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Abstract

Infectious Bronchitis virus (IBV) genotype Q1 was detected for the first time in
China in 1996, and then spread worldwide. The first report of Q1 genotype in Italy
occurred in 2011 and a deep molecular investigation of a Q1 isolated in Italy in
2013 has led to speculation regarding the origin of this genotype. Phylogenetic anal-
ysis of the S1 sequence of a Q1 Italian strain revealed a close relationship with
sequences of the 624l strains circulating in Italy in the early 1990s and this led to
the idea that 6241 was an ancestor of the Q1 genotype. Despite the fact that most
heterogeneity of IBVs occurs in the S1 gene, the sequence analysis of this gene
alone was not sufficient to confirm or deny this hypothesis. In the present study, an
Italian 624l (gammaCoV/AvCov/Ck/Italy/IP14425/96) was fully sequenced for the
first time and compared to all available complete Q1 genome sequences. This analy-
sis confirmed the genetic correlation between GammaCoV/AvCov/Ck/Italy/IP14425/

1 | INTRODUCTION

Infectious bronchitis (IB) is an avian disease distributed worldwide
that represents one of the most persistent health problems of the
commercial poultry industry (Cook, Jackwood, & Jones, 2012; de
Wit, Cook, & van der Heijden, 2011). It is caused by a Gammacoron-
avirus called Infectious Bronchitis Virus (IBV) and has a positive
sense single-stranded 27.6 kb RNA genome (Jackwood & De Wit,
2013). The IBV genome can evolve rapidly by mutation and recombi-
nation events, resulting in the emergence of new IBV variants which
sometimes confer minimal or negligible cross-protection (de Wit et
al., 2011). A majority of such variants cause a transitory problem,
which then disappear or remain confined into a specific geographical
region. However, a few variants can persist and spread to new
areas where they continue to cause disease (Jackwood, 2012; de
Wit et al.,, 2011).

Recently, genotypes of Asian origin have spread to cause world-
wide disease and major economic losses (de Wit et al., 2011). IBV Q1

96 and Q1 strains, suggesting a common origin between 624l and Q1 genotypes.

is one such genotype. It was first detected in China in 1996 (Yu et al.,
2001) and then reported in Asia, Middle East, Europe, and South
America (Ababneh, Dalab, Alsaad, & Al-Zghoul, 2012; Huang, Lee,
Cheng, & Wang, 2004; Jackwood, 2012; Marandino et al., 2015;
Rimondi et al., 2009). In Italy, the Q1 genotype was reported for the
first time in 2011 after causing an outbreak of disease associated with
respiratory signs, increased mortality, kidney lesions, and proventriculi-
tis (Toffan et al., 2013). Since then, the genotype has been continu-
ously detected in Italy (Massi et al., 2015). Phylogenetic analysis
performed using full or partial S1 sequences showed a high identity
(>99%) with Chinese Q1 isolates (Franzo et al., 2015; Massi et al.,
2015; Toffan et al., 2013). At a similar period, a high identity (94.1%)
between those strains and strains belonging to the 624l genotype was
observed (Franzo et al., 2015; Massi et al., 2015), such that the
recently proposed new IBV nomenclature based on the S1 sequence
placed them in the same lineage (Gl-16) (Valastro et al., 2016).

IBV 624l had been reported for the first time in Iltaly in 1993
(Capua, Gough, Mancini, Casaccia, & Weiss, 1994; Capua et al.,
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1999), producing disease associated with kidney lesions and drop in
egg production in breeders and layers (Capua, Grasso, Ferdinandi,
Weiss, & Casaccia, 1996). This genotype continued to be detected in
Italy until 2004 and then reappeared from 2010 when it was again
detected in a few broiler farms affected by respiratory disease
located in different areas of Italy. In the following years, the number
of detections increased (Massi, 2013) but since 2013 the 624l geno-
type has not been further detected (Massi et al., 2015).

