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Abstract

Recent work has explored spatio-temporal relationships between excitatory (E) and inhibitory (I) 

signaling within neural networks, and the effect of these relationships on network activity patterns. 

Data from these studies have indicated that excitation and inhibition are maintained at a similar 

level across long time periods, and that excitatory and inhibitory currents may be tightly 

synchronized. Disruption of this balance - leading to an aberrant E/I ratio - is implicated in various 

brain pathologies. However, a thorough characterization of the relationship between E and I 

currents in experimental settings is largely impossible, due to their tight regulation at multiple 

cellular and network levels. Here we use biophysical neural network models to investigate the 

emergence and properties of balanced states by heterogeneous mechanisms. Our results show that 

a network can homeostatically regulate the E/I ratio through interactions among multiple cellular 

and network factors, including average firing rates, synaptic weights and average neural 

depolarization levels in excitatory/inhibitory populations. Complex and competing interactions 

between firing rates and depolarization levels allow these factors to alternately dominate network 

dynamics in different synaptic weight regimes. This leads to the emergence of distinct 

mechanisms responsible for determining a balanced state and its dynamical correlate. Our analysis 

provides a comprehensive picture of how E/I ratio changes when manipulating specific network 
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properties, and identifies the mechanisms regulating E/I balance. These results provide a 

framework to explain the diverse, and in some cases, contradictory experimental observations on 

the E/I state in different brain states and conditions.

Graphical Abstract

Network can homeostatically regulate the E/I ratio and net postsynaptic current through 

interactions among multiple cellular and network factors, including average firing rates, synaptic 

weights and average neural depolarization levels in excitatory/inhibitory neuronal populations, 

leading to the emergence of distinct mechanisms responsible for determining a balanced E/I state 

and its dynamical correlate. This in turn leads to emergence of multiple balance states having 

different dynamical properties.
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Introduction

Since it was first proposed that excitatory/inhibitory (E/I) balance emerges within brain 

networks (van Vreeswijk & Sompolinsky, 1996), a large body of theoretical and 

experimental work has focused on clarifying its regulation and possible role in maintaining 

desired spatio-temporal activity states (Deneve & Machens, 2016). Co-occurring E/I 

responses have been observed for many modalities, e.g., in auditory cortex (D’Amour & 

Froemke 2015; Wehr & Zador, 2003), visual cortex (Liu et al., 2009; Tan et al., 2013), and 

olfactory cortex (Poo & Isaacson, 2009, Stettler & Axel, 2009). Besides activity evoked by 

stimuli, balanced excitation and inhibition also appears to be present during spontaneous 
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brain activity (Graupner & Reyes, 2013; Murphy & Miller, 2009) and may play a critical 

role in generating certain brain rhythms (Atallah & Scanziani 2009).

Despite these experimental findings, two questions remain unresolved. First, how does E/I 

balance contribute to the spatio-temporal patterning of neuronal microcircuit activity? 

Second, what are the underlying mechanisms promoting E/I balance across brain networks? 

E/I input to neurons was initially proposed to balance only over long timescales, leading to 

the notion of “loose E/I balance” with specific statistics of the firing patterns (Brunel 2000; 

Rudolph et al., 2007; Salinas & Their, 2000; van Vreeswijk, 1998). This idea was challenged 

by experimental phenomena, such as efficient coding of irregular spiking, and the correlation 

of membrane potentials between neurons responding to similar stimuli (Cohen & Kohn, 

2011; Gentet et al., 2010; Yu J, Ferster 2010), which cannot be explained by loose 

interactions of E/I cells (Deneve & Machens, 2016). More recent findings have 

demonstrated that inhibition can closely track excitation at a millisecond timescale, leaving 

only a brief window of disinhibition for neurons to fire. This “tight balance” has been 

observed in brain regions such as somatosensory cortex (Okun & Lampl 2008), 

hippocampus and piriform cortex, as well as in vitro (Atallah & Scanziani 2009) and in 

computational simulations (Renart et al.,2010). Indeed, disinhibition is thought to be 

significant in learning and memory (Letzkus et al., 2015).

The interaction of recurrent inhibitory and excitatory circuits also regulates the occurrence 

of cortical up- and down- states ( Haider et al., 2006; Shu et al., 2003), and it was shown that 

different levels of correlation between excitation and inhibition can emerge from the same 

neuronal circuitry, depending on the specific cortical state - with correlations observed to be 

lower during anesthesia than during states exhibiting up- and down-state activity (Tan et al., 
2013).

One roadblock to understanding the regulation and function of E/I balance is a lack of 

technical ability to experimentally quantify E/I ratios. It is impossible to simultaneously 

measure the excitatory and inhibitory post synaptic currents (EPSCs and IPSCs) at every 

neuron across a network. Several indirect experimental quantifications (for example cell-

wise measurement of excitatory and inhibitory conductance obtained from whole-cell 

recording) have also been used ( Landau et al. 2016; Monier et al., 2008; Tan et al., 2013; 

Wehr & Zador, 2003; Xue et al., 2014). Although each of these capture characteristics of E/I 

balance in some way, none of them quantifies all of the features that simultaneously 

contribute to E/I balance. Further, such measurements can only infer E/I ratio from a 

selected subset of neurons, which may not accurately represent E/I ratios at the network 

level.

To investigate E/I balance in a network and its dynamical correlates, we use a computational 

model network composed of biophysical neurons, and quantify E/I ratio as the ratio between 

mean levels of total EPSC and IPSC across the network. By systematically varying 

parameters, we show that a network can homeostatically regulate E/I ratio over a wide range 

of E/I levels and reach asymptotic balance states after evolving for a period of time. These 

balanced states are generated by multiple, heterogeneous cellular and network mechanisms. 

We particularly analyze the multiple E=I balanced states to show that synaptic conductance 
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levels, average firing rates and average membrane potential levels contribute to the E/I ratio 

in a distinct manner, thus defining different mechanisms governing E/I balance. These 

results demonstrate that E/I ratio states are not achieved by varying the excitation (or 

inhibition) in the network monotonically, but instead can be achieved by different 

combinations in a non-monotonic way, and result in a diverse range of network dynamics.

Materials and Methods

Neuron Model

Modified Hodgkin-Huxley Model—The model networks in these studies consist of 

biophysical Hodgkin-Huxley-type (Stiefel K et al., 2009) single compartment neurons with 

the following equation defining the overall dynamics of neuronal currents for the i-th 

neuron:

C
dV i
dt = − gNam∞3 ℎ V i − V Na − gKdrn4 V i − V K − gL V i − V L + Iidrive − Ii

syn

Each neuron receives an external applied current, Ii
drive, consisting of both a constant 

subthreshold current and external noise. To simulate neuronal heterogeneity, each cell 

receives a random subthreshold current chosen from a Gaussian distribution centered around 

−0.2 μA/cm2 with a deviation of 0.1 μA/cm2. External noise is modeled by the delivery of 

brief (0.05ms), square, 30uA/cm2 current pulses, at intervals dictated by a Poisson process 

(with an average frequency of 40 Hz except Figure 6; we additionally tested effects of 

different noise frequencies in Fig. S2 in supplemental material). The kinetics of neuronal Na
+ conductance are governed by the steady state activation function

m∞ V = 1 + exp −V − 30.0
9.5

−1
,

and the inactivation gating equation

dℎ
dt = ℎ∞ V − ℎ /τℎ V ,

with ℎ∞ V = 1 + exp V + 53.0
7.0

−1
, and τℎ V = 0.37 + 2.78 1 + exp V + 40.5

6.0
−1

.

