespread and important feature of pathogens. This metabolism is critical for the
expansion of facultative anaerobes into different niches and is central to the energy
conservation of many obligate anaerobes. Indeed, H2 metabolism is proving to be
important for the pathogenesis of the main cellular agents of enteritis, gastritis, and
gastric cancer and also supports pathogens of the urinary tract, oral cavity, and muscle
tissue. In turn, there is promise that these challenges will be met through developing
new antibiotics or other therapies targeting this space.

This review equally reflects that there are many gaps in our knowledge of H2

metabolism. This includes major specific questions, for example, regarding how obli-
gately anaerobic bacterial pathogens metabolize hydrogen and why they have multiple
hydrogenases. Perhaps more of a concern, however, is the fact that we lack a holistic
understanding of the gastrointestinal H2 economy and in turn how this influences
infection dynamics. Amid the current gut microbiota revolution, while much attention
has been given over to carbon and nitrogen transactions (92, 96, 97), the role of H2

exchange is still underappreciated. Further studies are also warranted to explore
whether metabolic flexibility, particularly with regard to H2 metabolism, contributes to
the persistence of pathogens in environmental reservoirs.
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