
Concise Review: Human-Animal Neurological Chimeras: 
Humanized Animals or Human Cells in an Animal?

Andrew T. Cranea,b, Joseph P. Votha,c, Francis X. Shend,e, Walter C. Lowa,c,e

aStem Cell Institute, University of Minnesota, Minneapolis, Minnesota, USA;

bMinnesota Craniofacial Research Training Program, University of Minnesota, Minneapolis, 
Minnesota, USA;

cDepartment of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA;

dUniversity of Minnesota Law School, Minneapolis, Minnesota, USA;

eGraduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota, USA

Abstract

Blastocyst complementation is an emerging methodology in which human stem cells are 

transferred into genetically engineered preimplantation animal embryos eventually giving rise to 

fully developed human tissues and organs within the animal host for use in regenerative medicine. 

The ethical issues surrounding this method have caused the National Institutes of Health to issue a 

moratorium on funding for blastocyst complementation citing the potential for human cells to 

substantially contribute to the brain of the chimeric animal. To address this concern, we performed 

an in-depth review of the neural transplantation literature to determine how the integration of 

human cells into the nonhuman neural circuitry has altered the behavior of the host. Despite 

reports of widespread integration of human cell transplants, our review of 150 transplantation 

studies found no evidence suggestive of humanization of the animal host, and we thus conclude 

that, at present, concerns over humanization should not prevent research on blastocyst 

complementation to continue. We suggest proceeding in a controlled and transparent manner, 

however, and include recommendations for future research with careful consideration for how 

human cells may contribute to the animal host nervous system.
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Introduction

In the broadest of definitions, a chimera is “a single biological entity that is composed of a 

mixing of materials from 2 or more different organisms” [1]. In Greek mythology, the 

chimera was a composite organism of different body parts from wildly divergent species. 

More recent variations of the chimera can be found in North American folklore (jackalope, 

hodag, Jersey Devil, etc.) as well as in modern literature such as Margaret Atwood’s 

speculative fiction Maddaddam trilogy. Far from the mythical and bizarre, however, 

chimerism—using the above definition—can commonly be found within the human brain. 

Microchimerism, the natural transfer of cells from a fetus which can cross the placenta and 

integrate within the maternal host, has been observed within the brain of over half of 

sampled women [2]. Similarly, female recipients of bone marrow transplantation contain 

neural and non-neural cells derived from the male donor marrow [3]. Human–human 

neurological chimeras have also existed as part of clinical trials investigating the efficacy of 

cell-mediated therapies for devastating neurological disorders such as Parkinson’s disease 

(PD), Huntington’s disease (HD), and spinal cord injury (SCI).

Blastocyst Complementation

Advances in mammalian gene editing, pluripotent stem cell culture, and embryo 

micromanipulation technology have culminated in attempts to grow authentic interspecies 

organs through blastocyst complementation (for a comprehensive review, see [4]). This 

emerging methodology has the potential to generate whole organs and tissues comprised 

entirely of cells from a single human donor (Fig. 1). To accomplish this, embryos from one 

organism are genetically engineered so that they lack functional gene(s) necessary for the 

development of the tissue of interest. The organogenesis-disabled embryos are then 

microinjected with healthy pluripotent stem cells (PSCs) from a second organism and are 

then transferred into a maternal surrogate. Through normal mammalian development, the 

microinjected PSCs occupy the niche left by the gene knockout and develop into a 

functional organ. This technique has successfully generated functioning allogeneic or 

xenogeneic pancreata in mice, rats, and pigs [5–8]. Microinjection of human cells into the 

wild-type porcine embryo has also led to human–animal chimerism across multiple organ 

systems, including neural cells [7].

A primary goal of blastocyst complementation is to meet the high-demand for human organs 

by producing fully functional human tissues and organs to be well-matched and ready for 

transplantation. Aside from the clinical potential of blastocyst complementation, the 

procurement of healthy human tissue also has the potential to impact the basic- and 

translational-sciences through disease modeling, drug discovery, and studies of 

transplantation biology.