Neuronal K+ conductance is gated by the variable n, which evolves in time according to the 

equation

dn
dt = n∞ V − n /τn V ,

with n∞ V = 1 + exp −V − 30.0
10.0

−1
, and τn V = 0.37 + 1.85 1 + exp V + 27.0

15.0
−1

. In 

addition, the leak conductance is given by gL=0.02mS/cm2. Other parameters are set to 

gNa=24.0 mS/cm2, gKdr=3.0 mS/cm2, VNa=55.0mV, VK=−90.0mV, and VL=−60.0mV. This 
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model exhibits Type 1 dynamics in terms of phase response curves and current-frequency 

relation (Smeal et al., 2010). Ignoring (important) mathematical details of cell level 

excitability properties (Ermentrout, 1996), the type of membrane excitability determines the 

capacity for neurons in the network to synchronize, with networks consisting of type 2 

neurons exhibiting significantly increased capacity to synchronize (Boggard et al., 2009; 

Smeal et al., 2010). This becomes an additional important consideration when dealing with 

emergence of E/I balance. Here we concentrate predominantly on cell (population) 

activation as the variable driving changes in E/I balance, hence the choice of Type 1 

excitability.

Network simulation

Networks contain 2000 neurons, 1000 with excitatory (E) synapses and 1000 with inhibitory 

(I) synapses. While this ratio is not physiological we found that our results do not depend on 

it as the ratio of cells is offset by the number of connections originating from the given cell 

type. For the main results, neurons were randomly connected with connectivity probability 

3% (i.e. providing on average ~60 connections per cell).

In separate simulations, when investigating the role of network topology on the evolution of 

E/I balance, we applied the Watts-Strogatz framework to obtain Small World network 

connectivity (Watts & Strogatz, 1998) to a two-layer network composed of interconnected 1-

D rings of excitatory (E) neurons and inhibitory (I) neurons. For this network configuration, 

each neuron is initially connected to 3% of their nearest neighbors in each layer. 

Connectivity structure is varied by rewiring each E and I connection to a randomly chosen 

post-synaptic target neuron with probability given by the rewiring parameter rpE and rpI, 

respectively. In this way we can easily control the network topology with more local 

excitation or inhibition depending on specific values of rpE and rpI.

Synaptic current transmitted from neuron j to neuron i at time t is given by

Iij
syn = w exp −

t − tj
τ V i − Esyn

where tj is the timing of the presynaptic spike in neuron j. The parameter w refers to the 

synaptic weight, where excitatory (wE) and inhibitory (wI) weights are changed separately. 

The reversal potential Esyn is 0mV for excitatory synaptic current and −75mV for inhibitory 

synaptic current. Synaptic current decay rate τ is set to be 0.5ms for both synapse types, 

simulating fast AMPA-like and GABA-A-like synaptic currents. Therefore, the total 

synaptic current to neuron i at time t is Ii
syn = ∑j ∈ ΓiIij

syn, where Γi is the set of pre-synaptic 

neurons to neuron i.

The dynamics of the network is numerically integrated by a fourth-order Runge-Kutta 

method with a time step 0.05ms. Total simulation time is 3 seconds, and the results shown 

are averages over 5 simulations.
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Mean Phase Coherence (MPC) measurement

The firing pattern and synchronization of neuron spike trains generated in the network are 

quantified by the Mean Phase Coherence (MPC) (Mormann, 2004). For the k-th spike in the 

spike train generated by neuron j denoted as tj,k, its relative phase to the spike train 

generated by neuron i is given by θjik = 2π
tj, k − ti, k

ti, k + 1 − ti, k
, where ti,k is the timestamp of the 

nearest spike prior to tj,k in spike train i and ti+1,k is the nearest spike following tj,k. The 

phase coherence of spike train j to spike train i is defined as σj, i = 1
N ∑k = 1

N eiθjik , where N 

is the total number of spikes in train j. This pairwise mean phase coherence takes on values 

between 0 and 1, with 0 indicating completely random firing, and 1 indicating stable phase 

locking.

Quantification of E/I ratio

At each time step, the total E and I synaptic current in the network is recorded. The mean E 

(or I) current is calculated by averaging these values over the whole time of the recording. 

We quantify the E/I ratio of the network as the ratio of mean E to mean I synaptic current, 

measured during time period T: E
I =

∫0
T ∑i ∑j ∑kwEexp

tj, k − t
τ V i t − EsynE dt

∫0
T ∑i ∑j ∑kwIexp

tj, k − t
τ V i t − EsynI dt

, where k 

denotes the spike number occurring in the j-th pre-synaptic cell, j sums over all connected E 

cells in the numerator and over all connected I cells in the denominator, and i sums over all 

cells in the network.

In addition, we quantify the difference of synaptic currents or total current, calculated by 

subtracting the mean inhibitory current from the mean excitatory current, as this quantity is 

more directly connected to neuronal activity. The E=I balanced state is given by E/I ratio 

equals to 1 and zero total current.

Quantification of tightness of balance

The E/I ratio only quantifies the relative values of the excitatory and inhibitory synaptic 

currents averaged across the simulation. To further investigate the temporal relationship 

between the two currents and the tightness of balance, we calculated the cross correlation of 

the IE and II currents time traces, given by IX t = ∑i ∑j ∑kwXexp
tj, k − t

τ V i t − Esyn
X

where X=E,I and j sums over pre-synaptic neurons of type X and k sums over pre-synaptic 

spikes occurring before time t. By definition, loose balance corresponds to equal average 

amounts of excitatory and inhibitory current during a period of time, but without showing 

significant correlation between the current traces. Tight balance, on the other hand, is 

characterized by significant temporal correlation where fluctuations in inhibitory current 

closely follow the fluctuations in excitatory current (Deneve & Machens, 2016; Hennequin 

et al., 2017).
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Results

Here we investigate emergence of global asymptotic balance between excitatory and 

inhibitory currents in mixed excitatory-inhibitory neural networks. We vary the relative level 

of excitation and inhibition by changing the structural network parameters (i.e. synaptic 

weights) or neuronal input levels.

