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ABSTRACT: A modular synthesis of Ru(II)-NHC-diamine complexes
from readily available chiral N-heterocyclic carbenes (NHCs) and chiral
diamines is disclosed for the first time. The well-defined Ru(II)-NHC-
diamine complexes show unique structure and coordination chemistry
including an unusual tridentate coordination effect of 1,2-
diphenylethylenediamine. The isolated air- and moisture-stable Ru-
(II)-NHC-diamine complexes act as versatile precatalysts for the
asymmetric hydrogenation of isocoumarines, benzothiophene 1,1-
dioxides, and ketones. Moreover, on the basis of the identification of
reaction intermediates by stoichiometric reactions and NMR experi-
ments, together with the DFT calculations, a possible catalytic cycle was
proposed.

1. INTRODUCTION

The development of new chiral catalysts is key to improving
efficiency and selectivity in asymmetric catalysis, even to
discovering new modes of catalysis and new reactions.1

Conventionally, the chiral environment of a transition-metal
catalyst is optimized by the modification of the structure of a
single chiral ligand. However, this strategy is limited to ligand
structures that can be readily accessed. Even though much
endeavor and time are spent on the ligand optimization,
satisfactory results are often out of reach. The utilization of
ligand cooperation is an alternative strategy, which has the
potential to accelerate the optimization process through a
simple mix of two different chiral ligands (Scheme 1a).
Remarkably, the introduction of a second, readily available
ligand not only adds a new tunable site but also offers a
practical way to avoid the tedious synthetic problems caused
by the modification of a complicated ligand.2

Noyori’s elegant Ru(II)-bisphosphine-diamine catalyst is a
representative example utilizing the ligand cooperation concept
(Scheme 1b).3 Since then, the cooperation of chiral
phosphines and chiral diamines was applied widely in
asymmetric catalysis. Nevertheless, novel cooperative systems
beyond phosphine-type ligands have been rarely investigated
for late transition metals.2,4 Inspired by Noyori’s catalyst and
our ongoing interest in N-heterocyclic carbenes (NHCs),5,6 we
recently reported a new combination of chiral NHC and chiral
diamine ligands for the Ru(II)-catalyzed enantioselective
hydrogenation of isocoumarins.7 However, the proposed

Ru(II)-NHC-diamine species was only supported by control
experiments. Undoubtedly, the isolation and characterization
of the Ru(II)-NHC-diamine complexes would not only
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Scheme 1. Ligand Cooperation Strategy for the Design of
New Chiral Catalysts
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confirm the previous proposal but also provide us a new
platform to design NHC-based catalysts directed by the ligand
cooperation concept. Herein, we report the synthesis and
structure determination of the chiral ruthenium precatalysts
and related complexes (Scheme 1b). Unprecedented proce-
dures for the preparation of air- and moisture-stable Ru(II)-
NHC-diamine precatalysts from commercial or other readily
available materials were described in this endeavor. Further-
more, the newly established catalysts were successfully applied
to asymmetric hydrogenations of several important substrate
classes. In the end, detailed mechanistic studies of asymmetric
hydrogenation catalyzed by the Ru(II)-NHC-diamine com-
plexes were conducted.

2. RESULTS AND DISCUSSION
2.1. Synthesis and Structure of Ru(II)-NHC-Diamine

Complexes. First, we developed a stepwise way to install a
chiral NHC ligand and a chiral diamine ligand into one
ruthenium complex (Figure 1). We hypothesized that silver

carbene complexes could serve as carbene transfer agents for
the synthesis of the ruthenium complexes as this strategy had
previously been used for the synthesis of palladium and gold
complexes.8 The NHC silver complex C0 was prepared from
imidazolinium chloride (R,R)-INpEt·HCl and Ag2O according
to the literature.9 The desired heteroleptic complex C1 was
obtained in 56% overall yield following the transmetalation of
the NHC from silver complex C0 to the ruthenium precursor
and subsequent replacement of benzene with (R,R)-1,2-
diphenylethylenediamine (DPEN). The isolated complex C1
is stable to air and moisture and can be stored in an ordinary
vial for months. X-ray crystallographic analysis of C1 indicated
a distorted octahedral geometry of the ruthenium center with a
trans-dichloro geometry. Interestingly, the NHC ligand is
acting as a chelate ligand with a dative carbene bond and an
additional η2-coordination of the naphthyl ring to ruthenium.
This was further verified by the distinct NMR signals at δ 4.99
(1H NMR, HC12), δ 92.0 (13C NMR, C11), and δ 72.7 (13C
NMR, C12). The NMR analysis of trans-RuCl2(INpEt)-
(DPEN) C1 shows that C1 exists as a single conformer in
solution (C6D6, CDCl3, or THF-d8).