A recent retrospective study carried out on 123 IBV strains iso-
lated in Italy between 1963 and 1989 revealed that 624l genotype
had not only circulated long before its first reporting in 1993, but
that in fact it has been one of the major IBV genotypes circulating in
the Country at that time (Taddei et al., 2012). Evidence of the pres-
ence of this genotype has also been found in Slovenia, where several
6241 strains were isolated between 1991 and 1999 (Krapez, Slavec,
Barlic-Maganja, & Rojs, 2010), in Poland and South Africa (Capua et
al, 1999) and eventually in Russia where 624l genotype was
reported in 2002 (Bochkov, Batchenko, Shcherbakova, Borisov, &
Drygin, 2006).

The high identity observed between Q1 and 624l genotypes
raises questions regarding their possible related origins. IBV 624l has
been hypothesized to be an ancestor of the Q1 genotype (Franzo et
al., 2015; Massi, 2013), but unfortunately the unavailability of any
6241 full genome sequence did not allow such final conclusions to
be drawn.

In the present study, an IBV 624l was fully sequenced and phy-
logenetic analysis was performed both using a dataset based on
available IBV full-length genome sequences and, due to the larger
number of published sequences, a dataset based on full S1 gene. In
addition, recombination analysis was carried out using the complete
IBV 6241 and Q1 strains.

2 | MATERIALS AND METHODS

21 | Virus

IBV 624l strain was isolated in 1996 during a disease outbreak in
chicken farms located in Northern Italy. The virus was isolated in
specific pathogen-free (SPF) chicken eggs and the 3th passage was
propagated in SPF chicken embryo tracheal organ cultures (TOC).
After isolation, the virus underwent serological analysis, resulting as
belonging to the 624l serotype. In this study, this virus is named
gammaCoV/AvCov/Ck/Italy/IP14425/96.

2.2 | RNA extraction, RT-PCR, and sequencing

The RNA was extracted from the supernatant of infected TOC using
Qiamp viral RNA mini kit (Qiagen, Hilden, Germany) following the
manufacture's protocol. Viral RNA was firstly retro-transcribed using
Super Script Ill enzyme (Invitrogen, Carlsbad, CA, USA), then ampli-
fied using Ranger enzyme (Bioline, London, UK) according to the
manufacturer's instructions. Retrotranscription, amplification, and

sequencing were carried out using primers previously designed for

IBV full genome sequencing (Franzo et al., 2015; Listorti et al,
2017). Where primers did not work due to sequence differences,
new primers were designed based on the newly determined
sequences flanking those genome regions (Table 1). Sequencing was
performed by Source BioScience (Nottingham, UK). Each genome
fragment was sequenced twice. Where gammaCoV/AvCov/Ck/Italy/
IP14425/96a sequence differed from those of Q1 strains, the loca-
tions were sequenced again, starting with a new retrotranscription

of the region.

2.3 | RT-PCR of the 3’ END of genome

3’ end of the genome was determined using a 3'RACE protocol pre-
viously described (Laconi et al., 2016). Briefly, RT was performed
with a primer containing 20 Ts followed by an adaptor sequence at
its 5’ terminus. This was amplified by PCR using two primers, one
within the end of the genome and one matching the adaptor
(Table 1). These PCR products were sequenced towards the polyA
tail.

24 | Sequences analysis and comparison

Chromatograms were analysed using the program Chromas (http://
technelysium.com.au/wp/chromas/) and sequences aligned using
BioEdit (http://www.mbio.ncsu.edu/bioedit/bioedit.html) against the
genome of IBV strains gammaCoV/Ck/Italy/12022/13 (KP780179) and
CK/CH/LDL/971 (JX195177). Open Reading Frame (ORF) prediction
was carried out using ORFfinder program (https://www.ncbi.nlm.nih.

gov/orffinder/).