Objections to Human–Animal Chimerism

A major concern echoed throughout the public response period to the National Institutes of 

Health (NIH) proposed changes in the guidelines regarding human–animal chimera research 

(NOTOD-16–128) is the “creation of human–animal beings with partly or substantially 

human brains” and whether such chimeras possess “humanized” characteristics. Given the 
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current NIH moratorium on funding research proposals involving human–animal chimeras at 

the preimplantation embryo stage, it is difficult to secure funding to answer the question, 

“Will generation of human neural tissue within animals through blastocyst complementation 

produce ‘humanized’ animals?” However, we can ask the following surrogate question: “Has 

biomedical research involving transplantation of human tissue into the central nervous 

system (CNS) of animals altered the cytoarchitecture of the host brain resulting in an altered 

cognitive and behavioral state of the animal which could be considered human-like?”

In this review, we examine the outcomes of 150 transplantation studies in 112 peer-reviewed 

publications in which human cells have been targeted to the mammalian CNS (Fig. 2). These 

studies, not under moratorium by NIH, range from basic- to translational-science, and our 

focus is on the types of cells being transplanted within the nonhuman mammal and the 

degree to which the transplanted human cells are integrated. Although behavioral tests to 

identify human-specific attributes have not been performed in any transplant study, to date, 

we will also examine whether the transplanted human cells have enhanced the cognitive/

behavioral abilities of the host to levels above wild-type animals. Because the ethical, legal, 

and social implications (ELSI) of human–animal chimerism and the potential for 

humanization of the animal host have been explored elsewhere [9–11], do not discuss the 

ELSI issues at length. The review aims to provide a necessary empirical foundation for those 

important ELSI debates.

Human–Animal Chimerism

General Neurological Chimerism

In an attempt to provide insight into the early stages of human neural development, several 

labs have transplanted clonally expanded human neural stem cells into the brains of perinatal 

mice and rats, a point at which neural development is still occurring, translating to mid-

gestation in human prenatal development [12]. In these studies, up to 1 million cells from 

dissociated neurospheres were transplanted into the ventricles or subcortical regions. In 

some of these animals, human cells were observed over 1 year following transplantation [13, 

14] with integration throughout the brain and migration of human cells along the rostral 

migratory stream to the olfactory bulbs [13–16] and into the proliferative subventricular 

zone (SVZ) [14]. The phenotype of the transplanted cells ranged from immature neuronal 

cells weeks following transplantation [15–18] and region-specific mature neuronal 

phenotypes months following transplantation [13, 15–17]. Ourednik and colleagues were 

interested in identifying the migration and differentiation potential of fetal-derived human 

neural stem cells following intraventricular transplantation into the brains of fetal Bonnet 

macaque at 12–13 gestational weeks [19]. This group observed terminal differentiation of 

human cells into neurons with appropriate cortical laminae that appeared to match the 

development of the host. These studies have provided evidence that a single cell type is 

likely to give rise to most cell types within the developing brain.

Experiments in transplantation of neural stem/progenitor cell (NS/PC) derived from fetal 

tissue [16, 20–25], ESCs [24, 26–30], or other sources [31–33] have been published that 

describe survival, neural maturation, and integration of unique cell lines. Survival of 

transplanted cells was highly variable with instances of complete cell rejection [27, 33], 
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fewer than one observed transplanted cell per cubic mm [20, 28], or a complete doubling of 

transplanted cells [21]. The transplanted cells differentiated toward an immature neuronal 

phenotype early following transplantation that appeared more developed starting around 10 

weeks post-transplantation [20, 28, 31]. Primary fetal tissue isolated from the developing 

cortex, thalamus, and striatum were transplanted into adult rats and were observed up to 40 

weeks following transplantation and differentiated into immature or mature neurons as well 

as astrocytes that were spread throughout the SVZ, rostral migratory stream, and in the 

white matter of the corpus callosum [17, 24, 34, 35].

More recently, the group from the Gage lab developed a system to observe the growth and 

maturation of human brain like structures, termed organoids [36]. In this study, human ESC 

derived organoids were transplanted into a cavity in the retrosplenial cortex of 

immunocompromised mice. The transplanted organoids were observed to maturate and 

extend axons that integrated with the host neuronal circuitry, as measured by optogenetics 

and electrophysiology. Furthermore, the organoids were vascularized by the host and 

infiltrated with microglia. In a test of spatial learning and memory, none of the transplanted 

mice displayed significant alterations in behavior.