Furthermore, we developed a one-pot procedure for the
synthesis of Ru(II)-NHC-diamine complexes (Figure 2). The

direct isolation of the Ru(II)-NHC-diamine species formed in
situ by reacting [Ru(2-methylallyl)2(COD)], NHC precursor
(R,R)-SINpEt·HBF4, diamine ligand (R,R)-DPEN, and NaOt-
Bu in n-hexane was unsuccessful. We rationalized that the
introduction of a chloride ligand might stabilize the ruthenium
complex, thus simplifying the purification and isolation. After
quenching the reaction with HCl solution (4.0 M in dioxane),
ruthenium dichloride C2 and ruthenium monochloride C3
were isolated by flash chromatography on silica gel in 3% yield
and 40% yield, respectively. In contrast, the combination of
(R,R)-SINpEt·HBF4 and (S,S)-DPEN gave only trace amounts
of Ru(II)-NHC-diamine complexes, thus demonstrating a
strong matched/mismatched effect. X-ray and NMR analyses
revealed that ruthenium complex C2 is structurally similar to
complex C1. Unexpectedly, ruthenium monochloride C3
contains an unusual tridentate binding of the diamine through
an additional cyclometalation. This metal−carbon bond is
formed through C−H activation at the 2-positon of the phenyl
ring (13C NMR shift: δ 176.5 in toluene-d8).

10 Similar to C1
and C2, the chelating NHC ligand in C3 binds via carbene
coordination and η2-naphthyl coordination. Despite the polar
carbon−metal bond, complex C3 is not sensitive to air and
moisture in the solid state. However, C3 decomposes in
solution over time. C3 was also confirmed to remain a single
conformer in solution by NMR spectroscopy (in C6D6,

Figure 1. Synthesis and structure of trans-RuCl2(INpEt)(DPEN) C1.
Selected bond lengths (Å) and bond angles (deg) of C1: Ru1−C1,
1.986(6); Ru1−N4, 2.135(5); Ru1−N3, 2.187(5); Ru1−C12,
2.218(5); Ru1−C11, 2.239(6); Ru1−Cl2, 2.4265(16); Ru1−Cl1,
2.4266(16); C11−C12 1.418(8); C1−Ru1−N3, 177.6(3); N4−
Ru1−N3, 78.46(18); Cl2−Ru1−Cl1, 62.53(5); C12−Ru1−C11,
37.1(2).

Figure 2. Synthesis and structure of trans-RuCl2(SINpEt)(DPEN)
C2 and RuCl(SINpEt)(DPEN) C3. Selected bond lengths (Å) and
bond angles (deg) of C2: Ru1−C1, 1.984(3); Ru1−N4, 2.146(3);
Ru1−N3, 2.214(2); Ru1−C12, 2.222(3); Ru1−C11, 2.229(2); Ru1−
Cl2, 2.4205(7); Ru1−Cl1, 2.4211(7); C11−C12, 1.423(5); C1−
Ru1−N4, 103.22(11); C1−Ru1−N3, 172.73(11); N4−Ru1−N3,
78.58(9); C12−Ru1−C11, 37.30(12); Cl2−Ru1−Cl1, 160.63(2).
Selected bond lengths (Å) and bond angles (deg) of C3: Ru1−C1,
1.953(9); Ru1−C32, 2.061(9); Ru1−N4, 2.153(7); Ru1−C12,
2.192(8); Ru1−N3, 2.203(7); Ru1−C11, 2.206(7); Ru1−Cl1,
2.549(2); C1−Ru1−C32, 99.3(3); C1−Ru1−N3, 173.8(3); N4−
Ru1−N3, 75.5(3); C32−Ru1−Cl1, 160.0(3).
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toluene-d8, or THF-d8). It is noteworthy that the addition of an
excess of HCl (4.0 M in dioxane) to the C3 solution (n-
hexane, toluene, or THF) did not convert the monochloride
complex to dichloride complex C2. Likewise, treatment of
dichloride C2 with a strong base like NaOt-Bu did not yield
monochloride C3. According to the same one pot procedure,
precatalysts C4, C4a, C5, and C6 were prepared (Table 1).

