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Aims To optimize per-vessel prediction of early coronary revascularization (ECR) within 90 days after fast single-photon
emission computed tomography (SPECT) myocardial perfusion imaging (MPI) using machine learning (ML) and
introduce a method for a patient-specific explanation of ML results in a clinical setting.

...................................................................................................................................................................................................
Methods
and results

A total of 1980 patients with suspected coronary artery disease (CAD) underwent stress/rest 99mTc-sestamibi/
tetrofosmin MPI with new-generation SPECT scanners were included. All patients had invasive coronary angiog-
raphy within 6 months after SPECT MPI. ML utilized 18 clinical, 9 stress test, and 28 imaging variables to predict
per-vessel and per-patient ECR with 10-fold cross-validation. Area under the receiver operator characteristics
curve (AUC) of ML was compared with standard quantitative analysis [total perfusion deficit (TPD)] and expert in-
terpretation. ECR was performed in 958 patients (48%). Per-vessel, the AUC of ECR prediction by ML (AUC 0.79,
95% confidence interval (CI) [0.77, 0.80]) was higher than by regional stress TPD (0.71, [0.70, 0.73]), combined-
view stress TPD (AUC 0.71, 95% CI [0.69, 0.72]), or ischaemic TPD (AUC 0.72, 95% CI [0.71, 0.74]), all P < 0.001.
Per-patient, the AUC of ECR prediction by ML (AUC 0.81, 95% CI [0.79, 0.83]) was higher than that of stress
TPD, combined-view TPD, and ischaemic TPD, all P < 0.001. ML also outperformed nuclear cardiologists’ expert in-
terpretation of MPI for the prediction of early revascularization performance. A method to explain ML prediction
for an individual patient was also developed.

...................................................................................................................................................................................................
Conclusion In patients with suspected CAD, the prediction of ECR by ML outperformed automatic MPI quantitation by TPDs

(per-vessel and per-patient) or nuclear cardiologists’ expert interpretation (per-patient).
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Introduction

In the era of great diversity and excellent performance of the diagnos-
tic tools to evaluate stable ischaemic heart disease, non-invasive tests
have been able to provide a comprehensive assessment of myocar-
dial perfusion, heart function, and anatomical obstructive disease.1 It
is likely that in the future invasive coronary angiography (ICA) will be
reserved only for patients whom an invasive procedure and/or cor-
onary revascularization is needed, given the risk and the cost of ICA
relative to non-invasive tests. Thus, an accurate prediction of revascu-
larization procedure after a non-invasive test can potentially aid
physicians in an appropriate selection of patients for ICA.

Prediction of early coronary revascularization (ECR) by myocardial
perfusion imaging (MPI) has been investigated in a few studies.2–5

Among those, a single-centre study by Arsanjani et al.5 studied dual-
tracer MPI on conventional gamma camera for the prediction of
ECR. In that study, machine learning (ML) approach gave a compar-
able prediction to human experts on a per-patient basis. In this study,
we aimed to develop per-vessel ML prediction of ECR after single-
photon emission computed tomography (SPECT) MPI and compare
such algorithms with standard perfusion measures. We utilized a
diagnostic cohort from a recently established multicentre, inter-
national registry—REgistry of Fast Myocardial Perfusion Imaging with
NExt generation SPECT (REFINE SPECT)6 with an expanded number
of clinical and imaging variables. We also aimed to devise a novel
method to explain the rationale of ML prediction of ECR in an indi-
vidual patient.

Methods

Study population and data collection
This study included all currently available 2079 patients from 9 centres in
the diagnostic cohort of the REFINE SPECT registry.6 Patients were con-
secutively recruited at their respective centres with no previously known
coronary artery disease (CAD), myocardial infarction, or previous coron-
ary revascularization. All patients underwent MPI on a new-generation
SPECT camera as well as ICA within 6 months, between 2008 and 2017.
The MPI images, clinical information, and data on ICA and any revasculari-
zation procedure performed within 6 months of the MPI were collected
(Table 1). Patients with cardiac transplant (n = 4), open-heart surgery
(n = 3), ICA performed before MPI (n = 63), or incomplete data on revas-
cularization or expert interpretation of MPI (n = 29) were excluded, leav-
ing 1980 patients as the study population.