2.5 | Complete genome sequences analysis

A dataset containing 313 complete genome sequences (nt) of IBV
was downloaded from ViPr, an open source bioinformatics database
and analysis resource for virology research. To minimize the compu-
tational load, cd-hit-est test of the CD-HIT Suite (Li & Godzik, 2006)
was used to cluster sequences that shared over 98% identity and a
prototype sequence within each cluster was selected. After cluster-
ing, 187 representative sequences remained. Sequences were aligned
using ClustaW and phylogenetic analysis was carried out with
MEGA7 software (Kumar, Stecher, & Tamura, 2016) using Maximum
Likelihood method with Tamura-Nei substitution model and 1,000

bootstrap replicates to assess the robustness of the branches.

2.6 | S1 gene sequences analysis

A dataset containing all available complete or nearly complete S1
gene sequences (at least 1,000 bp) was downloaded from ViPr. After
clustering, 320 sequences remained. The sequences were aligned
using ClustalW method, and a phylogenetic tree was constructed
using the Maximum Likelihood method with Kimura 2 parameter
substitution model and 1,000 bootstrap replicates to assign confi-
dence level to the branches in MEGA 7 software. Based on these
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TABLE 1 Primers used for reverse transcription, PCR and sequencing

RT

2.06neg
4.26neg
6.18neg
8.18neg
10.10neg
12.10neg
14.13neg
16.10neg
QX18.10neg
19.73neg
22.51neg
24.08neg
26.24neg
27.8%neg
Dta-Adaptneg®
Dtc-Adaptneg®
Dtg-Adaptneg®
PCR

0.06+
2.03neg
1.92+
4.20neg
4,10+
6.08neg
5.90+2
8.05neg
7.97+
10.10neg
10.02+
12.08neg
12.01+
14.12neg
14.05+
16.09neg
QX15.06+
QX18.10neg
17.62+2
19.67neg
19.46+
22.26neg
1B21.95+
1B24.07neg
23.99+
26.24neg?
26.02+
27.83neg

Sequence 5'-3’

tttagtaaaaagaccacc

catacttttgcgcatc

agaaaacctacaccag
gtaaagaatgtactaaac
cacagttgtgtgcactaactcaaag
ctccataagaatcctg

taaaacttggttgttcc
ttcacataaagcatcaac
catagaagaagaatggcatagctttc
caaaatgcattactcgc

catatcttctttttgacc
tttgaatcattaaacagac
ccaagatacatttccag

Ttgctctaactctatac
gcatctcgaggcttgtggcettttttttttttttttttttta
gcatctcgaggcttgtggcetttttttttttttttttttttc
gcatctcgaggcttgtggetttttttttttttttttttttg
Sequence 5'-3'
gcgctagatttccaacttaacaaaacg
gacttgcgaaacaagatgccaaatgcec
tggaggcttgcatatggaaaagtgeg
ggtataaagaggatttctttatcctcaagatcatg
cggaggatggtgttaaataccgce
caaataatattagaaagaccaaataaagccaattcc
gactatggtaaagactcatttgacg
cctggtttagtatactcacatacactacc
cctaatggtgttaggcttatagttcc
gtactaaagactacaggatcataccattg
cagttattattggagtttgtgctgaag
gaatcctgatccggagttggacttgge
gtggcagcaggtaatcaacctttagg
ataaaacttggttgttccaataactacagg
gtgtctatcctttctactatgactaataggce
cacataaagcatcaacagctgcatgag
gatgattgcactcgcatagtacctc
catagaagaagaatggcatagctttc
tactcaggcttatgcttgttggaage
gtattgacagagttgtgtatactttgcc
gtaacagtgtcaattgattaccatagc
tccatacgcgtttgtatgtactcatctg
ccagcagtttgtagtttctggtgg
gaatcattaaacagactttttaggtctg
cattatgcctctaatgagtaagtgtgg
ccaagatacatttccag
gaaaagcgcgaatttatctgagagaagg