First, we manipulated E/I ratio in a randomly connected network by varying synaptic 

weights (Fig. 1a) - for a fixed inhibitory synaptic weight wI, the excitatory synaptic weight 

wE was increased from 0 mS/cm2 up to about 3 times the value of wI. For each value of wE, 

we allow network dynamics to evolve to an asymptotic stable state, and then compute E/I 

ratio and total current (i.e. sum of excitatory – inhibitory currents; E – I) during a 3s time 

window. The curves in Fig. 1b track the relationship between E/I ratio values and total 

current values as wE was increased. Each data point on the curve represents one asymptotic 

E/I ratio for a specific value of wE. As evident in the figure, the E/I ratio does not 

monotonically increase as wE is increased, but can switch between excitation-dominant (E/I 

ratio > 1 and positive total current) or inhibition-dominant (E/I ratio < 1 and negative total 

current) regimes and cross the E=I balanced state (E/I ratio = 1 and zero total current) 

multiple times. Furthermore, the same value of E/I ratio can correspond to different values of 

total current with different network dynamics and firing patterns. The results show that the 

E/I level of the network cannot be represented comprehensively by either E/I ratio or total 

current alone, but requires both measures in a 2-D phase space. We demonstrate that this 

behavior is robust under a broad range of network parameters such as connectivity density 

(Fig. 2a), ratio of excitatory cells (Fig. 2b), and various connectivity parameters (Fig. 2c and 

d). We have also tested the behavior of the network against different noise frequencies (Fig. 

S3 in supplemental material) and two different neuronal models (Fig. S4 and Fig. S5 in 

supplemental material) obtaining qualitatively the same results indicating that this pattern of 

E/I regulation is general and applies to different neural systems. In the following sections, 

we give detailed characterizations of how network dynamics are governed by firing rates, 

synaptic weights, and neural membrane potentials, and at the E=I balanced state identify the 

mechanisms accounting for each balanced state regime by exploring the relationship 

between each dynamical characteristic and network E/I level. The turning points on the E/I 

trajectory split the balance states into three different regimes with different governing 

mechanisms. We study the three regimes by taking the three E=I balance states as examples. 

Finally, to test the universality of the results against network connectivity structure, we 

investigate how different network topologies affect the changes in E/I ratio and the 

occurrence of multiple balanced states as synaptic weights are varied. The consistency of the 

results demonstrates that our framework applies to a wide range of networks in a generic 

way.

Network E/I trajectory crosses the E=I balanced states up to three times in response to 
varying synaptic weights.

We first investigated how the E/I ratio evolves as a function of excitatory coupling for 

networks having different levels of overall coupling strength. The trajectory curves in Fig. 

1b show the relationship between E/I ratio and total current values in asymptotic balance 
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states as wE was increased for 3 different values of wI; we adjusted wE accordingly to obtain 

the same E/I ratios. For each wI value, initially, when wE = 0 mS/cm2, the E/I ratio was 0 

and the total current fluctuated near zero. As wE increased, E/I ratios increased but current 

differences remained small as the network passed through an E=I asymptotic balanced state. 

For each value of wI, the E=I balanced state was reached for different values of wE. Fig. 1c 

shows how total spike numbers in the network (during the 3s simulation in the asymptotic 

balance state) varied with E/I ratio as wE was systematically increased. When wE ~ 0 

mS/cm2 (and network activity was driven only by noise), network activity remained low in 

all networks as they crossed the E=I balanced state for the first time.

For networks with weak inhibitory connectivity (blue and red curves), as wE increased and 

E/I ratios increased significantly past the E=I balance point, excitatory synaptic current 

rapidly overtook the networks’ dynamics and increased network firing rates. In the network 

with weakest inhibition (blue curve), E/I ratio saturated around 3, and the network remained 

in an excitation-dominant regime (positive E/I ratio). For networks with stronger inhibitory 

connectivity (red and yellow curves), two loops emerge in the trajectory curves: after 

crossing the E=I balanced state for the first time (inset, arrow 1), as wE increased further, the 

trajectories turned around (arrow 2) and the networks crossed the E=I balanced state for a 

second time. As wE continued to increase, the networks entered an inhibition-dominant 

regime (E/I ratio < 1, negative total current). However, upon further increases in wE, E/I 

ratios increased, leading to a third crossing of the E=I balanced state. Network firing rates 

continued to increase during these subsequent crossings of the E=I balanced state. As shown 

in Fig. 1c, the networks generally showed higher spike rates with higher wE, while the E/I 

ratio oscillated around 1. For the highest values of wE, the networks remained in the 

excitation dominant regime with increasing total current and network firing.

The surprising finding that E/I ratio repeatedly returns to 1 as excitatory current increases, 

suggests, somewhat counterintuitively, that higher excitatory coupling may actually result in 

lower E/I ratio and total current in the network - increasing excitatory current can drive 

increases in inhibition, leading to non-monotonic changes in E/I ratio. A similarly 

counterintuitive effect was documented by (Tsodyks et al., 1997) where increases in 

inhibitory inputs to a neuronal network lead higher overall firing-rates (as observed here, 

Fig. 1b). For networks with strong inhibitory connectivity, we observe the formation of two 

loops in the trajectory curves, one in the excitation-dominant regime (i.e., E/I ratio is greater 

than one) and one in an inhibition-dominant regime (i.e., E/I ratio is below one). This shows 

that states exhibiting a particular E/I balance are not unique, but correspond to a set of 

network states with differential dynamical properties.

To validate the generality of the non-monotonic E/I trajectories, we also analyzed networks 

with different parameters, to consider various possible biological realisms (Fig. 2). 

Compared to the trajectory in Fig. 1b, the qualitative pattern stays the same for all the new 

parameter combinations, connectivity density, the excitatory to inhibitory cell number ratio, 

asymmetry in various connection strengths, and finally different neuronal formalisms. The 

only additional modification made in these simulations was to adjust the value of wI 

accordingly to maintain trajectories in the appropriate range. First, as the sparsity of 
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connectivity of the brain networks can vary from region to region, we investigated whether 

the effect averages out with higher network connectivity (Fig. 2a).

As it has been measured that the percentage of excitatory cells in the mammalian cortex is 

around 80% (Braitenberg & Schuz, 1991), we modified the cell ratio accordingly - this case 

is shown in Fig. 2b.

In the original simulations (Fig. 1), we set wEE = wEI = wE, wII = wIE = wI. As there is no 

evidence demonstrating that the excitatory (or inhibitory) synaptic weights are the same for 

synapses targeting excitatory and inhibitory populations, we applied different values for 

wEE, wEI, wIE, wII (Fig. 2c and 2d) and tested cases where wEI>wIE and wEI<wIE.

In supplemental material we further investigate universality of the observed result as we 

change frequency of the applied noise to every neuron (Fig. S3) and, finally, to validate that 

results are not due to the cellular properties of a specific neuron model, we simulated 

networks of Wang-Buzaki neurons (Wang & Buzsáki, 1996) in Fig. S4, and integrate-and 

fire neurons (Fig. S5).

It is evident that all the E/I trajectories under different parameter values display the same 

qualitative shape, indicating that the dynamic properties and the mechanisms in our 

framework are robust and are not constrained by some specific parameters of our models. 

Therefore, in the following discussion, we consider the network/cell parameters described in 

the yellow curve of Fig. 1b to illustrate results and analyze mechanisms.

Network firing patterns are different in the three E/I balance regimes.

We next investigated the differences in network dynamics at the E = I balanced states. As we 

will show below, the three different balance regimes, separated by the turning points of the 

two loops of the trajectory curves, are governed by qualitatively distinct mechanisms.