Transplantation of healthy neural cells into a nondiseased brain has improved our knowledge 

of neural development, cell migration and terminal differentiation. Although most of these 

studies did not directly measure behavior of the transplanted animals, none of the authors 

suggested the animals displayed altered characteristics that could be construed as human-

like. Furthermore, none of these studies suggested an alteration of the cytoarchitecture of the 

host brain. To the contrary, multiple studies noted that the host organism dictated migration 

and transplanted cells followed the differentiation cues from the host [13, 14, 16, 19, 21].

Neurological Chimerism and Behavior

Neurological diseases and injuries can cause profound deficits in behavior and cognition. 

Current estimates for the prevalence of Alzheimer’s disease (AD), provided by the 

Alzheimer’s Association, suggest 5.5 million Americans are living with AD, a number 

expected to rise dramatically [37]. Transplantation of human NS/PCs into either transgenic 

mice or hippocampal lesioned rats ameliorated learning and memory deficits in the Morris 

water maze (MWM) task [38–41]. As AD is a disorder of global brain degeneration, the 

targeted site for transplantation is a debated issue. Direct transplantation into the affected 

hippocampal formation demonstrated a limited degree of migration [38, 39, 42], whereas 

transplantation into the lateral ventricles migrated out through the SVZ to the hippocampus 

and other subcortical regions through white matter tracts [40, 43]. Transplantation of human 

cells has also been used to model AD. In one study, human ESC-derived NS/PCs 

functionally integrated into the neonatal AD transgenic mouse brain and were present up to 

8 months post-transplantation, during which time the human cells were showing signs of 

degeneration similar to AD patients [44]. Transplanted cells from all of these studies were 

observed to survive and differentiate into immature neurons as well as astrocytes and glia, 

but mature neurons expressing choline acetyltransferase were rarely observed [38, 39, 44].

Neurological injuries occurring as a result of ischemic stroke or traumatic brain injury (TBI) 

can also have a profound impact on cognitive and behavioral function. Reported statistics 
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within the United States place the yearly incidence of stroke at nearly 800,000 individuals 

[45] and roughly 2,800,000 emergency department visits related to TBI [46]. Long-term 

disability is common in individuals surviving these injuries, often requiring years of 

physical-, speech-, and occupational-therapy. Although these disabilities are difficult to 

measure experimentally in animals, the MWM task can assess spatial learning and memory 

that are significantly impaired in stroke and TBI animals. Transplantation of NS/PCs derived 

from fetal brain as well as the NT2N cell line were able to attenuate MWM deficits back 

toward baseline levels as early as 2 weeks post-transplantation and lasting up to 12 weeks 

post-transplantation [47–51]. Hippocampal transplantation of fetal-derived NS/PCs 48-hours 

following middle cerebral artery occlusion reduced early sensorimotor deficits in the sticky-

dot task in mice [49]. Many studies observed that transplanted cells remained in an 

immature neuronal phenotype up to 13 weeks post-transplantation [52–58]. Transplanted 

cells were also observed to differentiate toward a glial phenotype [47, 59, 60].

Cell-based regenerative therapies for AD, stroke and TBI are at a nascent stage in 

development, with a variety of hurdles to overcome before it is seen as a viable therapeutic 

option. Preclinical transplantation of human cells into rodent models were able to ameliorate 

some of the cognitive and behavioral deficits albeit rarely returning to, or rising above, 

healthy levels. This benefit may be due, in part, to trophic effects of the transplants, rather 

than integration of the graft as few studies noted alterations in synapse formation of host 

cells [38, 44, 49] and no study noted an alteration in the cytoarchitecture of the host brain.

Neurological Chimerism and Motor Function

Transplantation of neural progenitor cells as a therapy for PD has arguably advanced the 

furthest of any neurological cellular therapy, to date. Although PD affects multiple systems 

throughout the body, the clinical diagnosis of PD occurs as a result of the loss of 

dopaminergic neurons within the substantia nigra (SN) projecting to the striatum (STR). It is 

estimated that the prevalence of PD is near 2 individuals per every 1,000 in the population, 

with increased risk associated with age [61]. Preclinical success of cellular transplantation 

for PD is due to the identification of a population of neural progenitors that can innervate the 

STR and release dopamine to near physiological levels, which can be achieved using a 

variety of cell sources [62, 63]. Fetal ventral mesencephalic tissue is a dopaminerich source 

of cells that are capable of integrating with the denervated STR and has resulted in the 

rescuing functional deficits in the rat and nonhuman primate following transplantation [34, 

64–69]. Within these grafted animals, a strong outgrowth of tyrosine hydroxylase (TH) 

fibers from the graft core into the host STR has been observed, suggesting that the grafts are 

integrating with the host neurons.