catagccaattaaacttaacttaaactaaaatttagctc

Sequencing
0.67+
1.26+
2.52+
3.04+
3.10+
IB4.6+°
4.80+
IB5.15neg®
5.32+
IB5.70+2
6.53+
IB6.7neg?
IB7.15+2
7.17+
IB8.2neg?
8.60+
IB8.61neg®
9.26+
10.60+
11.13+
12.64+
13.18+
QX13.90+
14.69+
15.25+
IB15.60+*
IB16.40neg?
QX16.80neg
16.62+
17.18+
18.02neg
18.18+
18.71+
19.67neg?
19.46+
19.97+
I1B20.40+*
1B21.70neg?
1B21.95+2
1B23.60neg?
QX24.20neg
1B24.70+2
IB25.60neg?
QX27.20°°

ransboundary and Eneigi

Sequences 5’-3'
cctaaggattacgctgatgcttttge
ttcgcaggaacttgtcttgcaagce
tagaggaatgtcacagcttggtgc
tacaccaatgtcacagcttggtgc
ctctcgatgttgtgaatttaccatctgg
gtacggatgaagtaatagaagcttc
tgattgtgatgttgtgaatttaccatctgg
catcagtatcaggtgttaacttataag
ctattagtcttagggcaatatggg
gtgtggtttatttacacaagtaatccag
gttaaacctacagcatatgcttacc
ctaatcgttctgaaagtgectgatcaag
ctttataacaagatctggtgctaaac
aatgctcctccggtagtatggaag
caacccaaactagcattattgtaaacac
gtatgatggcaacgagtttgttgg
taccaacaaactcgttgccatc
cctgtcactatgcegttctaatggtac
ggtaaatccacctaaaactgtgtggg
gaagttagatagcatggagagacg
gacttaaagtcagaagtaacagctg
gatctcctcaagtatgattatactgagg
gaggtgacgtctaaatattttgaatg
caaggtcttgtagcagatatttctgg
aagtgttgctatgaccatgtcatge
ggtgcagcttggtgattttacctttg
ctataaccttgaaacactgacgtg
gaatcagctgtaacacagaatataac
catgaaagtggctcagcctacaac
caacatgttttataacacgtgatgaggc
ctgcttgacattgggtactactggattc
taacctacctggttgtaatggtgg
gaagagaaatattcgcacactgec
gtattgacagagttgtgtatactttggc
gtaacagtgtcaattgattaccatagc
gatagccaataatggcaatgatgacg
cattgtttatagtgtctcttttgtttgcac
gtcacaaattgcccttatgtaagttatgg
ccagcagtttgtagtttctggtgg
cacgtgcagtgatgtagtaactacc
ctacttacactgtttcaattgttttctc
gtactcttggtactgaacaagcag
ctcttgaaaagagagcatgaaacaaagagg

cctacatgtctatcgccaggg

(Continues)
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TABLE 1 (Continued)

RT Sequence 5'-3’
2649+ gatagccaagatggtatagtgtggg

Adapt negb gcatctcgagggttgtggce

Sequencing Sequences 5’-3'

Notes. Primer names generally indicate approximate binding positions in the 6241 genome.

Coding and anticoding sense primers are labelled + and neg, respectively.

2Indicates primers designed for the 6241 IBV strain sequencing based on the newly determined flanking sequences. PIndicates primers used for the retro-

transcription, amplification, and sequencing of the 3'END of the genome.

results, a subset of sequences clustering with gammaCoV/AvCov/Ck/
Italy/IP14425/96 was selected and expanded to its original number
of taxa. Sequences belonging to this dataset were aligned with Clus-
talW method, and a phylogenetic tree was reconstructed using the

parameters previously described.