Imaging protocols
MPI studies were performed on new-generation cardiac scanners: D-
SPECT (Spectrum-Dynamics, Israel), Discovery NM530c or NM/CT570c
(GE Healthcare, Israel). Among all nine sites, the MPI protocols included
99mTc-sestamibi or 99mTc-tetrofosmin-based 1-day stress-and-rest, 2-day
stress-and-rest, or stress-only. The stress protocols consisted of either
symptom-limited exercise stress (of which 92.5% used the Bruce proto-
col) or pharmacologic stress (with regadenoson, adenosine, dipyrid-
amole, or dobutamine) (Table 1). Images were obtained 10–60 min (for
the stress imaging) and 5–60 min (for the rest imaging) after radiotracer
injection. When applicable, images were acquired for patients in two
positions (upright/supine for D-SPECT, or supine/prone for Discovery
scanners,6 which are later referred to as default/alternative views). Stress
images acquisition time for each position was 4–6 min.

Image processing and automated

quantitation
Reconstructed image datasets were automatically processed with the
Quantitative Perfusion/Gated SPECT software (QPS/QGS) version 2015
(Cedars-Sinai Medical Center, CA).7 Automatically generated myocardial
contours were checked by experienced technologists who were blinded
to the clinical data. Left ventricular contours (10.8% of all datasets) were
adjusted manually if necessary.8 Correlated imaging quantitation parame-
ters regarding myocardial perfusion, function, and phase analysis were
generated accordingly.6 Total perfusion deficit (TPD) variables used in
this study included stress TPD (quantified from the stress image),
combined-view stress TPD (computed according to the defect concomi-
tant in both positions, if both available),9–11 and ischaemic TPD (stress
TPD minus rest TPD) with the values of rest images assumed normal for
cases without rest data.12 Quantitation of the severity and extent of per-
fusion deficits were computed accordingly.

Visual perfusion assessment
Currently, the probability of revascularization is not formally evaluated in
the clinical setting, therefore as a proxy, we utilized the standard clinical
interpretation of perfusion (final expert interpretation with or without
segmental scores) performed by experienced nuclear cardiologists with
access to all imaging and clinical information during clinical reporting. In
four sites, visual segmental scores including summed stress score (SSS),
summed rest score (SRS), and summed difference score (SDS) as well as
a four-point scoring clinical diagnosis (0-normal, 1-probably normal,
2-equivocal, and 3-abnormal perfusion) were reported during clinical
reading. In the other five sites, only the four-point scoring system was
used. The final expert interpretations were homogenized to a four-point
scoring system: 0-normal (SSS = 0), 1-probably normal (SSS = 1),
2-equivocal (SSS = 2 or 3), and 3-abnormal (SSS >_ 4). We also evaluated
the results in a subpopulation with both SSS and SDS available.

ICA and revascularization
All patients underwent clinically indicated ICA with standard protocols
within 6 months after MPI. Obstructive CAD was visually assessed and
defined as stenosis >_50% for the left main coronary artery, or stenosis
>_70% in the left anterior descending artery (LAD), left circumflex (LCx),
and right coronary artery (RCA). Revascularization with either percutan-
eous coronary intervention or coronary artery bypass grafting was per-
formed according to clinical indications. The endpoint, ECR, was defined
as revascularization of any coronary arteries within 90 days after MPI on a
per-vessel and per-patient basis.

Data pre-processing and ML
Variables for ML

Patient data were arranged in a stacked format for the subsequent per-
vessel ML modelling. Variables of each patient were stacked on three
territories with different regional values but sharing the same clinical and
global imaging variables, resulting in a total of 5940 vessel observations.
To avoid redundancy, ML variables were selected as follows: (i) for perfu-
sion variables, only the extent and severity of perfusion deficit were used
since they were highly correlated with TPD,13 (ii) for stress/rest/ischae-
mic variables, only stress and ischaemic variables were used, (iii) for di-
mensional measurements, only LV volume was used, (iv) for function
variables, only wall thickening was used, and (v) redundant clinical varia-
bles were also removed, e.g. body weight and height (body mass index
kept). Overall, 18 clinical variables, 9 stress-test variables, and 28 imaging
variables (17 global and 11 regional) were used for ML (Supplementary
data online, Table S1).
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Missing variables

For all variables with missing values, the default imputation was per-
formed by the Waikato Environment for Knowledge Analysis platform
3.8.1 (WEKA) (University of Waikato, Hamilton, New Zealand). They
were imputed with the population’s mean value for numerical variables,
or with a distinct ‘missing’ label for categorical variables.