To better understand the differences in dynamics between E/I balanced states, we focused on 

a network with moderate inhibition (wI = 0.2 mS/cm2, yellow curve in Fig. 1b, c) that 

showed three crossings through E/I =1. We chose the three values of wE at which the 

network resides at (or near) the E=I balance point (Fig. 3a–c). Fig. 3 shows network firing 

raster plots (second row), distributions of pairwise mean phase coherences (MPC, third row), 

and pairwise relative phases (fourth row) between all synaptically connected neurons near 

the three E=I states.

For the first crossing of the E=I balanced state (left column), the system displayed random, 

sparse firing (Fig. 3d), driven principally by external noisy stimuli (see calculation 

distributions of coefficient of variation of interspike intervals for every neuron and the 

distributions of mean ISI themselves, Fig. 1S in supplemental data). The MPC distributions 

almost overlapped (Fig. 3g) for the four types of synaptically-connected cells (excitatory to 

excitatory (E-E), excitatory to inhibitory (E-I), inhibitory to excitatory (I-E), inhibitory to 

inhibitory (I-I)), and reflect no significant phase locking between the cell populations. The 

distribution of relative phases (Fig. 3j) for excitatory (E) pre-synaptic cells peaked at low 

values of phase, while it was at its minimum for inhibitory pre-synaptic cells at these phases. 

This is intuitive in that E neurons tend to promote firing in post-synaptic cells, leading to 
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small relative phases, while I neurons tend to suppress post-synaptic cell firing, thus 

inhibiting post-synaptic firing at small phases. These probabilities, however decay quickly 

(exponentially) to base value.

Network firing activity was greater at the second crossing of the E=I balanced state (Fig. 3e, 

also see Fig. S1 in supplemental material), but the firing pattern remained largely random. 

The distributions of pairwise MPCs (Fig. 3h) started to separate for the different types of 

synaptic connections between cells. Separation of the E-E and E-I pair groups (blue and red 

curves) to larger MPC values compared to the I-E and I-I pair groups (yellow and violet 

curves) means that neurons fired somewhat more coherently when pre-synaptic neurons 

were excitatory. The differences in the profiles of the pairwise phase distributions (Fig. 3k) 

between pairs with E pre-synaptic neurons (blue and red curves) and pairs with I pre-

synaptic neurons (yellow and violet curves) was maintained and solidified compared to the 

first crossing, reflecting the formation of more regular, causal firing patterns.

At the third crossing, network firing activity was high and some degree of synchronization 

started to emerge (Fig. 3f and Fig. S1 in supplemental material). The significant separation 

in MPC distributions (Fig. 3i) between pair groups with E pre-synaptic cells (blue and red 

curves) compared to I pre-synaptic cells (yellow and violet curves) points to higher 

coherence with E pre-synaptic neurons. Relative phases (Fig. 3l) when pre-synaptic E cells 

are shifted towards 0 and 2π, indicating some degree of synchronization in the network. The 

larger peak in the distribution at 0 compared to 2π reflects a causal relationship in firing 

without synchronization. The phases for I pre-synaptic neurons, on the other hand, show a 

similar dip for low phase values as observed near the other balanced states without any 

significant change for higher phase values.

In summary, a significant separation in the distributions for both pairwise MPC and relative 

phases for E pre-synaptic cells and I pre-synaptic cells appeared gradually from the first 

crossing (Fig. 3g, j) to the third crossing (Fig. 3i, l), indicating a transition from a sparse and 

random firing pattern to a more organized and causal firing pattern. While the trend appears 

at the second crossing, it is more distinct at the third crossing where relative phases are 

clustered around 0 when pre-synaptic cells are excitatory, indicating causal initiation of post-

synaptic firing. The rightward shift in MPC values from the first to the third crossing is 

further evidence for an increase in the coherence of the firing pattern.

Detailed dynamics at the E=I balanced states: first crossing.

Next, to understand the cellular and network mechanisms underlying regulation of network 

dynamics at E=I balanced states, we separately considered the factors that influence the E/I 

ratio on both the cellular and network level. Here, conceptually, we can consider total 

synaptic current as consisting of the product of three factors: 1) the number of synaptic 

events (which is dictated by the overall firing activity of E or I cells), 2) the strength of 

synaptic events (governed by synaptic weight parameters), and 3) the driving force of 

synaptic current (dictated by the difference between the mean membrane voltage of the post-

synaptic cells and the current’s reversal potential). Thus, we can represent the E/I ratio by 

the following expression:
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E
I =

total IE
syn

total II
syn ≅ excitatory population frequency

inℎibitory population frequency ×
wE
wI

×
∑iV i − EE

syn

∑iV i − EI
syn ,

where V i is mean membrane potential of the i-th cell and i sums over all cells in the network. 

In our results in Fig. 1 and Fig. 3, we varied synaptic weights wE and wI, which induced 

changes in the other factors, altered the level of firing activity, and changed membrane 

potential. In an attempt to disentangle the interactions among these factors, we implemented 

a different method to manipulate E/I ratio in the network. To do this, wE and wI are fixed at 

specific values near an E=I balanced state, and E/I ratio is varied by changing the frequency 

of external stimuli (random, pulse like events) to E cells in the network. The frequency of 

these events was varied between 5 and 75 Hz, while noise event frequency to I cells was 

maintained at 40Hz (Fig. 4a). Since here the synaptic weights are fixed, crossing through the 

E=I balanced state is caused by changes in the other two factors (i.e. spike frequency and 

mean voltage difference between cell membrane potential and reversal potential in above 

equation). Therefore, we monitored mean synaptic currents, firing rates, and the mean 

membrane potential of cells in the network to further characterize the three balanced states 

displayed in the network with moderate inhibition (wI = 0.2 mS/cm2) from Fig. 3. We start 

with a detailed analysis of the first crossing of the E=I balanced state.

We set wE to a value such that the network sits just below the first E=I balanced state. Fig. 

4b shows the relationship between the E/I ratio and the mean firing rates of the E and I cells 

as the noise event frequency to the E cells was increased from 5 to 75 Hz. At the lowest 

noise frequency, E/I ratio was low (~ 0.2) and E cells (blue curve) fired less than I cells (red 

curve). As the noise frequency was increased, E/I ratio increased, with the firing rate of E 

cells (blue curve) increasing more than that of I cells (red curve), which were also increased 

as a result of greater excitatory synaptic activity in the network. As the E=I balanced state 

was approached (i.e. with increasing noise frequency), E cell firing rates surpassed I cell 

firing rates and the difference in firing rates (Fig. 4c) between E and I cells moved from 

negative values to positive values.

To track the efficacy of the synaptic currents due to increased firing in the network, we 

computed the mean membrane potential of E and I cell populations, V E and V I, respectively 

during simulations with increasing noise frequency. Fig. 4d shows the difference between 

mean membrane potentials and the reversal potentials (i.e. distance to RP) of E (blue curves, 

left vertical axis) and I (red curves, right vertical axis) synaptic currents, EE
syn and EI

syn, 

respectively. Due to increasing firing activity in the network, mean membrane potentials of 

both E and I cell populations were depolarized, resulting in their voltage values closer to 

EE
syn and farther from EI

syn for both populations. The E cell population depolarized at a 

higher rate (as a function of increasing noise frequency) than the I cell population with 

increasing noise frequency (as shown in Fig. 4d and e). The difference between mean 

voltages and EE
syn, V E − EE

syn − V I − EE
syn , transitioned from positive values to negative 
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values as noise frequency increased (blue curve). The difference between mean voltages and 

EI
syn showed opposite behavior (red curve).