2.2. Applications of Ru(II)-NHC-Diamine Complexes
in the Catalytic Asymmetric Hydrogenation. The isolated
ruthenium complexes were then tested as precatalysts for the
enantioselective hydrogenation. Asymmetric hydrogenation of
3-substituted isocoumarins is a direct way to form chiral 3-
substituted 3,4-dihydroisocoumarins which represent a key
motif in a wide range of natural products and biological active
molecules.11,12 By use of the isolated precatalysts, the
enantioselective hydrogenation of 3-substituted isocoumarines
was probed (Table 1). A strong base like NaOt-Bu was
determined to be necessary to activate the precatalysts. Only
trace amounts of product were obtained in the presence of
dichloride ruthenium complex C1 or C2 (Table 1, entries 1
and 2). Notably, RuCl(SINpEt)(DPEN) C3 exhibited a good
activity under basic conditions (entry 3), giving the desired
product 2a in 80% yield and 98:2 e.r.13 Next, variations on the
chiral diamine ligand were investigated. Complex C4 with
(1R,2R)-1,2-di-p-tolylethane-1,2-diamine gave slightly better
results, delivering the product in 83% yield and 98.5:1.5 e.r.
(entries 4). Further para-substituents on the diamine were
tested and gave comparable results (entries 5 and 6). However,
additional substituents in the ortho position turned out to be
unfavorable for the enantioselective hydrogenation of 1a (entry
7). Diamines containing meta-substituents were previously
tested through the in situ system, giving lower enantioselectiv-
ities and yields.7a We then explored the substrate scope of the

reaction using the optimized conditions (Table 1, entry 4) as
shown in the Supporting Information (page S36). A broad
scope of isocoumarin derivatives was hydrogenated while
tolerating differential position and electronic nature of the
substituents as well as functional groups like thiophenes or
methyl ethers (see Supporting Information for further details).
Next, we explored the enantioselective hydrogenation of

benzothiophene 1,1-dioxides. The chiral 2,3-dihydrobenzo-
thiophene 1,1-dioxide framework is a versatile motif in
pharmaceutical research and agrochemistry.14 Recently, the
Pfaltz group reported a novel way to prepare chiral 2,3-
dihydrobenzothiophene 1,1-dioxides by the iridium-catalyzed
asymmetric hydrogenation of substituted benzothiophene 1,1-
dioxides.15,16 Remarkably, high reactivity and enantioselectivity
of the hydrogenation of substituted benzothiophene 1,1-
dioxides were obtained with the ruthenium complex C3
(Scheme 2). After optimization of the reaction conditions, 2-

methylbenzo[b]thiophene 1,1-dioxide 3a was smoothly
reduced under mild conditions using 0.5 mol % of precatalyst
C3 and a low H2 pressure (5 bar) furnishing the corresponding
product 4a in 99% yield and 97:3 e.r. The absolute
configuration of 4a was determined to be S by comparing its
optical rotation data to the literature.15 The effect of
substituents on the phenyl ring was probed. Electron-poor
substrate 3d provided the corresponding product 4d with
excellent enantioselectivity and in a good yield, while the
electron-rich substrates provided slightly lower e.r. values (4b
and 4c). Halogen substituents F, Cl, and Br were well-tolerated
under the mild reaction conditions (4e−g). Substrates
containing longer alkyl chains and functional groups were

Table 1. Catalyst Test for the Enantioselective
Hydrogenation of Isocoumarinsa

entry precatalyst time (h) yield (%)b e.r.c

1 C1 24 trace ND
2 C2 24 trace ND
3 C3 18 80 98:2
4 C4 18 83 98.5:1.5
5 C5 18 80 97:3
6 C6 18 78 96:4
7 C4a 18 65 72:28

aReactions were carried out with 1a (0.2 mmol), the indicated
ruthenium complex (0.004 mmol, 2 mol %), and NaOt-Bu (0.02
mmol, 10 mol %) in n-hexane (4.0 mL) under 50 bar of H2 at 15 °C
for the indicated time. bIsolated yields. cDetermined by HPLC
analysis using a chiral stationary phase.