Due to the limited availability of human fetal tissue and the variability of cell populations in 

transplants derived from fetuses of different gestational ages, several labs have focused on 

identifying alternative sources of cells for transplantation into PD. Differentiation of PSCs, 

in vitro, toward a dopaminergic progenitor has advanced largely due to the dual SMAD 

inhibition and floor-plate specification protocols [70, 71]. Using variations of this protocol, 

multiple groups have focused on differentiation of ESCs, which have observed strong 

integration of graft-derived TH+ fibers in the host STR of mice, rats, and nonhuman 
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primates [72–79]. Transplantation of iPSC derived dopaminergic progenitors have similarly 

displayed robust engraftment and functional benefits in unilaterally lesioned rats [80].

From analysis of post-mortem tissue correlated with behavioral outcomes in human fetal 

tissue clinical trials, Hagell and Brundin suggest, at a minimum, 100,000 surviving TH+ 

neurons need to be present for a sustained therapeutic benefit [81]. Within the rat, numerous 

studies report amelioration of amphetamine-induced rotational deficits with as little as 1,000 

human TH+ neurons. In some cases, up to 20,000 human TH+ neurons were observed in the 

rodent striatum [71, 76] more than doubling the estimated number of dopaminergic neurons 

in the healthy rat SN pars compacta [82].

Similar to PD, HD is a movement related disorder that is a result of an autosomal dominant 

mutation of the Huntingtin gene leading to the death of medium spiny neurons within the 

STR and glutamatergic neurons of the cortex [83]. Transplantation of fetal tissue into HD 

patients has been seen as a relative success in clinical trials [84–86]. Preclinical data 

suggested that tissue derived from the human fetal ganglionic eminences could engraft into 

the STR in the quinolinic acid lesion model of HD, survive up to 9 months post-

transplantation, and ameliorate apomorphine-induced rotational deficits [34, 87–90]. 

Primary fetal grafts from 6 to 11 postgestational week ganglionic eminences, still containing 

dividing cells, resulted in differentiation toward immature neurons and few region-specific 

mature neurons [91, 92].

Similar to the issues associated with fetal transplants in PD, the research field in HD moved 

preclinical transplantation toward finding new sources of tissue, such as in vitro expanded or 

Myc immortalized fetal-derived NS/PCs. Studies in which fetal NS/PCs were transplanted 

into the rodent striatum demonstrated poor outcomes with little or no improvement in 

behavioral measures, and poor survival or integration into the host circuitry [92–98]. 

However, differentiation of PSCs toward a neural stem cell fate or toward a medium spiny 

neuronal fate show promise in reducing deficits associated with the quinolinic acid model 

[99–102]. Transplants of PSC-derived NS/PCs survived up to 4 months post-transplantation, 

differentiated toward medium spiny neurons and also expressed synaptic marker PSD95, 

suggestive of integration with the host [102–104].

Transplantation of human tissue into animal models of PD or HD has proven invaluable as 

new regenerative therapies are advancing toward the clinic, providing benefit for the 

individuals diagnosed with these devastating neurological disorders. Early preclinical studies 

transplanting fetal-derived tissue into the animal host has laid the groundwork for PSC 

derived progenitor cells. In all of these studies, no group has reported findings in which the 

grafted cells altered the behavioral state of the animals above baseline levels or altered the 

cytoarchitecture of the host brain.

Neurological Chimerism in the Spinal Cord

SCI affects more than 250,000 people in the United States, with vehicular and fall-related 

injuries being the most common causes [105]. Injury of the spinal cord results in partial or 

complete loss of limb sensation and function depending on the severity of the injury. Rodent 

models of SCI attempt to reproduce injury from either a temporary compression or 
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contusion of the spinal cord or a complete transection. In these rodent models, human ESCs 

or iPSCs differentiated toward NS/PCs or glial cells are most commonly transplanted into 

the lesion epicenter or surrounding vertebrae. Two- to six-months following transplantation, 

counts of surviving cells ranged from less than 1% to as high as 23.9% [106–109]. Another 

study observed a plateau of approximately 400,000 surviving human cells within the spinal 

cord, regardless of initial dose [110]. Although the vast majority of transplanted cells remain 

within the transplantation site, there have been reports of migration more than 7 mm distal to 

the site of transplantation, corresponding to approximately 3 vertebrae [108, 110, 111]. 