Machine learning

The LogitBoost method implemented in the WEKA platform was used
for training and validation of the ML model.14 Four ML modelling steps
were applied in sequence: (i) generation of a randomized, non-contami-
nated (with all three vessel observations from the same patient being
sorted into the same fold) 10-fold dataset, (ii) automatic variable selection
using only variables with an information gain ratio (IGR) >0, (iii) model
building employing an ensemble LogitBoost algorithm,15 and (iv) 10-fold
cross-validation, currently the preferred method to assess ML perform-
ance.16,17 The main advantages of 10-fold cross-validation compared with
the conventional split-sample (test and validation) approach are: (i)
reduces the variance in prediction error leading to a more accurate esti-
mate of model performance; (ii) maximizes the use of data for both train-
ing and validation, without overfitting or overlap between test and
validation data; and (iii) guards against testing hypotheses suggested by ar-
bitrarily split data (Type III errors).17

In brief, validation tests are performed 10 times with each fold (10% of
the data) being used in turn as the test set while the other 9-folds
(remaining 90% of the data) as the training set. This results in 10 experi-
mental models, and each is trained on 90% of the samples. Thus, only un-
seen data were used for testing of each model. The validation results

from 10 experimental models are then concatenated to provide a meas-
ure of the overall performance.17

Generalization error: assessment of

overfitting
To evaluate the overfitting in this work, we compared the perform-
ance of ML models with different thresholds of IGR by: (i) using entire
population as the training set and (ii) modelling with the 10-fold cross-
validation (hence, assessing the performance of 10 models on 10
unseen test datasets by these models). By comparing the difference
between area under the ROC curve (AUC) derived between the first
and second model, the generalization error was derived to evaluate
the overfitting issue.

Explanation of rationale behind ML

prediction
We devised a method for explaining the ML predictions on an individual
patient and territory basis. Further details of this approach are provided
in the Supplementary data online.

Statistical analysis
Paired receiver-operating characteristic (ROC) curves for the ECR pre-
diction were computed for the ML score and for TPD (per-vessel and
per-patient). In addition, the AUC with the non-parametric approach of
DeLong et al.18,19 was used to assess ML predictive gains. The perform-
ance of the expert interpretation was also plotted in the per-patient
paired-ROC graph to indicate sensitivity and specificity at different
thresholds. McNemar’s chi-square test was used when comparing

....................................................................................................................................................................................................................

Table 1 Patient baseline characteristics in the non-early revascularized and early revascularized groups

No early revascularization

(n 5 1022)

% Early revascularization

(n 5 958)

% P-value

Obstructive disease 302 29.5 947 98.9 <0.005

ECR in LAD 675 70.5 N/A

ECR in LCx 425 44.4 N/A

ECR in RCA 400 41.8 N/A

Age (year, mean ± SD) 64 ± 11 65 ± 11 0.01

Male 594 58.1 718 74.9 <0.005

Diabetes mellitus 294 28.8 285 29.7 0.63

Hypertension 692 67.7 663 69.2 0.47

Dyslipidaemia 615 60.2 620 64.7 0.04

Smoking 268 26.2 234 24.4 0.36

Family history 324 31.7 338 35.3 0.09

Symptoms

Symptoms other than chest pain 356 34.8 235 24.5 <0.005

Non-anginal chest pain 127 12.4 106 11.1 0.35

Atypical chest pain 303 29.6 324 33.8 0.05

Typical chest pain 153 15.0 257 26.8 <0.005

MPI protocol

Stress dose (MBq) 674 ± 436 609 ± 446 <0.005

Rest dose (MBq) 425 ± 313 480 ± 309 <0.005

Exercise stress 367 35.9 382 39.9 0.07

Pharmacologic stress 654 64.0 575 60.0 0.07

ECR, early coronary revascularization; LAD, left anterior descending artery; LCx, left circumflex artery; MBq, megabecquerels; MPI, myocardial perfusion imaging; RCA, right
coronary artery; SD, standard deviation.