Scheme 2. Ruthenium-Catalyzed Asymmetric
Hydrogenation of Benzothiophene 1,1-Dioxidesa

aUnless otherwise noted, reactions were conducted with 3 (0.3
mmol), C3 (0.0015 mmol, 0.5 mol %), and NaOt-Bu (0.02 mmol 6.7
mol %) under 5 bar of H2 in toluene (2.0 mL) at 25 °C for 24 h.
Isolated yields after column chromatography are reported. The e.r.
values were determined by HPLC analysis using a chiral stationary
phase. bUsing 30 bar of H2 at 0 °C.

Journal of the American Chemical Society pubs.acs.org/JACS Article

https://dx.doi.org/10.1021/jacs.0c00985
J. Am. Chem. Soc. 2020, 142, 7100−7107

7102

http://pubs.acs.org/doi/suppl/10.1021/jacs.0c00985/suppl_file/ja0c00985_si_001.pdf
http://pubs.acs.org/doi/suppl/10.1021/jacs.0c00985/suppl_file/ja0c00985_si_001.pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00985?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00985?fig=tbl1&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00985?fig=sch2&ref=pdf
https://pubs.acs.org/doi/10.1021/jacs.0c00985?fig=sch2&ref=pdf
pubs.acs.org/JACS?ref=pdf
https://dx.doi.org/10.1021/jacs.0c00985?ref=pdf


hydrogenated with good e.r. values and excellent yields (4h−j).
Poor enantioselectivity was observed when 2-phenylbenzo-
thiophene 1,1-dioxide was used, due to the deprotonation of
the product’s chiral center under basic conditions.
The enantioselective hydrogenation of ketones is among the

most important asymmetric reactions, producing chiral
alcohols that are common core structures in biologically active
molecules and natural products.3,17 To our delight, Ru(II)-
NHC-diamine complexes can also be applied in this reaction
(Scheme 3). Good enantioselectivities were obtained for

acetophenones and 1-(thiophen-2-yl)ethan-1-one in the
presence of ruthenium complex C4 (6a−c). Moreover, various
benzo-fused cyclic ketones underwent the hydrogenation
smoothly in the current catalytic system, giving the
corresponding chiral alcohols with high e.r. values (6d−j).18
2.3. Mechanistic Studies of the Ru(II)-NHC-Diamine

Catalyzed Asymmetric Hydrogenation of Benzothio-
phene 1,1-Dioxides. To gain information on the mechanism
of the catalytic process, several stoichiometric reactions were
conducted followed by in situ NMR measurements (Scheme
4). First, precatalyst C3 underwent a dehydrochlorination
reaction upon treatment with NaOt-Bu (1.0 equiv) in toluene-
d8 giving the amido complex C7 quantitively. This reaction was
accompanied by a strong color change from yellow to dark red
and took place in 5 min at room temperature. Removing t-
BuOH under reduced pressure enabled the characterization of
C7 (Scheme 4, step 1; for detailed information, see Supporting
Information). According to NMR analysis, the η2-coordination
of the naphthyl ring and the tridentate coordination of DPEN

to the ruthenium center persisted at this stage. Complex C7
then reacted instantaneously with H2 (1 bar) in toluene-d8 at
room temperature to produce metal hydride species C8 with a
typical Ru−H hydride signal in the 1H NMR spectrum (−2.14
ppm) (Scheme 4, step 2). NMR characterization of C8
confirmed that no hydrogenolysis of the ruthenium−carbon
occurred (for details, see Suppporting Information). Complex
C8 decomposes rapidly in solution (0.14 M in toluene-d8) at
room temperature but is stable for days at −78 °C. After
release of H2 from the NMR tube, an amount of 2 equiv of 3a
was added to C8 in toluene-d8 accompanied by a color change
from brown to dark red. 1H resonances associated with
complex C7 appeared while the signal corresponding to the
Ru−H disappeared (Scheme 4, step 3). Meanwhile, 4a was
observed with 97:3 e.r. and roughly 50% NMR yield with
respect to the amount of 3a. If the mixture of step 3 was placed
under H2 atmosphere again, C8 could be regenerated along
with full conversion of 3a. Finally, quenching of complex C7
with an HCl solution (4 M in dioxane) regenerated the air-
stable precatalyst C3 (Scheme 4, step 4).
On the basis of the above experiments, previous mechanistic

studies of Ru(II)-diphosphine-diamine catalyzed asymmetric
hydrogenations of ketones,19 and DFT calculations as
described below (Scheme 6; see Supporting Information for
details and unfavorable alternative pathways), we propose a
mechanism for ruthenium-catalyzed asymmetric hydrogenation
of benzothiophene 1,1-dioxides including the mode of
enantioinduction (Scheme 5). The reaction between precata-
lyst C3 and NaOt-Bu should give the active amido complex