Based on these data, we conclude that the first balanced state is achieved in the network by 

increased firing rates of the excitatory cell population relative to the inhibitory cell 

population. However, this difference in firing rates is partially compensated by a decrease in 

the efficacy of excitatory synaptic currents in the network, due to decreased voltage 

difference between membrane potential and reversal potential. The results shown in Fig. 4d 

suggest that EPSCs and IPSCs are differentially distributed to E and I cell populations. We 

next took a closer look at this.

In the E=I balanced state, mean total EPSC and mean total IPSC are equal in the network. 

However, excitatory and inhibitory synaptic currents are not necessarily uniformly 

distributed among E and I cell populations. Here we analyze the relative magnitudes of the 

four types of post-synaptic currents: excitatory current to E cells (EPSC at E cells), 

excitatory current to I cells (EPSC at I cells), inhibitory currents to E cells (IPSC at E cells), 

inhibitory currents to I cells (IPSC at I cells), where “EPSC” and “IPSC” refer to mean total 

synaptic current arriving at the post-synaptic population (Fig 5a). As the noise frequency in 

E cells was increased and the E/I ratio passed through the E=I balanced state, all four types 

of synaptic current increased. At the E=I balanced state, the difference between total EPSC 

and total IPSC (values of blue curves – values of red curves when E/I ratio is 1) is zero. To 

identify the relative distribution of synaptic currents in the network, we next considered what 

we call the “net current difference” which we defined in two different ways, as follows.

First, we computed the net synaptic current received by E cells and I cells separately (Fig. 

5b, c). To do this we separately calculated the net synaptic current received by E-cells as 

(EPSC at E cells) – (IPSC at E cells) (Fig. 5b), and the net synaptic current received by I-

cells as (EPSC at I cells) – (IPSC at I cells) (Fig. 5c). As the noise frequency in excitatory 

cells increased and E/I ratio crossed through the E=I balanced state, net synaptic current to 

both cell populations increased from negative values to positive values reflecting a greater 

increase in the excitatory synaptic current received by both populations compared to 

inhibitory synaptic current. We then compute a “net current difference” by subtracting the 

net synaptic current curves in Fig. 5b and 5c (Fig. 5f). This net current difference shows that 

the synaptic currents to the inhibitory cell population dominate at this crossing of the E=I 

balanced state: below the E=I balanced state, IPSC at I cells is greater than IPSC at E cells. 

As the E=I balanced state is crossed, EPSC at I cells is greater than EPSC at E cells.

Second, we compared the relative magnitudes of EPSCs and IPSCs received by the two cell 

populations (Fig. 5d, e). This alternate way takes the point of view of the synaptic current in 

the network. We computed the difference between EPSC received by E cells and I cells: 

(EPSC at E cells) – (EPSC at I cells) (Fig. 5d), and the difference between the amount of 

inhibitory synaptic current received by E and I cells (IPSC at E cells) – (IPSC at I cells) 

(Fig. 5e). Below the E=I balanced state, the I cells receive more inhibitory current while the 

excitatory current is roughly evenly distributed, but as the noise frequency to E cells 

increases, EPSC at I cells exceeds that at E cells. The difference of the curves in these two 

panels yields the “net current difference” in Fig. 5f.
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Thus, a characteristic of this E=I balanced state is that increased activity of E cells drives the 

network into an excitation-dominant regime, in which E cells increase their firing rates 

relative to I cells. While the efficacy of EPSC in the network decreases due to reductions in 

driving force (i.e., due to overall depolarized membrane potentials), as the E=I balanced 

state is crossed, EPSC dominates over IPSC (Fig. 5b and c). At the E=I balanced state, I 

cells receive more EPSC than E cells (Fig. 5d) and beyond the E=I balanced state, in the 

excitation-dominant regime, E cells receive more IPSC than I cells (Fig. 5e).

Detailed dynamics at the E=I balanced states: comparison of dynamics at the three 
balanced states

We next extended this analysis to compare network dynamics at all three crossings of the 

E=I balanced states (Fig. 6). Near each, we chose a value of wE and increased E cells’ noise 

frequency to vary the E/I ratio. For each wE value, we examined the trajectory of the E/I 

ratio and the difference in firing rates between E and I cells (first column, similar to Fig. 4c), 

and the difference between the absolute value of the mean membrane potentials of E and I 

cells (second column, similar to Fig. 4e). This latter value directly affects the relative voltage 

distance of the two cell populations to EPSC and IPSC reversal potentials. We also assessed 

the trajectory of the E/I ratio vs. net current difference (as in Fig. 5f; third column; arrows 

indicate the direction of change as noise frequency increases) and vs. total current (E-I) in 

the network (as in Fig. 1a; fourth column).

Additionally, in Fig. S3 of supplemental data we show that changes due to increasing noise 

frequency follow the same path as those due to increasing wE (blue, black and yellow). At 

the first crossing (top row), trajectories for different wE values almost overlap, suggesting 

that the state of the network is determined by the relative frequency of cell population firing. 

At the 2nd crossing (middle row), trajectories for different synaptic weights occupy different 

intervals of E/I ratio values, but all show the same trends as noise frequency increases. This 

suggests that noise and internal synaptic interactions together control network dynamics. 

Finally, at the 3rd crossing (bottom row), synaptic weight has a much greater effect on E/I 

ratio as trajectories remain essentially at fixed E/I values as noise frequency increases. In 

this case, external drive does not strongly affect network dynamics due to strong synaptic 

interactions (caused by high wE values) in this regime.

As, at each of the three crossings of the E=I balanced state, the trajectories for different wE 

values (Fig. S3) are similar with increasing noise frequency, indicating a qualitative 

consistency of effects, we focused on properties of one trajectory (black) for each crossing 

(Fig 6). The trajectory through the first crossing of the E=I balanced state (Fig. 6, top row) 

replicates the results shown in Fig. 4c, 4e (blue curve), and 5f, respectively. Near the second 

crossing (middle row), initially the frequency of I cells is higher than that of E cells. As E 

cells’ noise frequency increases, their firing frequency increases relative to that of I cells, 

resulting in smaller firing rate differences (Fig. 6e). This results in depolarization of both 

cell types in the network, evidenced by smaller differences in mean voltage between E and I 

populations (Fig. 6f). Depolarization causes the EPSC driving force to decrease and 

consequently, the IPSC driving force to increase, overall decreasing EPSCs and increasing 

IPSCs. This change is not uniform, however, as E cells depolarize more than I cells (i.e. 
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V E − V I  becomes negative). These two effects result in overall decrease of net current 

difference (Fig. 6g), due to a) increased depolarization of E cells vs. I cells, and b) the 

increase in inhibitory current in the network resulting from depolarization of both cell types 

(Fig. 6h). Hence, at the second crossing of the E=I balanced state, either increased spiking of 

E cells or increases in excitatory synaptic weight act to push total network inhibition to be 

dominant. As we show below, membrane potential depolarization means that decreased 

EPSC driving force and increased IPSC driving force may be responsible for an overall 

decrease in EPSC efficacy in the network at the crossing of this balanced state.