ML predicts per-vessel coronary revascularization 551
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sensitivities. A P-value of < 0.05 was considered significant. R (v3.3.3, R
Foundation, Austria) was used for merging the database and statistical
analyses.

Results

Study population and stress-test results
Of the 1980 patients, 1249 (63%) patients were diagnosed with CAD
by visually assessed ICA. A total of 958 (48%) patients underwent
ECR (Table 1). In Table 2, clinical and physiological responses to the
stress test, quantitative SPECT results, and the expert interpretation
for MPI are shown. Clinical interpretation of MPI was provided by all

nine sites (n = 1980) and four sites reported segmental scores as well
(n = 1072), among which both SSS and SRS were available in 1014
cases.

Missing rates of variables
The missing rates for all 55 variables were provided in
Supplementary data online, Table S1.

Variable selection
Among all 55 used variables, 49 variables were selected and are
shown in Figure 1 according to the ranking of IGR. A list of all 55 varia-
bles is shown in the Supplementary data online, Table S1.

....................................................................................................................................................................................................................

Table 2 Stress-test results: clinical responses, quantitative results, and expert interpretation

No early revascularization

(n 5 1022)

Early revascularization

(n 5 958)

P-value

Clinical and physiological responses

Pharmacologic MPI (n = 1231) 655 (64) 576 (60) 0.07

Rest HR, beats/min 73 ± 15 72 ± 14 0.11

Stress peak HR, beats/min 99 ± 23 104 ± 24 <0.05

Rest SBP, mmHg 136 ± 22 138 ± 21 0.18

Stress peak SBP, mmHg 137 ± 25 141 ± 27 <0.05

ST deviation, mm 0.1 ± 0.4 0.3 ± 0.8 <0.05

Ischemic symptoms 70 (11) 76 (13) 0.08

Exercise MPI (n = 749) 367 (36) 382 (40) –

Rest HR, beats/min 72 ± 13 70 ± 14 0.06

Stress peak HR, beats/min 143 ± 21 142 ± 16 0.22

Rest SBP, mmHg 133 ± 21 136 ± 18 <0.05

Stress peak SBP, mmHg 167 ± 25 168 ± 22 0.86

ST deviation, mm 0.8 ± 1.0 1.3 ± 1.2 <0.05

Ischemic symptoms 120 (33) 187 (49) <0.05

MPI quantitative results

Global

Stress TPD, % 7.5 ± 7.5 14.8 ± 10.9 <0.05

Combined stress TPD, % 4.3 ± 6.5 11.0 ± 10.5 <0.05

Ischemic TPD, % 4.9 ± 4.8 10.7 ± 7.9 <0.05

Stress EXT, % 7.7 ± 8.3 20.2 ± 13.2 <0.05

Stress SEV, % 0.9 ± 0.5 1.6 ± 1.0 <0.05

Rest EF, % 58 ± 16 60 ± 13 <0.05

Transient ischemic dilation 1.01 ± 0.15 1.06 ± 0.16 <0.05

Regional

Stress TPD, % 3.0 ± 4.3 7.2 ± 9.0 <0.05

Stress EXT, % 7.6 ± 11.7 17.4 ± 19.9 <0.05

Stress SEV, % 0.8 ± 0.7 1.5 ± 1.4 <0.05

Stress EF, % 58 ± 15 57 ± 13 0.69

Expert interpretation

Normal (0) 332 (32) 102 (11) <0.05

Probably normal (1) 64 (6) 32 (3) <0.05

Equivocal (2) 56 (5) 32 (3) <0.05

Abnormal (3) 570 (56) 792 (83) <0.05

Values are n (%), mean ± SD, or %.
EF, ejection fraction; EXT, perfusion deficit extent; HR, heart rate; MPI, myocardial perfusion imaging; SBP, systolic blood pressure; SEV, perfusion deficit severity; ST, ST-seg-
ment; TPD, total perfusion deficit.
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Abbrevia�ons:
BW = bandwidth; DBP = diastolic blood 
pressure; EF = ejec�on frac�on; EXT = 
extent; HR = heart rate; SBP = systolic 

blood pressure; SEV = severity; VOL = le� 
ventricular volume from summed image; 
other abbrevia�ons see Supplementary 

data online, Table S1.