Scheme 3. Enantioselective Hydrogenation of Ketones
Catalyzed by Ru(II)-NHC-Diamine Complexesa

aUnless otherwise noted, reactions were carried out with 5 (1.0
mmol), C4 (0.0003 mmol, 0.03 mol %), and NaOt-Bu (0.02 mmol,
2.0 mol %) under 5−10 bar of H2 and in i-PrOH (1.0 mL) at 22 °C
for 24 h. Isolated yields after column chromatography are reported.
The e.r. values were determined by HPLC analysis using a chiral
stationary phase. bUsing 0.05 mol % of C4. cUsing 0.5 mol % of C4.

Scheme 4. Stoichiometric Reactions and NMR Experiments
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C7. We postulate that an unobserved dihydrogen intermediate
might be generated when placing complex C7 under an H2
atmosphere. Then, an intramolecular heterolytic splitting of
dihydrogen would provide hydride complex C8. When
substrate 3a is added to C8, a hydrogen-bond interaction
between the amine proton and the oxygen atom of the sulfone
group occurs. The resulting intermediate is stabilized by 0.8
kcal/mol relative to the reactants 3a and C8 for the pathway
leading to the (S)-product according to our DFT (PBE0/def2-
SVP) results (Scheme 6). A possible transition state TS1 is
proposed based on the outer-sphere bifunctional catalysis
mechanism by Noyori and other groups.19 The nucleophilic
Ru−H hydride should attack the β position of the sulfone ring
according to the reaction nature of benzothiophene 1,1-dioxide
compounds.20 Our calculations confirm the existence of a
transition state in which the Ru−H hydride is transferred to
the β position of the sulfone ring in the presence of the above-

mentioned hydrogen bond (Scheme 6, TS1), resulting in a
destabilization of 3.7 kcal/mol. An intrinsic reaction coordinate
(IRC) analysis shows, however, that hydrogen and proton
transfers proceed in a stepwise manner. The IRC analysis leads
to intermediate IN (Scheme 6, IN), in which the proton still
resides on the amine group. This intermediate is stabilized by
12.5 kcal/mol compared to TS1. The product complex is
reached via a second transition state (Scheme 6, TS2,
destabilized by 2.8 kcal/mol compared to IN) in which the
proton is transferred. In this second step, the proton of the
amine group in the intermediate IN should transfer to the α
position of the sulfone group from the Re face of the prochiral
center, thus giving rise to the product 4a with S configuration
and regenerating amido complex C7, resulting in a final
stabilization of 14.2 kcal/mol.

3. CONCLUSIONS

We introduced a practical and general procedure for the
synthesis of chiral Ru(II)-NHC-diamine complexes based on
the concept of ligand cooperation. The characterized
ruthenium dichloride and monochloride complexes show a
unique structure with unusual binding of the ligands. The
ruthenium monochloride complexes serve as versatile catalysts
for the enantioselective hydrogenation of isocoumarines,
benzothiophene 1,1-dioxides, and ketones. A possible mech-
anism was proposed based on the identification of reaction
intermediates via stoichiometric experiments, NMR analyses,
and a computational study.
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Scheme 5. Proposed Mechanism for Ruthenium-Catalyzed
Asymmetric Hydrogenation of Benzothiophene 1,1-
Dioxides

Scheme 6. Calculated Relative Gibbs Free Energies for the Ruthenium-Catalyzed Asymmetric Hydrogenation of
Benzothiophene 1,1-Dioxides Leading to the (S)-Producta

aAll values in kcal/mol.
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S.; Marion, N.; Nolan, S. P. N-Heterocyclic Carbenes in Late
Transition Metal Catalysis. Chem. Rev. 2009, 109, 3612. (i) Gaillard,
S.; Cazin, C. S. J.; Nolan, S. P. N-Heterocyclic Carbene Gold(I) and
Copper(I) Complexes in C−H Bond Activation. Acc. Chem. Res.
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