At the third crossing of the E=I balanced state (third row), increasing noise frequency to E 

cells has smaller effects on E/I ratio than changes in wE (see also blue to black to yellow 

data points in Fig. S3). At this balanced state, E cells and I cells have similar firing rates 

(Fig. 6i) with I cells only slightly more depolarized than E cells (Fig. 6j). However, the 

wE/wI ratio skews the current significantly towards EPSC domination within the network. 

Moreover, as shown below (Fig. 8), greater synchrony of firing patterns emerges in this 

state, driving the network toward balanced firing rates. Thus, similar to the first crossing of 

the E=I balanced state, increases in excitatory synaptic activity (due to weight increases) act 

to push the network from the inhibition dominant regime into the excitation dominant 

regime.

Detailed dynamics at the E=I balanced states: Competition between the firing rate ratio and 
the depolarization ratio.

The primary distinction between the first and second crossings of the E=I balanced state is 

illustrated by relating the changes in total current (E-I, Fig. 6, last column) with changes in 

firing rate differences (first column) and membrane potential differences (second column) 

between E and I populations. At both crossings, increases in firing rate difference occur with 

decreases of voltage difference. However, at the first crossing total current increases 
mirroring the change in firing rate difference; in contrast, at the second crossing total current 

decreases in response to the change in voltage difference. This suggests that E/I ratio 

actually depends on competition between two opposing constraints: the ratio of firing rates 

of E and I cells (which we refer to as Nratio), and the ratio of driving forces for EPSCs and 

IPSCs (which we refer to as Vratio). Fig. 7 displays the trajectories of Nratio (x-axis) and 

Vratio (y-axis) for the three crossings, with E/I ratio values indicated by color. Here, as in 

Fig. 6, wE is constant and trajectories show changes in response to systematically increasing 

the frequency of noise events to E cells.

At the first crossing (Fig. 7a), E/I ratio increases mirror Nratio increases. At the same time, 

Vratio decreases, meaning that the change in E/I ratio is driven by Nratio in this regime. 

However, this relationship is reversed at the second crossing (Fig. 7b), with increasing E/I 

ratio mirroring increasing Vratio (while Nratio decreases). On the other hand, at the third 

crossing (Fig. 7c) there is no clear relationship between E/I ratio and either Nratio or Vratio. 

In this case E/I ratio is minimally affected by external noise frequency, and oscillates near 1 

(note the change in color scale). Taken together, these findings show that the change of E/I 

ratio in the network can result from different mechanisms, depending on the relative change 

of firing rates and depolarization levels of E and I populations.
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Detailed dynamics at the E=I balanced states: Quantification of tightness of E/I balance.

The E/I ratio measures the relative amounts of total EPSC and IPSC in the network across a 

period of time, but it does not indicate the temporal relationship between variations in these 

currents. To analyze differences in the temporal occurrence of EPSC and IPSC at the three 

balanced states, we calculated the cross-correlation of the time traces of total EPSC and total 

IPSC for a range of wE values in a network with moderate inhibition (wI = 0.2 mS/cm2) 

(Fig. 8). As wE increased driving the network across all three balanced states (Fig. 8a), 

stronger correlations and multiple peaks emerged, and the temporal delay between EPSC 

and subsequent IPSC decreased.

Cross-correlations at the three balanced states are shown in Fig. 8b. The first balanced state 

(red curve) displays a loose temporal relationship (corresponding to “loose E/I balance”) 

(Deneve & Machens, 2016), with no significant correlations between the two currents over 

time. In contrast, the second balanced state (green curve) shows “tight E/I balance” with a 

single peak in the correlation offset at a negative value indicating EPSC leading IPSC on a 

millisecond timescale. The third balanced state (violet curve) shows even tighter correlation, 

with a shorter delay and stronger correlation between the currents. Additionally, the 

appearance of multiple peaks in the correlation indicate that global oscillatory dynamics 

have emerged in the network.

Network topology affects the E/I ratio trajectory when changing synaptic weights.

Finally, to test the robustness of these different E/I balanced states, we varied the 

connectivity structure of the network (Fig. 9). We constructed a two-layer network (one E 

cell layer and one I cell layer), with synaptic connections both between and within layers. 

We started with nearest neighbor connections (2.5% connectivity density), then 

systematically varied inter-layer and intra-layer connectivity structure by defining synapse 

rewiring probabilities (rpE and rpI) which dictate the degree in randomness in re-wiring of E 

and I synapses, respectively. In Fig. 9 we consider nine different connectivity combinations: 

local excitation (rpE=0, first column), small-world excitation (rpE=0.2, middle column) and 

random excitation (rpE=1, last column) with local inhibition (rpI=0, blue curves), small-

world inhibition (rpI=0.2, red curves) and random inhibition (rpI=1, yellow curves).

As in Fig. 1, as wE increases (with moderate inhibition wI = 0.2 mS/cm2), the trajectories of 

E/I ratio values (x-axis) and total current (E-I) values (top row, y-axis) cross through the E=I 

balanced state up to three times as network firing rates (bottom row, y-axis) show non-

monotonic changes. When E connections are local (first column), the connectivity pattern of 

I synapses can have a large effect. For local or small-world inhibitory synaptic connectivity 

(blue and red curves), the E/I ratio trajectories are similar as with completely random 

connectivity - with three crossings of the E=I balanced state as wE is increased. However, 

with random inhibitory synaptic connectivity (yellow curves), resulting in global inhibition 

in the network, only two crossings of the E=I balanced state occurred. Furthermore, the 

network remained in the inhibition-dominant regime for high wE. This is due to the fact that 

EPSCs excite the I cell population only locally, while the global IPSCs can suppress firing 

effectively, evidenced by the flat portion of the firing rate trajectory (Fig. 9d, yellow curve). 

When E synapses have small-world (middle column) and random (right column) 
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connectivity structure, three crossings of the E=I balanced state occur regardless of the 

inhibitory synaptic structure. Here the global component of excitation, generated by random 

excitatory connections, offsets the effects of inhibitory synaptic connectivity. For random 

excitatory connectivity (c), the trajectory curves almost overlap for all inhibitory 

connectivity structures, while with small-world excitatory connectivity (b), the trajectory 

curves are modulated by inhibitory connectivity structure.