Stress-test variable

Clinical variable

Regional imaging variable

Global imaging variable

All variables are in the default view (upright 
for D-SPECT or supine for Discovery), unless 
specified otherwise:
*:  2 denotes to the alterna�ve view (supine 
for D-SPECT or prone for Discovery) 
**: combined denotes to the combined-view 

Figure 1 Selected variables ranking by IGR. The ML algorithm evaluated all 55 used variables independently to determine the IGR for each variable
in each fold. Forty-nine out of 55 variables had IGR >0 and were selected. ML models were built with these selected variables. Most variables in the
ranking are imaging variables (blue and light blue bars) with regional imaging variables (blue bars) leading while clinical and stress-test variables also
play roles in the prediction. IGR, information gain ratio; ML, machine learning.
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Per-vessel and per-patient prediction
Figure 2 shows the ECR rate increases with per-patient ML score.
Table 3 shows revascularization results among the sites and mean ML
scores in groups with or without ECR.

On a per-vessel basis, Figure 3 shows the ROC curves of regional
stress TPD, combined-view TPD, ischaemic TPD, and ML scores. ML
outperformed TPD in all territories with the largest gain in LAD. In
order to understand the contribution of non-imaging variables, we
compared ML training utilizing all (55), imaging-only (28), and
imaging-plus-limited-clinical (age, gender, and body mass index) (31)
variables. The AUCs of ML prediction based on all variables vs.
imaging-only variables vs. imaging-plus-limited-clinical variables were

0.785 (95% confidence interval (CI) [0.771, 0.798]) vs. 0.754 (95% CI
[0.739, 0.769]) vs. 0.768 (95% CI [0.754, 0.783]) on a per-vessel basis
(all P < 0.01).

On a per-patient basis, ML prediction had the highest AUC, as
shown in Figure 4. If compared with the four-point-categorical expert
interpretation and taking a diagnostic scoring >2 as the positive pre-
diction of ECR, an improvement of sensitivity from 82.7% to 90.7%
(P < 0.001) was noted at a specificity of 44.2%. The AUCs of ML pre-
diction based on all variables vs. imaging-only variables vs. imaging-
plus-limited-clinical variables were 0.812 (95% CI [0.793, 0.831]) vs.
0.786 (95% CI [0.766, 0.806]) vs. 0.799 (95% CI [0.779, 0.813]) on a
per-vessel basis (all P < 0.01). A subpopulation analysis of the

Figure 2 Observed and predicted revascularization rate. The observed revascularization rate (the red line) matched the predicted risk of revascu-
larization (the blue bars) against every five percentile of ML score. ML, machine learning.

....................................................................................................................................................................................................................

Table 3 Revascularization rate and ML scores

Site Number of

patients (n)

Obstructive

disease (CAD [n])

No early

revascularization (n)

Early

revascularization

(n, [%, in CAD])

Total

revascularization (n)

Brigham and Women’s 302 184 176 126 (67) 142

Cedars-Sinai 190 119 96 94 (77) 102

Aspire Foundation 278 179 131 147 (82) 156

Oregon Heart and Vascular Institute 334 199 169 165 (82) 178

Assuta Medical Center 313 221 108 205 (92) 205

Columbia University 113 47 79 34 (72) 37

Ottawa Heart Institute 360 246 220 140 (54) 223

Yale University 56 29 32 24 (79) 24

University of Zurich 34 25 11 23 (92) 24

Total 1980 1249 1022 958 (75) 1091

Per-vessel ML score, mean ± SD 0.25 ± 0.20 0.29 ± 0.22 0.18 ± 0.14 0.36 ± 0.24 0.32 ± 0.23

Per-patient ML score, mean ± SD 0.40 ± 0.24 0.47 ± 0.24 0.27 ± 0.17 0.53 ± 0.23 0.47 ± 0.24

CAD, coronary artery disease; ML, machine learning; SD, standard deviation.
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..performance of SSS and SDS in the Supplementary data online, Figure
S1 demonstrated that AUCs by TPD and visual summed scoring
were not significantly different. ML had a better prediction than any
of the other methods.

The generalization error was 3.0% as shown in the Supplementary
data online, Figure S2.