2.7 | Recombination event analysis

Presence of past recombination events for strain gammaCoV/AvCov/
Ck/lItaly/IP14425/96 was evaluated using RDP4 software (http://
web.cbio.uct.ac.za/~darren/rdp.html; Martin, Murrell, Khoosal, &
Mubhire, 2017). Occurrence of possible recombination events was
also evaluated for the available Q1 full genome sequences: gamma-
CoV/Ck/Italy/12022/13 (KP780179), an ltalian isolate from 2013 and
CK/CH/LDL/971 (JX195177), a Chinese isolate from 1997. The
Kimura 2 parameter substitution model with a window size of 200
nucleotides and a step size of 20 nucleotides was used to calculate
the pairwise percentage of identity between gammaCoV/AvCov/Ck/

TABLE 2 Genomic organization of 6241 and Q1 strains

Genome position

gammaCoV/

AvCoV/Ck/ gammaCoV/

Italy/P14425/  Ck/Italy/ CK/CH/LDL/
Gene 96 12022/13 971 UY/09/CA/01
la 433-12288 432-12290 433-12291 432-12254

lab  12363-20321
S 20272-23772
3a 23772-23945
3b 23945-24136
E 24117-24404
M 24394-25074
4b 25075-25359
4c 25280-25450
5a 25434-25631
5b 25628-25876
N 25819-27045
6b 27054-27278

12365-20323
20274-23774
23774-23947
23947-24141
24122-24430
24423-25103
25104-25388
25309-25470
25454-25651
25648-25896
25839-27068
27058-27222

12366-20324
20275-23775
23775-23948
23938-24142
24123-24431 24086-24394
24424-25104 24387-25067
25105-25377 25068-25352
25310-25387 25273-25434
25466-25663 25418-25614
25660-25908 25612-25860
25851-27080 25803-27032
27089-27403 27041-27265

12329-20287
20238-23711
23738-23911
23911-24105

Notes. Strains belonging to the two genotypes show the same genome
organization.

Accessory genes 4b, 4c, and 6b have been identified in the genome of all
the four viruses.

Italy/IP14425/96, the Q1 strains and 13 complete genome sequences
of relevant strains, selected on the previous phylogenetic analysis.
Phylogenetic analysis was performed for those genome portions
where a sharp change in percentage of identity strongly suggested
recombination events using a dataset including all the sequences

available for the given regions.

3 | RESULTS

3.1 | Genome organization of strain gammaCoV/
AvCov/Ck/lItaly/IP14425/96

A consensus sequence of 27.573 bp was obtained (minimum cover-
age 2X), with the 5° UTR incomplete by approximately 100 nt.
The ORF analysis predicted 13 ORFs and revealed the following
genome organization: 5’UTR-1a-1b-S-3a-3b-E-M-4b-4c-5a-5b-N-6b-
3’UTR (Table 2). The same genome organization was observed for
viruses gammaCoV/Ck/Italy/12022/13, CK/CH/LDL/971 and UY/09/CA/
01, all belonging to the Q1 genotype (Table 2).

3.2 | Accession number

Sequence of the IBV strain gammaCoV/AvCov/Ck/lItaly/IP14425/96
was submitted to the GenBank database and the following accession
number was assigned: MG021194.

3.3 | Phylogenetic analysis of full genomes of IBV
strains

The phylogenetic analysis of the 187 representative full IBV gen-
ome sequences that gammaCoV/AvCov/Ck/Italy/
IP14425/96 clustered together with Q1 strains gammaCoV/Ck/Italy/
12022/13, CK/CH/LDL/971 and UY/09/CA/01, occupying a basal
position in the specific cluster (Figure 1). In the same clade, the
Uruguayan strain UY/11/CA/18 (MF421320), was also present, pre-
viously ascribed to the SAl genotype (Lineage G-11) (Figure 1)
(Marandino et al., 2015).

