Skip to main content
. 2018 Aug 17;32(12):2323–2339. doi: 10.1002/ptr.6178

Table 2.

Summary of the key studies conducted with liquorice‐derived compounds or extract

Property Compound Concentration Method Major findings Reference
Neuroprotective activity Glabridin 5–50 mg/kg In vivo—oral administration to mice Improvement of learning and memory in nondiabetic rats; it reversed learning and memory deficits of diabetic rats. Low‐dose glabridin did not alter cognitive function (Hasanein, 2011)
Glycyrrhiza glabra extract 75–300 mg/kg, 7 days In vivo—oral administration to Swiss young male albino mice Production of antidepressant‐like effect in mice in forced swim test and tail suspension test, probably by interaction with adrenergic and dopaminergic system (Dhingra & Sharma, 2006)
G. glabra aqueous extract 75–300 mg/kg, 7 days In vivo—oral administration to mice Dose of 150 mg/kg significantly improved learning and memory of mice (Parle, Dhingra, & Kulkarni, 2004)
Sedative activity Glabridin 10−12–10−8 M In vivo—acutely isolated dorsal raphe neurons of a rat Sedative and hypnotic effects by potentiating GABAergic inhibition in dorsal raphe neurons by GABAA receptor (Jin et al., 2013)
30 μM In vitro—Xenopus laevis oocytes expressing recombinant GABAA receptors Strong potentiating effect on GABAA α1β(1−3)γ2 receptors (Cho et al., 2010)
Antidepressive activity G. glabra aqueous extract 75–300 mg/kg In vivo—forced swim test and tail suspension test applied to mice Antidepressant‐like effect of liquorice extract seems to be mediated by increase of brain norepinephrine and dopamine, but not by increase of serotonin (Dhingra & Sharma, 2006)
Oestrogenic activity 18β‐Glycyrrhetinic acid 0–200 μM In vitro—human breast cancer cells (MCF‐7) Induction of apoptosis in human breast carcinoma MCF‐7 cells via caspase activation and modulation of Akt/FOXO3a pathway (Sharma, Kar, Palit, & Das, 2012)
Glabridin 1 nM–10 μM In vitro—endometrial cell line (Ishikawa cells) Activation of ER‐α‐SRC‐1‐co‐activator complex, which displays a dose‐dependent increase in oestrogenic activity (Su Wei Poh, Voon Chen Yong, Viseswaran, & Chia, 2015)
1 nM–25 μM In vitro—human breast cancer cells (T‐47D, MCF‐7, and MDA‐MB‐468) Inhibition of the growth of breast cancer cells (Su Wei Poh et al., 2015)
50 μg, 3–14 days In vivo—daily feeding of prepubertal female Wistar rats Stimulation of creatine kinase specific activity (Tamir, Eizenberg, Somjen, Izrael, & Vaya, 2001)
Liquorice root extract 25 μg/day, 2 weeks In vivo—oral administration to female rats Increase in creatine kinase activity (Tamir et al., 2000)
Liquiritigenin 2–10 μg/ml In vitro—MCF‐7 and T47D cells Induction of oestrogen responsive alkaline phosphatase activity in endometrial cancer cells, oestrogen responsive element luciferase in MCF‐7 cells and Tff1 mRNA in T47D cells (Somjen et al., 2004)
Isoliquiritigenin 0–0.04 mg/ml In vivo—intraperitoneal injection of female ICR mice Improvement of IVF rate (Tung, Shoyama, Wada, & Tanaka, 2014)
Skin effects Glycyrrhizinic acid 20%, 2 weeks In vivo—double‐blind clinical trial in human patients Reduction of erythema, oedema, and itching scores (Halder & Richards, 2004)
In vitro—topical treatments in human patients during 4 weeks Lighten hand solar lentigines (Nerya et al., 2003)
Glycyrrhetinic acid; glabridin 0–120 μM In vitro—human keratinocyte culture Prevention of oxidative DNA fragmentation and activation of apoptosis‐associated proteins in human keratinocyte (Grippaudo & Di Russo, 2016)
Glabridin; glabrene; isoliquiritigenin 0.7 μM (glabridin), 7 μM (glabrene), and 26 μM (isoliquiritigenin) In vitro—human melanocyte (G361) Inhibition on tyrosinase‐dependent melanin biosynthesis (Parvez, Kang, Chung, & Bae, 2007)
Liquorice hydro‐alcoholic extract 1–2% In vivo—Wistar albino rats Potentiation of hair growth activity (Veratti et al., 2011)
Antiviral activity Glycyrrhizin 10 mg/kg (compound)