Multiple studies have observed that transplanted cells differentiate into oligodendrocytes, 

suggesting that the human cells may be supporting endogenous surviving neurons [106, 

109–111]. Similarly, terminal differentiation of transplanted human NS/PCs into astrocytes 

also provides a therapeutic benefit, likely due to increased trophic support [107, 112]. 

Transplantation human cells into SCI rats demonstrate marginal behavioral improvements in 

open-field, flat beam, and rotarod tests, relative to SCI control animals [108–110, 113, 114].

The most common motor neuron disorder in adults is amyotrophic lateral sclerosis (ALS), 

which is characterized by the loss of both upper and lower motor neurons resulting in 

muscle atrophy and ultimately death most commonly due to the inability to contract the 

diaphragm. Over 90% of ALS cases are considered idiopathic, and death usually occurs 3–5 

years after the onset of symptoms [115]. Variants of the superoxide dismutase 1 (SOD1) 

gene have been linked to familial ALS and is present in 5%–10% of all human ALS cases. 

Both ESCs and iPSCs differentiated toward NS/PCs or glial cells have been transplanted 

directly into the spinal cord of rodent models of ALS. Human cells have been observed 

within transplanted animals up to 9 months post-transplantation and have been shown to 

form neurites, axons, and even functional neuromuscular junctions [116–118]. However, the 

terminal differentiation of these cells is variable. One study demonstrated that human cells 

are still in an immature state at 9 months post-transplant, suggesting the human cells may 

not be at a phenotypic state to completely integrate into the rodent CNS [119]. Two separate 

groups observed that up to 1,600,000 human cells integrated into the spinal cord of mutant 

SOD1 transgenic rodents up to 9 months post-transplant, with the majority of transplanted 

human cells differentiating toward astrocytes [117, 120]. Although some studies have shown 

grafted human neural stem cells to extend axons and innervate muscle, it is likely that the 

benefits seen are at least in part due to the neuroprotective mechanisms exerted by the 

engrafted human cells [116, 119, 121–125].

Transplantation studies of human cells into the diseased and injured spinal cord of rodents 

has demonstrated a therapeutic benefit with encouraging cell survival and integration of the 

human graft with animal host tissue. Preclinical transplantation of human NS/PC or glial 

progenitors into the spinal cord of rodent models of SCI and ALS have provided new 

therapeutic options for future clinical trials. In these 2 conditions, transplantation of human 

cells has not altered the behavioral state of the host above baseline levels, nor altered the 

cytoarchitecture of the host CNS.
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Neurological Chimerism Using Human Glial Progenitors

The demyelinating disease multiple sclerosis (MS) is characterized by the progressive loss 

of myelinating oligodendrocytes in the CNS, resulting in numbness, tingling, tremors, and 

loss of mobility. Human cell transplantation studies in adult rodent models of MS have 

shown variable results. Transplants of fetal glia progenitors into the adult brain as well as 

ESC- or iPSC-derived NS/PCs into the adult spinal cord have shown limited benefit, beyond 

an altered immunomodulatory effect [126–128]. Transplants of human fetal-derived NS/PCs 

were found to survive up to 9 weeks in the demyelinated primate brain while remaining in a 

progenitor state [129] and 25 weeks in the brain of the shiverer transgenic mouse focally 

myelinating cells around the site of transplantation [130].

The greatest degree of neurological chimerism in any of the studies and disease states 

mentioned thus far has been observed in multiple studies by Goldman and colleagues at the 

University of Rochester. In these studies, human glial precursors isolated from fetal NS/PCs 

are transplanted into the corpus callosum of neonatal shiverer transgenic mice, resulting in 

the ultimate replacement of the endogenous mouse glia with human glia [131]. This 

replacement has developed an entire human glial network within the mouse brain, where 

300,000 initial human glial precursor cells proliferated into an estimated 12 million human 

glial cells throughout the entire shiverer mouse CNS [131–134]. Adult shiverer glial 

chimeric mice showed reduced seizure activity and extended overall survival as well as 

myelination patterns and glial networks similar to what is observed in wild-type mice. 