Examples
Figure 5 shows examples of ML prediction and the rationale behind
the prediction. ML prediction of ECR could have helped the decisions
of referral to ICA, while the quantitative parameters were misleading.
The patient-specific rationale for the prediction is shown at the bot-
tom of the figure.

Figure 3 Paired ROC curves for the prediction of early revascularization: per-vessel result. Per-vessel results of predictions in all three coronaries
(A), LAD (B), LCx (C), and RCA (D) territories. When operating with the same specificity of 80.6% using a cut-off of iTPD of 3%, ML shows a 7.3% im-
provement of sensitivity in the result of all three territories (A), and the improvement in each territory is also shown in (B–D) (blue arrows). The some-
what lower performance for RCA revascularization prediction might have been due to more common attenuation artefacts in that territory.29 AUC,
area under the ROC curve; CI, confidence interval; combined sTPD, regional combined-view stress TPD; iTPD, regional ischaemic TPD; LAD, left an-
terior descending artery; LCx, left circumflex artery; ML, machine learning; RCA, right coronary artery; ROC, receiver-operating characteristic curve.
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Discussion

This is the first attempt to use ML in predicting ECR after MPI using
per-vessel modelling in a large multicentre study5,20–22 and the first
report of a novel method for the explanation of the ML result for a
given patient. In our study, we utilized comprehensive imaging quanti-
tative variables including perfusion, function, and phase analysis for
prediction. As a marker of severe and extensive ischaemia,23 myocar-
dial stunning, was indirectly considered with both stress and rest per-
fusion and functional variables used for ML modelling. Our method
based on the overall logit of each variable normalized to the ML score
for the explanation of ML prediction may help clinicians understand
the rationale behind the ML score for a given patient.

This study is different from the study by Arsanjani et al.5 in several
aspects. These include ML modelling (per-vessel vs. per-patient), the
multicentre setting and number of cases (1980 vs. 713), the isotopes
and scanners used (Tc-99m-based stress test on new-generation
cameras in our study vs. dual isotope Tl-201/Tc-99m sestamibi rest/
stress test on conventional Anger camera). Further, our study
included patients between 2008 and 2017 after the publication of the
Clinical Outcomes Utilizing Revascularization and Aggressive Drug
Evaluation (COURAGE) trial24 and might have reflected more con-
temporary revascularization guidelines.25

Utilizing patient clinical and MPI quantitative information, this
model provides per-vessel probabilities of ECR performance for a

given patient, before being possibly sent for the invasive angiography.
Such a tool could serve as a handy ‘expert consult system’ to both
nuclear cardiologists and interventional cardiologists, indicating the
personalized likelihood that if invasive angiography is performed,
revascularization will also be performed. This tool could be helpful to
decide if the patient should undergo invasive angiography procedure.
For example, a low chance of revascularization for the specific patient
could perhaps save the patient from the subsequent angiographic
procedure. Additionally, the predicted ECR outcome can be
regarded as more prognostically informative than the prediction of
obstructive CAD alone (used in many studies to date7), since inter-
ventional cardiologists decided to perform ECR.

While fractional flow reserve (FFR) standard could be potentially
more definitive,26 the decisions of ECR in this study were mostly
based on the visual results of coronary angiography, clinical informa-
tion, and MPI findings. The data in the registry did not include FFR
results and such large multicentre data have not yet been available.
An advantage of the per-vessel-based model is that it provides advice
on which vascular distribution would be revascularized—this can be
helpful in a cath lab to dilemmas with comparable/equivocal stenotic
lesions in different coronary vessels.

Compared with TPD, the improvement in AUC by ML approach
that integrates a large scale of variables seems modest. These
improvements are, however, valuable since they may be close to the
best possible prediction performance of revascularization after MPI.
Further, AUC is also improved in comparison to human readings
where multiple clinical and imaging variables are integrated mentally.
Moreover, the demonstration of the rationale for the ML prediction
may give more confidence to clinicians and allow easier introduction
into clinical routine and acceptance by physicians. Nevertheless,
physicians will have to decide ultimately how to take the probability
score into account.

To assess overfitting in our ML process, we compared the per-
formance of ML trained on entire dataset and on unseen data (via 10-
fold cross-validation) as a function of the number of features and
deriving the generalization error accordingly (Supplementary data
online, Figure S2). The results show that the generalization error sta-
bilizes at 3.0% and is not affected by the number of features, until the
model lowers performance above a threshold of IGR >0.002.