Discussion

Here we provide a schematic picture of the cellular and network mechanisms that determine 

changes of E/I ratio in a biophysical neural network model. Our results show that neurons 

and networks have a homeostatic capability to regulate the balance for excitation and 

inhibition via competitive contributions between firing rates and the voltage difference 

between membrane potential and the respective reversal potentials across a relatively wide 

range of network excitation levels. This homeostatic effect is particularly evident at the 

second E=I balanced state, where increased activity of E cells invokes increased IPSC in the 

network. On the other hand, we show that the dynamical mechanisms regulating a network 

toward balanced excitation and inhibition can change depending on the relative amount of 

excitation in the network, placing the system in diverse dynamical regimes. Specifically, at 

the first crossing of the E=I balanced state (when excitation in the network is low), firing 

rates of E cells drive changes in the E/I ratio, while at the second crossing (with higher 

excitation), E/I ratio is influenced by the efficacy of postsynaptic currents, which is 

determined by the voltage difference between membrane potential and the respective 

reversal potentials. Thus, our present data suggest that there is no universal E=I balanced 

state as defined by a single mechanism. Rather, our results show that the dynamics towards a 

balanced state is driven by the interaction of both network activity and cellular 

depolarization levels. Further, our results show that experimental measurement of single 

specific cellular or network properties, such as ratios of conductances (Monier et al., 2008) 

or PSC conductances alone (Wehr & Zador, 2003; Xue et al., 2014), may provide inadequate 

information about the true E/I ratio of the system. This is because the true E/I ratio results 

from combined (and interdependent) effects of firing rates, membrane depolarization, and 

synaptic weights.

Tightness of temporal correlation between excitation and inhibition (Fig. 8) is another 

important and experimentally measurable dynamical property providing information about 

the system’s activity regime. In our model, only the first crossing of the E=I balance point 

has low correlation between excitation and inhibition (i.e. “loose balance”) while the other 

two are tightly correlated (i.e. “tight balance”). This observation may provide an explanation 

for the emergence of the two types of balance. Loose balance emerges in a relatively low 

coupling regime and the variation in the relative strength of excitation and inhibition is 

driven predominantly by external input. This, in turn, results in a similar average level of E 

and I currents but no correlation. On the other hand, tight balance is due to recurrent 

interaction between excitatory and inhibitory synapses, which results in significant temporal 

correlation between the two currents. As depicted in Fig. 8, as excitatory synaptic weight wE 

increased, the correlation between the two currents developed and the temporal delay 

between them decreased. Here the specific dynamical regime in which the network resides 

Wu et al. Page 16

Eur J Neurosci. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



may be especially important, as it has been postulated that balanced excitatory transients 

may play an important role in amplification of neural activity patterns (Hennequin et al., 
2014; Kremkow et al., 2010; Murphy & Miller, 2009).

In our model, the first balance state provides conditions for temporally long balanced states 

during which such excitatory transients can occur whereas the two other balance states limit 

this temporal window to a couple of milliseconds. We, however, except for correlation 

analysis of E-I currents, did not study the emergence of such transients in our networks, as 

all our results are averaged over relatively long simulation runs. We speculate that the first 

balance state would be characterized by relatively long and spatially extended transients, 

while the duration and spatial extent at the other two balance states would be limited. 

However, in the second and third balance stat, the emergence of synchrony and temporal 

codes (in contrast to rate coding) could play an important role in pattern transmission 

(Kumar et al., 2010). Because here we specifically concentrated on networks composed of 

neurons with Type I membrane excitability (which impedes formation of synchronous 

clusters), the role of synchrony is necessarily limited. Future experiments will assess the 

emergence of synchrony in E/I balanced states in networks composed of neurons having 

Type 2 membrane excitability.

Finally, network connection topology may also affect the dynamics of E/I ratio and the 

pattern of E/I regulation. This is most clearly observed when excitation is kept local in the 

network. As shown in Fig. 9a, increasing randomness (i.e. scope) of inhibitory connections 

significantly alters how E/I ratio changes when increasing excitatory synaptic weight. In this 

case for high excitatory weight network remains in the inhibition dominant regime. 

However, the general mechanism of regulation stays the same as our framework, i.e. E/I 

ratio depends on the relative contribution between firing rates and depolarization level. 

While these studies provide insight on how the dynamics of excitatory and inhibitory 

currents change as a function of spatial distribution and extent of excitation and inhibition, 

we don’t directly study effects of structural or input heterogeneities on the local emergence 

of E/I balance. Such heterogeneities and clustering by themselves were shown to prevent 

emergence of detailed E/I balance and emergence of both fast spiking variability and slow 

firing rate fluctuations (Landau et al., 2016; Litwin-Kumar & Doiron, 2012). However, 

because E/I balance is critical for invariant computation in neural networks (Marino et al., 
2005), it may be preserved in the face of network heterogeneity via homeostatic plasticity in 

inhibitory synapses and spike-frequency adaptation (Landau et al., 2016).

A critical question is how the brain regulates the balance between excitation and inhibition 

on local and/or global levels. This question has been addressed by other studies showing that 

inhibitory homeostatic plasticity can play a critical role in regulating and controlling E/I 

balance on diverse spatio-temporal scales (Hennequin et al., 2017; Landau et al., 2016; 

Litwin-Kumar & Doiron, 2014; Sprekeler, 2017). However, our results potentially reconcile 

a number of other discrepant experimental observations. For example, one recent study 

suggested that E/I ratios are pushed towards an inhibition dominant regime during 

wakefulness, when compared with the same brain network under anesthesia (Haider & 

Hausser, 2013). However, other experiments have found that excitation and inhibition are at 

similar levels when comparing sleep states and wakefulness (Chellappa et al., 2016; Ly et 
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al., 2016; Niell & Stryker, 2010). These discrepancies may have profound implications for 

how the brain processes information. For example, the reported features of tuning curves for 

excitation and inhibition (i.e., in response to variations in external sensory stimuli) vary 

across studies. Similar tuning curves are observed in some experiments (Runyan et al., 2010; 

Wehr & Zador, 2003; Zhou et al., 2014) while others have found either wider tuning (Niell 

& Stryker, 2010; Kerlin, et al.,2010) or narrower tuning (Sun et al., 2013) for inhibition, as 

compared to excitation. We speculate that these discrepancies in experimental findings may 

result from differing contributions of firing rate and membrane depolarization between 

experiments, which push the networks under study into different balanced state realizations.

Together, our results point to complex interactions between excitatory and inhibitory 

currents in the balanced network regime. Our characterization of the repertoire of diverse 

balanced states provides a theoretical framework for experimental studies quantifying E/I 

balance and characterizing network interactions in various brain states and modalities.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Schematic of network structure illustrating synaptic interactions from inhibitory cells 

(red) with fixed synaptic weight wI and from excitatory cells (blue) with varied synaptic 

weight wE. Lightning bolts represent the external noisy stimuli with average frequency 40 

Hz applied to each neuron in the network. (b) Relationship between E/I ratio values and E-I 

current difference (total current) values in asymptotic balance states as excitatory synaptic 

weight wE was monotonically increased (arrows show direction of relative change with 

increasing wE). Four trajectory curves correspond to 4 values of inhibitory synaptic weight 

wI (given in legend in mS/cm2). Inset in panel b shows a close-up of the asymptotic E=I 

balanced state (i.e. when E/I ratio is near 1 and total current is near 0) with two trajectories 

(violet and yellow) that crossed this balanced state 3 times. (c) Trajectory curves of E/I ratio 

values and network spiking activity values (in Hz computed during the 1.5s simulation in the 

asymptotic balance state), as excitatory synaptic weight wE was systematically increased for 

the 4 values of wI (arrows show direction of change with increasing wE). For two trajectories 

(violet and yellow) although the E/I ratio oscillated above and below 1, spiking rates 

continued to increase as wE was increased.