Human glial progenitors derived from human iPSCs have demonstrated similar effectiveness 

in myelinating the shiverer mouse CNS [135].

One study that deserves special attention transplanted fetal-derived glial precursors into 

neonatal immunodeficient mice and found human glia throughout the entire brain within 12–

20 months and was organized in a laminar structure, a phenotype previously thought to be 

present only in humans and nonhuman primates [136]. The human astrocytes maintained a 

human astrocyte morphology (i.e., larger nuclei, long projections) within the mouse brain. 

Functionally, human astrocytes propagated calcium waves significantly faster than mouse 

astrocytes resulting in enhanced rates of field excitatory postsynaptic potentials and long-

term potentiation. Behaviorally, chimeric mice displayed an improvement in the speed of 

acquisition of an auditory fear conditioning response, reduced latency to escape the Barnes 

maze, and an increase in the ability of mice to remember the locations of objects in the 

object-location memory task, relative to wild-type mice. It is likely that the enhanced ability 

to learn in the human/mouse astrocyte chimeras is a result of subtle differences between the 

functions of human and mouse astrocytes rather than human astrocytes forming novel 

neuronal pathways. However, the enhanced ability of these human/mouse chimeras to learn, 

regardless of whether the neuronal architecture is altered, is an important observation that 

necessitates further research.

Discussion

The purpose of this review was to summarize the literature in which human tissue has been 

transplanted into the CNS of mice, rats, and nonhuman primates, in order to answer the 

question: “Will generation of human neural tissue within animals through blastocyst 
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complementation produce humanized animals?” Although the ultimate answer to this 

question requires additional research, our review of the scientific literature finds that human/

animal chimerism has not yet generated animals that possess an altered cognitive or 

behavioral state which trends toward “human-like.” To the contrary, few studies 

transplanting human cells into a diseased or injured animal restored cognitive or motor 

function to levels of healthy animals.

Several key variables need to be considered when interpreting these findings. First, most 

studies implanted human cells into mice (30%) or rats (64%). The mouse brain contains an 

estimated 70 million neurons and 23 million glia, the rat brain contains an estimated 200 

million neurons, and the human brain contains an estimated 86,000 million neurons and 

85,000 million glia [137–140]. It would be unlikely that even a majority of human neurons 

within the rodent brain would substantially alter the cognitive abilities of the chimeric 

animals, due to the small size, limited cytoarchitecture and connectome of the rodent brain. 

Relevant to blastocyst complementation, the domestic pig has a gyrencephalic brain with 

roughly 2.5% of the total number of neurons relative to humans, similar to the total number 

of neurons in the rhesus macaque [141, 142]. Of the 6% of studies in this review in which 

human cells were transplanted into the nonhuman primate brain, no team identified an 

observational alteration in the behavior of the nonhuman primate.

The second variable that needs to be considered is the age of the host at the time of 

transplantation. The majority of studies transplanted human neural tissue into adult animals 

(84%) compared with prenatal or neonatal animals (16%). It is likely that the age of the 

transplant recipient will impact the degree of chimerism as the developing brain is more 

plastic to the integration of transplanted cells. One study observed that the neonatal mouse 

brain promoted the survival and migration of transplanted human cells when compared with 

adult mice [143]. Multiple studies transplanting human fetal glial progenitor cells into 

demyelinated neonatal mice show the human cells integrate and out-compete endogenous 

mouse glia, effectively creating a largely human glial network within the demyelinated 

mouse brain [131–136], whereas transplantation of other cell types into adult demyelinated 

animals results in limited engraftment [130, 144]. Although it is likely the case that 

transplant recipient age affects the outcome of transplantation, more work needs to be done 

to determine the extent of these effects.

Ethical concerns have been raised about the possibility that the introduction of human stem 

cells into a nonhuman blastocyst could potentially alter the brain connectome of the host to 

the degree to which we would observe evidence of neural connections of the type and 

magnitude that would be required to produce human-like thought and behavior [9]. 