In vitro—Vero cells

In vivo—ducks

Stimulation of immune and antiviral effect against DHV (Soufy et al., 2012)
0.1 μg/ml (extract) In vitro—human foreskin cell line Protection of host cells against EV71 infection (Kuo, Chang, Wang, & Chiang, 2009)
316–625 mg/L (compound) In vitro—Vero cells Protection against coronavirus (Cinatl et al., 2003)
100 μg/ml (compound) In vitro—peripheral blood mononuclear cells Inhibition of nonsyncytium‐inducing variant of HIV replication (Sasaki, Takei, Kobayashi, Pollard, & Suzuki, 2002)
400–1,600 mg/day (compound) In vitro—human immunodeficiency virus type 1 (HIV‐1) P24 antigen Inhibition of HIV‐1 replication (Hattori et al., 1989)
80, 160, 240 mg 3× per week or 200 mg 6× per week In vivo—human patients (intravenous) Treatment of chronic hepatitis C infection (van Rossum, Vulto, Hop, & Schalm, 1999)
100 mg/day In vivo—human patients (intravenous) Prevention of autoimmune hepatitis progression (Yasui et al., 2011)
25–200 μg/ml In vitro—lung epithelial A549 cells Reduction of pathogenic H5N1 influenza A virus replication (Michaelis et al., 2011)
Anticarcinogenic activity Glabridin 0–10 μM, 24, 48, and 72 hr In vitro—cancer stem cells (CSCs) Reduction of CSC‐like properties, enhancing the effectiveness of breast cancer therapy (Jiang et al., 2016)
0–20 mg/kg, 4 weeks In vivo—BALB/c nude mice
0–100 μM (compound) In vitro—human hepatic cell lines (Huh7, HepG2, Sk‐Hep‐1) Induction of apoptosis in Huh7 cells (Hsieh et al., 2016)
Licochalcone E 12.5–50 μM (compound) In vitro—human oral keratinocytes and human pharyngeal squamous carcinoma cell line Induction of FaDu cell death (Yu et al., 2017)
Licochalcone A 0–500 μM (compound) In vitro—human gastric cancer cell lines (MKN‐28, AGS, MKN‐45) Induction of apoptosis of gastric cancer cell via the caspase‐dependent mitochondrial pathway (Xiao et al., 2011)
Antimicrobial activity Glabridin 3.12–25 μg/ml MIC Inhibition of the growth of clinical isolates of multidrug‐resistant Staphylococcus aureus (Fukai et al., 2002a; Singh, Pal, & Darokar, 2015)
3.13–12.5 μg/ml MIC
29.16 μg/ml MIC Decrease of Mycobacterium tuberculosis (Gupta et al., 2008)
Glycyrrhetinic acid 62.5–1.024 mg/L MIC Inhibition of the growth of clinical isolates of multidrug‐resistant S. aureus (Oyama et al., 2016)
100–400 μg/ml MIC, MBC Decrease of Pseudomonas aeruginosa (Chakotiya, Tanwar, Narula, & Sharma, 2016)
≤50 mg/L MIC Decrease of Helicobacter pylori (Krausse, Bielenberg, Blaschek, & Ullmann, 2004)
Antioxidant activity Glabridin 3.12–25 μg/ml DPPH, FRAP, SOD Protection of low‐density lipoprotein from oxidation (Singh et al., 2015)
60 mg In vivo—oral administration to humans (LDL isolation) (Carmeli & Fogelman, 2009)
Licochalcone 2–20 μg/ml DPPH, superoxide anion, lipid peroxidation, red blood cells Inhibition of the microsomal lipid peroxidation (Haraguchi, Ishikawa, Mizutani, Tamura, & Kinoshita, 1998)
Hepatoprotective activity Liquorice aqueous extract 100–300 mg/kg 15 days In vivo—oral administration to Wistar rats Stimulation of the antioxidant enzymes and arrest of inflammatory cytokine production (Huo, Wang, Liang, Bao, & Gu, 2011)
G. glabra aqueous root extract 2 g/day, 2 months In vivo—humans ALT and AST decrease (Hajiaghamohammadi, Ziaee, & Samimi, 2012)
10, 30, 100 mg/kg

In vivo—BALB/c mice

In vitro—RAW 264.7 macrophages

Protection against LPS fulminant hepatic failure (Yin et al., 2017)
Glycyrrhetinic acid 0.5–20 μM Metabolomics Decrease of inflammation in RAW 264.7 cells (Liu et al., 2017)
Anti‐inflammatory activity Glabridin 75 mg/kg In vivo—oral administration to mice Decrease of MIP 1α expression (Xiao et al., 2010)
Glycyrrhizin 1–100 μM DPPH, AAPH

Protection against lipid peroxidation of liposomal membrane

Inhibition of ROS

(Rackova et al., 2007)
50–200 μg/ml LPS inflammatory mediators production (TNF‐α, IL‐1β, COX‐2, PG2) Decrease of endometriosis (X. R. Wang, et al., 2017)
10, 20, 100 mg/kg In vivo—mice Decrease of LPS inflammatory mediators (Yin et al., 2017)

Note. ALT: alanine aminotransferase; AST: aspartate aminotransferase; DHV: duck hepatitis virus; FRAP: ferric reducing antioxidant potential; ICR: Institute of Cancer Research; IVF: in vitro fertilization; LDL: low‐density lipoprotein; LPS: lipopolysaccharide; MBC: minimum bactericidal concentration; MIC: minimum inhibitory concentration; ROS; reactive oxygen species; SOD: superoxide dismutase.