Wu et al. Page 22

Eur J Neurosci. Author manuscript; available in PMC 2021 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. 
Trajectories of E/I ratio and total current values for networks with additional parameter 

changes addressing aspects of biological realism display the same qualitative behavior. 

Comparing with Figure 1b, the value of one parameter is changed in each panel while other 

parameters stay the same as original simulation. Inhibitory weight wI is adjusted accordingly 

to show the appropriate E/I ratio range. a) random network with increased connectivity 

density (20% vs 3%, wI=0.2mS/cm2); b) 80% excitatory cells and 20% inhibitory cells 

(wI=2.8mS/cm2); c) different values for the four types of synapses, wEE is varied, wEI = 
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0.35mS/cm2, wIE = 0.5mS/ cm2, wII = 0.7 mS/ cm2; d) same as panel e) but the values for 

wEI and wIE are reversed: wEI = 0.5mS/ cm2, wIE = 0.35mS/ cm2, wII = 0.7 mS/cm2.
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Figure 3. 
Firing patterns near three E=I balanced states for a network with wI = 0.2 mS/cm2. The 

excitatory weight, wE is chosen near the balanced state as marked on panels (a-c). (d-f) spike 

raster plot; (g-i) distribution of pairwise Mean Phase Coherences (MPCs) and (j-l) 

distribution of pairwise relative phases of neuronal firing computed near each balanced state. 

Mean Phase Coherences (MPC) (g-i) and relative phases (j-l) are computed only for pairs of 

synaptically connected neurons. The pairs are separated into four groups depending on the 

synaptic connections between them: excitatory to excitatory (E-E), excitatory to inhibitory 

(E-I), inhibitory to excitatory (I-E), inhibitory to inhibitory (I-I).
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Figure 4. 
Analysis of network factors contributing to E/I balance at the first crossing of the E=I 

balanced state. (a) Schematic of alternate method to change E/I ratio. Synaptic weights are 

fixed near the E=I balanced state and frequency of noisy external stimuli to the excitatory 

(E) cells is varied (see text for details). (b) Relationship between E/I ratio values and mean 

firing rates of the excitatory (E, blue curve) and inhibitory (I, red curve) cell populations as 

noise event frequency to the E cells is increased. (c) Difference between blue and red curves 

in (b). (d) Relationship between E/I ratio values and the difference between the mean 

membrane potentials of the excitatory (V E) and inhibitory (V I) cell populations, and the 
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reversal potentials of the excitatory (EE
syn) and inhibitory (EI

syn) synaptic currents as noisy 

event frequency to the E cells is increased. Blue (red) curves show distances from 

EE
syn(EI

syn). (e) Difference of distance curves shown in (d).
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Figure 5. 
Distribution of synaptic current in the network at the first crossing of the balanced state. (a) 

Trajectories of the four different types of mean total synaptic currents, Excitatory Post 

Synaptic Current (EPSC) at excitatory cells (blue solid), EPSC at inhibitory cells (blue 

dash), Inhibitory Post Synaptic Current (IPSC) at excitatory cells (red solid) and IPSC at 

inhibitory cells (red dash) as E/I ratio is varied by increasing the frequency of noise events to 

the excitatory cell population. The relative distribution of excitatory and inhibitory currents 

to the excitatory and inhibitory cell populations is displayed in two different ways (b and c, 

or d and e). The color and pattern of the arrows in the diagrams are consistent with the 

curves in panel a. (b) Net synaptic current received by E cells, which is the difference of 

EPSC and IPSC at E cells (difference between blue and red solid curves in panel a). (c) Net 

synaptic current received by I cells, which is difference between EPSC and IPSC at I cells 

(difference between blue and red dashed curves in panel a). (d) Difference of EPSC received 

by the E cells and the I cells (difference between blue solid and blue dashed curves in panel 

a). (e) Difference of IPSC received by E cells and I cells (difference between red solid and 

red dashed curves in panel a). (f) Difference of the net currents shown in (b) and (c) 

indicating which population received more net current, or equivalently difference of currents 

shown in (d) and (e) indicating which type of current is more distributed in E cells compared 

to I cells.
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Figure 6. 
Comparison of network dynamics at the first (top row), second (middle row) and third 

(bottom row) crossings of the E=I balanced state. Three different values of wE are chosen to 

place the network at the respective E=I balanced. For each value of wE, the frequency of 

noise events to the E cells is varied between 5 and 75Hz while the noise event frequency to 

the I cells is kept at 40Hz (dashed arrows indicate direction of change of the variables 

indicated with increasing noise frequency). Trajectories of E/I ratio values and: (a, e, i) firing 

frequency difference between the E and I cells; (b, f, j) absolute value of mean voltage 

difference between the E and I cells; (c, g, k) “net current difference” (see text for 

description) between the E and I cells; and (d, h, l) total current (E-I).
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Figure 7. 
The contribution of changes in E and I firing rates (Nratio) and excitatory and inhibitory 

synaptic current driving forces (Vratio) to changes in E/I ratio. Values for wE are fixed near 

each balanced state (a: first crossing, b: second crossing, c: third crossing) and frequency of 

noise events to E cells is increased to vary E/I ratio (color of curves). Curves show 

relationships between values of the ratio of E to I cell average firing rates (Nratio, x-axis) 

and values of the ratio of differences between average membrane potentials and reversal 

potentials of the excitatory and inhibitory synaptic currents (Vratio, y-axis) at each value of 

E/I ratio. At the first crossing (a), increasing E/I ratio mirrors increasing Nratio while at the 

2nd crossing it mirrors increasing Vratio.
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Figure 8. 
Temporal relationship of total excitatory and inhibitory synaptic currents. Cross-correlation 

(a, color) of the time traces of the total excitatory and inhibitory synaptic currents as wE is 

varied (direction of arrow) driving the network across the three balanced states indicated by 

wE
1  (red curve), wE

2  (green curves) and wE
3  (violet curves). b) Cross correlation traces 

between the E and I currents at the three crossings of the balanced state. Negative delay 

indicates excitation leads inhibition.
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Figure 9. 
Trajectory curves of E/I ratio values and total current (E-I) values (top row), and network 

firing rate values (bottom row) as excitatory synaptic strength increases for networks with 

different connectivity structures. Networks are composed of one layer of excitatory cells and 

one layer of inhibitory cells, which are connected within and between layers with 2.5% 

connectivity probability. The synapse rewiring parameter for excitatory (rpE) and inhibitory 

(rpI) synapses are changed separately, resulting in different network topologies. Excitatory 

synaptic strength, wE, increases from 0 while inhibitory synaptic strength wI =0.7mS/cm2 

stays constant. In all panels, different curves show results for different inhibitory 

connectivity structures (blue: local inhibition, rpI=0; red: small world inhibition, rpI=0.2; 

yellow: global inhibition, rpI=1). Columns show results for different excitatory connectivity 

structures: (a, d) local excitation (rpE=0); (b, e) small world excitation (rpE=0.2); (c, f) 

global excitation (rpE=1).
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