Although more research is required to address the concern more completely, work by the 

Nakauchi group demonstrated that through generating a rat pancreas within the mouse, using 

blastocyst complementation, the size of the pancreas was similar to that of a normal mouse 

and not the rat. This suggests that in the context of interspecies complementation, the 

development of the host species likely dictates the ultimate size of the complemented organ 

[5]. Likewise, we speculate that generating human neural cells in the nonhuman host would 

produce a connectome that would be dictated by the host species. Thus the elaboration of 

human behavior through a human connectome would be unlikely.
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A final consideration is that preclinical and clinical studies using human fetal brain tissue for 

transplantation demonstrate that neural precursors derived from the fetal brain are the most 

suitable for transplantation. Therefore the need to allow chimeras to come to term for the 

harvesting of neural cells for transplantation is not required and addresses the concerns of 

chimeras being born that express human behaviors.

Recommendations for Future Complementation Research

The 150 transplantation studies reviewed here suggest that complementation of nonhuman 

mammalian embryos with human stem cells is not likely to substantially alter the behavior 

of the chimera in a manner which can be construed as humanized. However, research on the 

potential humanization of chimera animals remains limited, and further investigation is 

required to more fully explore the plausible risks. Research in blastocyst complementation 

should be allowed to continue, carefully and with transparent milestones, in order to better 

evaluate these unknown risks. As the scientific community begins to discuss these 

milestones, we recommend the following be included:

• Complementation of human cells in the livestock embryo should not surpass 

mid-gestation without determining the extent of chimerism in all tissues, 

including neurogenic regions, thus providing an early time point to alter or 

abandon the experimental protocol.

• Blastocyst complementation for the purpose of nonneurological organs should 

not be allowed to come to term until a thorough and reproducible analysis of 

neurological structures can determine the extent of chimerism in preterm fetuses, 

with the goal of limiting neurologic chimerism.

• Blastocyst complementation for the purpose of treating neurological disorders 

should harvest tissue at a progenitor stage, and therefore chimeric animals will 

not be allowed to come to term. However, neurological chimeras should be 

analyzed for the purity of human cells within the target structure as well as 

outside of target structure.

• Blastocyst complementation for the purpose of neurological disease modeling 

should be allowed to come to term after a thorough analysis of the preterm brain 

has been established and if on-target chimerism is limited to motor regions of the 

brain, allaying concerns over human chimerism to prefrontal cortex and 

hippocampal regions.

• Chimeric animals should be separated at weaning and not allowed to breed, in 

case human gametes are found in chimeric livestock.
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Significance Statement

Due to a severe shortage of human organs and tissues, thousands of patients die each year 

due to an inability to procure organs for transplantation. Blastocyst complementation is a 

methodology that has the potential to generate large quantities of functioning human 

organs and tissues but is hindered by a National Institutes of Health moratorium on 

funding, citing concern over substantial human cell contribution to the brain of the 

animal. This review summarizes published, peer-reviewed studies on human–animal 

neural transplantation and suggests that this concern over neurological chimerism should 

not prevent research to continue in a controlled and transparent manner.
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Figure 1. 
Cartoon schematic of blastocyst complementation. Human pluripotent stem cells grown in 

vitro are microinjected into genetically engineered porcine blastocysts which are then 

transferred to surrogate sows. The chimeric blastocysts develop to a fetal stage in which 

neural stem/progenitor cells can be harvested from the brain or to live-born animals where 

adult organs are processed for transplantation into patients.
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Figure 2. 
Human cells used for preclinical or biomedical neurological research. For scientific review, 

we sampled a small fraction of the available peer-reviewed primary research articles in 

which human cells are transplanted into the CNS of mice, rats, and nonhuman primates. 

From these studies, a variety of cell lines were used which primarily fall into 3 categories: 

Embryonic stem cell (ESC) derived, induced pluripotent stem cell (iPSC) derived and fetal-

derived. These cells lines can either be expanded then differentiated into neural stem/

progenitor cells (NS/PC) or glial progenitors, or transplanted directly with minimal in vitro 

manipulation (fluorescent- or magnetic- activated cell sorting) and no in vitro expansion 

(primary fetal cells). Within our review, an additional category of NS/PC cell lines is 

identified, which includes direct conversion of somatic tissue to NS/PC and the 

teratocarcinoma-derived Ntera2/D1 cell line.
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