Our study has some limitations. While ultimately we would like to
predict who could benefit from the revascularization with longer-
term outcomes,27 we have not done it in this study, which merely
predicts the fact of performing revascularization within 90 days of
MPI. Subjective estimation for the probability of ECR was not per-
formed clinically and we were therefore not able to compare be-
tween the best performance of human expert and ML. There has not
been clinical standard established for this purpose. As a proxy, we uti-
lized the clinical expert interpretation and segmental scores when
available. Our subpopulation analysis revealed that the AUCs of the
summed scores were not different from the AUCs of automatic
quantitation. Hence, the automatic quantitation can be viewed as the
currently best-available surrogate of human expert reading. The vari-
ables of SPECT myocardial blood flow were not used because such
data were not available in the registry. Potentially adding absolute
flow measurements could further improve the prediction of ECR.28

While we performed a feature selection step, this was performed
with a fixed threshold which rejected only truly redundant features,

Figure 4 Paired ROC curves for the prediction of early revasculari-
zation: per-patient result. The per-patient result of predictions by
retaining the maximal ML score per-territory was compared with
TPD. ML has a higher area under the ROC curve (AUC) (all P <
0.001). Higher sensitivity is also shown in comparison with expert in-
terpretation (EI) at any diagnostic scoring from 0 to 3 (0-normal,
1-probably normal, 2-equivocal, and 3-abnormal). CI, confidence inter-
val; combined sTPD, global combined-view stress TPD; EI, expert in-
terpretation; iTPD, global ischaemic TPD; ML, machine learning; ROC,
receiver-operating characteristic curve; sTPD, global stress TPD.

556 L.-H. Hu et al.

https://academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ehjci/jez177#supplementary-data
https://academic.oup.com/ehjcimaging/article-lookup/doi/10.1093/ehjci/jez177#supplementary-data


Figure 5 Prediction by ML: example and the rationale. ECR was correctly predicted in the LAD and LCx in an 82-year-old man with 80% stenoses
in the LM and LAD and a 70% stenosis in proximal LCx (A). The findings on the perfusion scan were nearly normal—the typical presentation of bal-
anced ischaemia. Despite the expert interpretation of the imaging as normal, the patient was sent for invasive angiography for a marked ST-segment
deviation during the stress test. In case (B), ML correctly predicted no ECR in a 62-year-old man with a reversible perfusion defect in the LCx terri-
tory. The expert interpretation was abnormal. Invasive angiography revealed non-significant stenosis and no ECR was performed. The low, intermedi-
ate, and high risks indicate a 25%, 55%, and 75% risk of ECR, respectively. The rationale for ML prediction is shown at the bottom of the graph. This
can be assessed on a per-vessel basis; to simplify, scales of an averaged contribution of leading variables are shown on a per-patient basis. Presenting
ML rationale might help physicians in having confidence in suggestions from ML models. ECR, early coronary revascularization; LAD, left anterior
descending artery; LCx, left circumflex artery; LM, left main coronary artery; ML, machine learning; RCA, right coronary artery; SRS, summed rest
score; SSS, summed stress score; TID, transient ischemic dilation; TPD, total perfusion deficit.
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.
we did not perform the optimization for the minimal number of fea-
tures required to accurately predict the outcome. We could not dis-
tinguish elective or emergent revascularization in this study.
However, the incidence of emergent revascularization should have
accounted for a small population in our registry. Finally, all results
reported in this work all came from the 10 models in the 10-fold
cross-validation, each model tested in unseen data by this specific
model. However, another cohort from other hospitals beyond the
cases used from nine centres to provide external validation of the
model would be required to demonstrate how the model generalizes
to data from other centres, beyond the multicentre data used here.

Conclusions

In patients with suspected CAD, ML integrating clinical, stress testing,
and MPI imaging data predicts early revascularization better than indi-
vidual quantitative measures—stress TPD, combined-view stress
TPD, ischaemic TPD—on a per-vessel and per-patient basis. ML also
outperforms clinical interpretation by a human expert on a per-
patient basis.

Supplementary data

Supplementary data are available at European Heart Journal - Cardiovascular
Imaging online.
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