GammaCoV/AvCov/Ck/Italy/IP14425/96 6241 strain showed the
highest sequence identity with the Italian Q1 strain gammaCoV/
Ck/Italy/12022/13 (p-distance 0.054), while the percentage of iden-
tity slightly decreased when the virus was compared to the Chi-
nese (p-distance 0.058) and the Uruguayan (p-distance 0.062) Q1
strains.

demonstrated
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FIGURE 1 Phylogenetic tree based on Maximum Likelihood
method with Tamura-Nei substitution model constructed using 187
representative complete IBV and TCoV genomes. For easiness of
representation, the upper part of the phylogenetic tree was
compressed and the strains considered in the present study marked
in red [Colour figure can be viewed at wileyonlinelibrary.com]

3.4 | Phylogenetic analysis of full S1 sequences

Phylogenetic analysis using a dataset characterized by 320 represen-
tative full S1 sequences showed that gammaCoV/AvCov/Ck/ltaly/
IP14425/96 clustered together with strains previously identified as
624/| genotype isolated in Italy in the late ‘80s and early ‘90s and
strains belonging to Q1 genotype, isolated in Italy, in China, in Tai-
wan, and South America (Figure 2a). The highest sequence identity
was observed with strain 6241/94/JQ901492.1 (p-distance = 0.036)
while the identity was lower when compared to Q1 strains (data not
shown).

The subtree obtained with the expanded dataset shows three
clades, of which one contained all 624/1 strains and occupied a basal
position with respect to the others. In the remaining two clades, Q1
Italian, Chinese and some of the Taiwanese strains, cluster together,
while the remaining Q1 Taiwan strains and all South American Q1
strains form a distinctive phylogenetic group (Figure 2b).

3.5 | Recombination analysis

Recombination analysis was performed to assess the possible recom-
binant nature of the 624l strain gammaCoV/AvCov/Ck/Italy/IP14425/
96 and of the Q1 strains gammaCoV/Ck/lItaly/12022/13 and CK/CH/
LDL/97I.

Possible recombination events were identified in the 1a gene
sequence of the strain CK/CH/LDL/971 with a H120 vaccine strain
(FJ888351) (Figure 3a). Neither gammaCoV/Ck/lItaly/12022/13 nor
gammaCoV/AvCov/Ck/Italy/IP14425/96 Q1 strains showed a similar
recombination event in the 1a gene (Figures 3b,c).

A phylogenetic analysis was performed considering only the 1a
gene, revealing that CK/CH/LDL/97I clustered with H120 and Mass
strains, while gammaCoV/AvCov/Ck/Italy/IP14425/96 and gamma-
CoV/Ck/Italy/12022/13 form a distinctive clade together with a QX-
like Italian strain (ITA/90254/2005 - FN430414) (Figure 4).

4 | DISCUSSION

The genome of the IBV strain gammaCoV/AvCov/Ck/lItaly/IP14425/
96 isolated in Italy in 1996 was fully sequenced and this represents
the first report of a full genome sequencing of a virus belonging to
the 624l genotype. The isolate shows a genome organization slightly
different when compared to the genome organization of most IBVs
previously (5'"UTR-1a-1b-S-3a-3b-E-M-5a-5b-N-3'UTR)

since ORF analysis showed the presence of

reported
(Cavanagh, 2005),
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FIGURE 2 (a) Phylogenetic tree based on Maximum Likelihood method with Kimura-2 model constructed using 320 S1 gene complete

sequences. For easiness of representation, strain reported in the present study and closely related strains, are marked in red. (b) Expanded
phylogenetic tree based on Maximum Likelihood method with Kimura-2 model constructed using S1 complete sequences closely related to
gammaCoV/AvCov/Ck/ltaly/IP14425/96 [Colour figure can be viewed at wileyonlinelibrary.com]
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accessory genes 4b, 4c, and 6b already reported for TCoV and other
IBVs (Abolnik, 2015; Hewson, Ignjatovic, Browning, Devlin, & Noor-
mohammadi, 2011). It is not clear whether the scarcity of reports of
presence of the accessory genes 4b, 4c, and éb in IBVs is due to
their absence in some genomes; or whether it depends on algorithms
and software used by other authors for those ORF's detections. A
recent ORF analysis of the genome of the Q1 strain gammaCoV/Ck/
Italy/12022/13, (Marandino et al., 2017) did not support the presence
of ORF éb in contrast to the results presented here. On the con-
trary, a recent study confirmed the expression of the 4b protein
after M41 IBV infection in vitro (Bentley, Keep, Armesto, & Britton,
2013). IBV accessory genes 3a, 3b, 5a, and 5b are known to be not
necessary for viral replication, but several studies demonstrated their
involvement in the pathogenicity of the virus (van Beurden et al.,

2017; Kint, Dickhout et al., 2015; Kint, Fernandez-Gutierrez et al.,
2015, 2016). A similar function might be hypothesized also for genes
4p, 4c, and 6b, especially in the light that the 4b homologous gene
in the MERS-CoV has been reported as an antagonist of type | inter-
feron response (Yang et al., 2013) and that the 6b homologue in
SARS-CoV was shown to be able to induce apoptosis (Ye, Wong, Li,
& Xie, 2008). More studies need to be done to improve the knowl-
edge on these three accessory genes, in particular whether they are
peculiar of certain genotypes and whether their expression influ-
ences the pathogenicity or the tropism of the virus.

Phylogenetic analyses performed using two different datasets,
one built with IBV complete genome sequences and one built with
IBV complete or nearly complete S1 gene sequences, showed that
6241 and Q1 genotypes clustered together. Our findings, strongly
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suggest a common origin between the two genotypes. The basal
location of the 624l strain in both the phylogenetic trees, coupled
with the epidemiological data available, suggests that this genotype
might have played a role in the emergence of Chinese Q1. This
model requires long-distance intercontinental dispersion of the 624l
genotype and this possibility is supported by its ability to circulate
for extended periods within the same country (Taddei et al., 2012)
and beyond a geographical area (Capua et al., 1999; Krapez et al.,
2010). Unfortunately, there is no comprehensive model explaining
the intercontinental dispersal of the 6241 genotype. Some hypothesis
can be proposed, such as migratory birds, illegal trading and poultry
movement. Albeit speculative, these hypotheses seem to be sup-
ported by the detection of 624l genotype in Russia, which repre-
sents an intermediate position between Europe and the Far East
(Bochkov et al., 2006). Further investigations are needed since,
despite the IBV worldwide dissemination has been observed and
accepted for other genotypes (Franzo et al., 2017), the mechanism
behind this evidence is not fully understood.

The recombination analysis showed that the Chinese strain CK/
CH/LDL/971 underwent recombination with a H120 vaccine strain,
which has been previously demonstrated to be involved in recombi-
nation events leading to reversion to virulence and the emerge of
new genotypes in China (Zhang et al., 2010). The identification of
such a recombination event within the 1a gene might explain the rel-
atively high genetic diversity between 624| strain gammaCoV/
AvCov/Ck/Italy/IP14425/96 and Q1 Chinese strain CK/CH/LDL/97I,
two viruses isolated only one year apart.

The absence of such recombination in the genome of Q1 ltal-
ian strain gammaCoV/Ck/lItaly/12022/13 suggests that not all Q1
strains emerged as a result of a recombination event with a H120
strain. The absence of a recombination event in the 1a gene of
Q1 ltalian strain gammaCoV/Ck/Italy/12022/13 might indicate that
Chinese and Italian Q1 strains are the result of independent evo-
lutions from the 624l genotype. However, the huge differences in
field conditions and therefore genetic pressures between the two
countries, together with the phylogenetic results based on S1 gene
sequences in which Q1 Italian strains cluster together with Chi-
nese and Taiwanese strains, make this hypothesis highly unlikely.

Taken as a whole, the data presented in this study suggest the
6241 genotype to be the ancestor of Q1.
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